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Abstract

Background: The purpose of this study was to develop a method to compare hypoglycemia prediction algorithms and choose
parameter settings for different applications, such as triggering insulin pump suspension or alerting for rescue carbohydrate
treatment.
Materials and Methods: Hypoglycemia prediction algorithms with different parameter settings were implemented on an
ambulatory dataset containing 490 days from 30 subjects with type 1 diabetes mellitus using the Dexcom� (San Diego, CA)
SEVEN� continuous glucose monitoring system. The performance was evaluated using a proposed set of metrics re-
presenting the true-positive ratio, false-positive rate, and distribution of warning times. A prospective, in silico study was
performed to show the effect of using different parameter settings to prevent or rescue from hypoglycemia.
Results: The retrospective study results suggest the parameter settings for different methods of hypoglycemia mitigation.
When rescue carbohydrates are used, a high true-positive ratio, a minimal false-positive rate, and alarms with short warning
time are desired. These objectives were met with a 30-min prediction horizon and two successive flags required to alarm: 78%
of events were detected with 3.0 false alarms/day and 66% probability of alarms occurring within 30 min of the event. This
parameter setting selection was confirmed in silico: treating with rescue carbohydrates reduced the duration of hypoglycemia
from 14.9% to 0.5%. However, for a different method, such as pump suspension, this parameter setting only reduced
hypoglycemia to 8.7%, as can be expected by the low probability of alarming more than 30 min ahead.
Conclusions: The proposed metrics allow direct comparison of hypoglycemia prediction algorithms and selection of pa-
rameter settings for different types of hypoglycemia mitigation, as shown in the prospective in silico study in which
hypoglycemia was alerted or treated with rescue carbohydrates.

Background

Intensive insulin therapy is recommended to reduce the
likelihood of long-term complications for those with type 1

diabetes mellitus. Unfortunately, this therapy results in a
‘‘two-to-threefold increase in severe hypoglycemia,’’ as found
in the landmark study performed by the Diabetes Control and
Complications Trial.1 Frequent hypoglycemia episodes can
lead to hypoglycemia unawareness, which causes symptoms
such as confusion, sweating, and dizziness to occur at lower
blood glucose levels.2 Although the sympathetic response to
hypoglycemia varies, the American Diabetes Association
recommends an alert level of 70 mg/dL (3.9 mmol/L)3; this
value will be used throughout this article, but is a flexible
parameter. The availability and increasing accuracy of con-
tinuous glucose monitors (CGMs) have allowed for better
glycemic control and the possibility of prediction of adverse

glycemic excursions.4–6 The potential for overnight severe
hypoglycemia and the absence of symptoms for many with
type 1 diabetes must be addressed in current CGMs and
eventually in the development of an artificial pancreas. A
prediction algorithm used for this purpose must be able to
accurately predict hypoglycemia episodes and attempt to
mitigate them before they occur.2,7

Several promising hypoglycemia prediction algorithms
have been described in the literature.4,5,8–10 However, there is
a lack of consistency, both in the type of data used to assess the
algorithms and in the reporting of their performance, making
it difficult to compare them. Several of the algorithms were
assessed using data in which hypoglycemia was in-
duced,4,5,8,9 although, in practice, severe hypoglycemia is
relatively infrequent, and the drop in blood glucose in an
induced study may exhibit an unrealistic pattern. Other al-
gorithms were tested on data that had been post-processed by
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calibration with fingerstick data, whereas in real time this
would not be feasible.10 Assessing a prediction algorithm with
long-term ambulatory conditions gives insight into its per-
formance in real time, particularly the rate of false-positive
alarms during long data segments without hypoglycemia
episodes.

The performance necessary to determine the best algorithm
tuning depends on the method of action because the timing of
the alarms and the specificity and sensitivity required vary
depending on the treatment to be used. For example, pre-
venting hypoglycemia by suspending the insulin pump is a
type of passive protection that requires a warning time of
approximately 45 min to be successful.4 Current CGMs are
equipped with variable threshold alarm settings, which are
useful, but limited, as a high threshold may lead to many
false-positive alarms, and a low threshold may not allow for
adequate time for corrective action. A predictive alarm can
exploit the recent data trends to predict hypoglycemia more
accurately and earlier. The initial step for bringing the artifi-
cial pancreas to those with type 1 diabetes will be the use of
pump suspension with a threshold or predictive alarm,11,12

but this may lead to rebound hyperglycemia with false-posi-
tive alarms or may be unsuccessful if triggered too late.13

Therefore, an algorithm designed for this use must have a
long warning time and a high true-positive ratio with a
moderate to low false-positive rate. Alternatively, alerting to
the user to treat with rescue carbohydrates (CHOs) is a type of
active protection that should occur very close to the event.
Because the current CGMs are somewhat noisy (mean abso-
lute deviation of 2.6–22.6 mg/dL [0.14–1.26 mmol/L] below
70 mg/dL [3.9 mmol/L]),14 false-positive alarms may be fre-
quent and can lead to alarm fatigue with audible alarms.15

This method of action requires an algorithm tuned for a short
warning time with a low false-positive rate.

In light of these requirements, an algorithm must be de-
signed to produce alarms with appropriate true- and false-
positive ratios and a warning time that allows corrective ac-
tion to be taken. We have developed metrics to address these
goals that include a practical calculation of true- and false-
positive rates and the representation of warning times as a
distribution, in effect visualizing both clinical and engineering
requirements. These metrics were applied to a large ambula-
tory dataset to determine the performance of different algo-
rithms and parameter settings, and a prospective in silico
study was performed using a variety of parameter settings to
demonstrate the impact of algorithm tuning on hypoglycemia
prevention or mitigation.

Materials and Methods

Prediction algorithms

The proposed metrics were demonstrated using a simple
numerical logic algorithm (NLA), similar to one that has been
used in previous studies.4,8 In the NLA, the rate of change
was calculated at each point using the first derivative of the
Lagrange interpolation polynomial (which is robust to dif-
fering sampling rates) to make a prediction and to issue an
alarm if a hypoglycemic event was imminent.8,16 The trajec-
tory of the rate of change estimate was projected through the
hypoglycemia threshold to decide if a hypoglycemic event
would occur within the prediction horizon (PH), the main
tuning parameter.

The influence of sensor noise was reduced by using an
additional parameter, the number of successive alarms re-
quired (SAR) to register an alarm; an SAR value of either 1 or 2
was used in this study. If a hypoglycemic event was predicted
at SAR successive measurements, an alarm was recorded.

An additional algorithm using the Kalman filter was im-
plemented to illustrate that these metrics can be used with any
algorithm. The algorithm used was a modified version of the
Optimal Estimation (OE) algorithm, introduced by Palerm
et al.,17 in which a Kalman filter was used to estimate glucose
concentration and its rate of change. These estimates were
used to make glucose predictions. The algorithm was modi-
fied to allow for missing data by using the most recent pre-
diction to fill in gaps up to 15 min (the sampling period was
5 min). When longer gaps were encountered, the algorithm
was restarted. The tuning parameters used for the OE algo-
rithm were the values of Q and R in the quadratic perfor-
mance index. In this study, the Q/R ratio was set at 0.008.
For more information about the Kalman filter algorithm, see
Palerm et al.17

Retrospective clinical study

The retrospective study was based on 38 sets of ambulatory
data from 30 subjects with type 1 diabetes mellitus (negative
C-peptide concentration), collected by the Sansum Diabetes
Research Institute, Santa Barbara, CA. The record consisted
of 490 days of CGM data (SEVEN� CGM; Dexcom�, San
Diego, CA) with a 5-min sampling time. These data represent
a real-life record in which hypoglycemia occurs with a typical
frequency under ambulatory conditions. For further infor-
mation, see Table 1. The data were processed with three PH
values (15, 30, and 60 min) for NLA and OE and two SAR
values (1 and 2 successive alarms required) for NLA.

In silico study

An in silico study to mimic hypoglycemia caused by an
over-bolus was conducted using the Food and Drug Ad-
ministration–accepted UVA/Padova metabolic simulator
set of 10 published subjects.18 The simulated CGM, with
preprogrammed noise, was used for all calculations. The 18-
h simulation protocol was as follows: 2 h of basal insulin,
followed by closed-loop therapy of basal insulin with a bolus
for an anticipated meal of 65 g of CHO at 2.5 h, but without
actual delivery of the meal. Eight scenarios were executed:
one control with no bolus, one protocol as described above,
three suspension scenarios, and three alert scenarios, using
NLA.

For the suspension and alert scenarios, the NLA was active
only during closed-loop. When the algorithm provided a
prediction of future hypoglycemia, treatment was given, ei-
ther to suspend the insulin pump to 0 U/h for 90 min (sus-
pension scenario) or to administer 16 g of CHO as rescue
CHOs (alert scenario). Further treatment was prevented for
30 min. The parameter settings were SAR = 2 and PH values of
15, 30, and 60 min.

Event determination

When a subject experiences a threshold low blood glucose
alarm in daily life, he or she assesses the validity of an alarm
based on CGM and fingerstick measurements. Because of this
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sensing reality for the subject and the scarcity of reference
data, in this study CGM data were used to identify hypo-
glycemic events. Events were determined retrospectively and
independently from the algorithm execution. The onset of a
hypoglycemic event was defined to occur when CGM mea-
surements crossed the hypoglycemia threshold and remained
below for at least 10 min (i.e., three consecutive glucose
measurements). At 30 min after the onset (minimum dura-
tion), the data were reassessed: recovery from the event was
confirmed at the third point (not necessarily consecutive) that
was at least 10 mg/dL (0.56 mmol/L) above the hypoglyce-
mia threshold.

After the identification of each hypoglycemic event, true-
and false-positive regions were defined. Algorithms pre-
sented in the literature have taken several approaches to de-
fine true-positive alarms: some used a window of –30 min
from onset10 or 45 min before onset,9 whereas others used a
more traditional approach by declaring alarms true-positive if
both the prediction and the actual value were below the hy-
poglycemic threshold. In this study we have defined the true
positive region to be the 60-min period leading up to the hy-
poglycemic event to include the time period that would be
considered clinically appropriate for hypoglycemia preven-
tion or treatment. Similarly, false-positive alarms are

Table 1. Characteristics of Overall Clinical Data, the Demonstrative Case, and the Simulation Study

All subjects Demonstrative case Simulation study

Population data
Number of datasets (distinct subjects) 38 (30) 1 (1) 10 (10)
Male sex [n (%)] 14 (47) 1 (100) —
Age at collection (years)a 45 – 14 62 —
BMI at collection (kg/m2)a 26 – 4 26 —
Sample period (min) 5 5 5
Overall duration [n samples (days)] 141,178 (490) 28,369 (98.5) 2,170 (7.5)
Median duration per subject [n samples (days)] 1,566 (5) — 216 (0.75)
Below 70 mg/dL (3.9 mmol/L) [n samples (%)] 13,859 (9.8) 1,618 (5.7) 324 (14.9)
Above 180 mg/dL (10 mmol/L) [n samples (%)] 28,235 (20.0) 5,068 (17.9) 8 (0.4)
Hypoglycemia episodes [total (mean)] 789 (21) 83 10 (1)
False-positive range [n samples (% of total)] 111,848 (79.2) 24,867 (87.7) 1,635 (75.4)

Algorithm results
TPR (number of episodes detected) (%)

NLA, SAR = 1, PH = 15 min 86 87 100
NLA, SAR = 1, PH = 30 min 90 89 100
NLA, SAR = 1, PH = 60 min 92 95 100
NLA, SAR = 2, PH = 15 min 55 59 90
NLA, SAR = 2, PH = 30 min 75 78 100
NLA, SAR = 2, PH = 60 min 80 82 100
OE, PH = 15 min 57 70 80
OE, PH = 30 min 79 81 90
OE, PH = 60 min 89 90 90

FPR (false-positive alarms) (n alarms/day)
NLA, SAR = 1, PH = 15 min 5.4 4.8 2.6
NLA, SAR = 1, PH = 30 min 12 11 11
NLA, SAR = 1, PH = 60 min 21 19 21
NLA, SAR = 2, PH = 15 min 1.1 0.9 1.1
NLA, SAR = 2, PH = 30 min 3.7 3.0 6.9
NLA, SAR = 2, PH = 60 min 8.3 6.8 16
OE, PH = 15 min 3.5 2.6 2.3
OE, PH = 30 min 8.8 7.1 5.6
OE, PH = 60 min 23 19 17

tW for 60-min window (min)b

NLA, SAR = 1, PH = 15 min 27 – 16 (20) 26 – 15 (20) 17 – 8 (15)
NLA, SAR = 1, PH = 30 min 36 – 16 (35) 37 – 15 (35) 44 – 13 (40)
NLA, SAR = 1, PH = 60 min 40 – 16 (45) 44 – 14 (50) 48 – 12 (50)
NLA, SAR = 2, PH = 15 min 16 – 13 (10) 16 – 13 (10) 11 – 7 (10)
NLA, SAR = 2, PH = 30 min 26 – 15 (25) 27 – 15 (25) 36 – 15 (30)
NLA, SAR = 2, PH = 60 min 34 – 16 (35) 34 – 16 (35) 46 – 13 (45)
OE, PH = 15 min 19 – 16 (15) 18 – 16 (10) 23 – 19 (15)
OE, PH = 30 min 27 – 17 (25) 26 – 16 (25) 33 – 22 (25)
OE, PH = 60 min 38 – 18 (40) 37 – 18 (40) 42 – 18 (45)

The lower half of the table includes results of the numerical logic algorithm (NLA) and Optimal Estimation (OE) algorithm for three values
of the predicted horizon (PH) and NLA for two values of successive alarms required (SAR).

aMean – SD values.
bMean – SD (median) values.
BMI, body mass index; FPR, false-positive rate; TPR, true-positive ratio; tw, warning time from the first alarm to the event.
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generally defined in the literature either as predictions that
were below the threshold while the actual values were not9 or
as a false event if not within the true-positive region.10 These
metrics do not reflect the nuisance factor of false-positive
alarms. Therefore, the false-positive region extended from the
end of the previous event to the beginning of the true-positive
region, and each alarm during this period was counted as a

false-positive. A CGM tracing from a demonstrative case
study is shown in Figure 1, with dark solid circles denoting
CGM measurements and the hypoglycemia threshold of
70 mg/dL is indicated by the gray dashed-dot line. The dark
dashed line in the box below each tracing is the ‘‘event line’’
that denotes false-positive regions, the true-positive region,
and hypoglycemic events. True- and false-positive alarms are

FIG. 1. Sample tracings from a demonstrative case study of ambulatory data using the Dexcom SEVEN sensor with
numerical logic algorithm (NLA) with a prediction horizon of 60 min and successive alarms required of 2: (A) events occurred
and (B) events did not occur. Included are 60 h of continuous glucose monitor (CGM) data (dark circles) with fingersticks
measurements (asterisks) and the hypoglycemia threshold shown in gray. The event line is shown in a box below each tracing
as a dark dashed line with false-positive (FP), true-positive (TP), and hypoglycemia (Hypo) regions in steps (marked on the y-
axis). True alarms are in light circles, plotted coincidentally with the CGM data and on the true-positive region on the event
line. False alarms are similarly plotted on the CGM data and on the false-positive region on the event line. Color images
available online at www.liebertonline.com/dia
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shown both as circles overlapping the CGM measurements
and as stems up to the event line. Only alarms located in the
true- and false-positive regions were used in the calculations
below.

Metrics

The performance of the algorithms was characterized by
calculating the true-positive ratio (TPR), the false-positive rate
(FPR), and the warning time from the first alarm to the event
(tw). The TPR, commonly known as the sensitivity, is a mea-
sure of the percentage of the hypoglycemic events that were
detected by the algorithm.19 In a clinical setting, the first alarm
would invoke treatment or corrective action. Therefore, the
first alarm in a true-positive region was considered to be a
true-positive alarm, and subsequent alarms up to the event
were considered associated with this alarm event and thus
were not considered in the calculation of TPR. The TPR was
defined as

TPR¼ TP

P
(1)

where TP is the number of true-positive alarms (alarmed
hypoglycemic events) and P is the number of actual hypo-
glycemic events. Thus the TPR indicates the percentage of
hypoglycemic events that were predicted by the algorithm.

The FPR is important because it quantifies the ‘‘nuisance
factor’’ of the algorithm. A safety system that produces a large
number of false-positive alarms can result in alarm fatigue or
rebound hyperglycemia, depending on the method of ac-
tion.20 The FPR, expressed as false-positive alarms per day,
was calculated as

FPR¼ FP

N
· c (2)

where FP is the number of false-positive alarms, N is the
number of alarms in the false-positive region, and c is the
number of CGM measurements per day. Note that the FPR for
a retrospective study such as this one may not reflect the FPR
in a similar prospective study. In a prospective study, reac-
tions to the alarms would have a significant impact on blood
glucose trajectories. This type of study is presented in the in
silico section.

There are several alarms in the CGM tracing in Figure 1 for
the NLA algorithm. Figure 1A depicts a 60-h time period in
which several events occur. The NLA parameter settings were
PH = 60 min, SAR = 2, and the hypoglycemia threshold was
70 mg/dL (3.9 mmol/L). The resulting true alarms are shown
in very light circles and false alarms by light circles, both
coincident with the CGM measurement where they occurred.
In addition, they are shown in the box below the tracing, both
coincident with the event line. During this period, six hypo-
glycemic events occurred, five of which were alarmed within
the true-positive region (TPR = 83%). Nine alarms occurred
within the false-positive region (FPR = 3.6 alarms/day).
Figure 1B depicts a 60-h time period in which no events oc-
curred. In this span, 22 alarms occurred within the false-
positive range (FPR = 8.8 alarms/day). The difference between
the FPR values in regions with several events versus periods
with few events further reinforces the need for ambulatory data
to evaluate algorithms, rather than specific episodes.

The warning time, tw, between the first alarm and the be-
ginning of a hypoglycemic episode is an important metric in
algorithm comparison. It is calculated as follows:

tw¼ te� tf (4)

where tw is the warning time, te is the time of the start of the
event, and tf is the time of the first true alarm. The warning
time period used in this study was 60 min: if no alarm oc-
curred within 60 min of an event, no warning time was re-
corded. The warning time is an estimate of the time available
for corrective action. It is common in the literature to represent
the warning time as an average.8–10 However, when assessing
a large amount of data with several hypoglycemic events, the
tw values are represented best as a distribution rather than an
average to give insight into the probability of alarms occur-
ring with a certain lead time. These results are represented in
this study by a distribution plot and a precision diagram
(Fig. 2). The distribution plot depicts a cumulative sum of the
number of warning times in 5-min bins, plotted as a per-
centage of the total. The precision diagram is divided into bins
of 0–15, 15–30, 30–45, and 45–60 min. The warning time for
each bin was calculated as

ri¼
wi

bi
(5)

where ri is the warning time rate, wi is the number of warning
times, and bi is the number of minutes, all in bin i. The nor-
malized warning time rate, ~ri, which varies from 0 to 1, was
then calculated:

~ri¼
ri

rmax

where rmax is the maximum rate in the set of bins. The nor-
malized warning time rate is plotted in concentric circles like a
dartboard, to illustrate the performance of the algorithm. For
instance, if the highest warning time rate occurred within
15 min of the event, the center circle will correspond to a value
of 1. The contrast with the other circles indicates whether the
warning time rate is narrowly or widely distributed.

Results

Retrospective study

Results were generated for all subjects using the NLA and
OE (Table 1). An example of metrics for the demonstrative
case study is illustrated in Figure 2. In Figure 2A, the TPR
values (multiplied by 100%) and FPR values both show an
expected increase as the PH increases. Increasing the SAR
resulted in a marked decrease in both TPR and FPR and a
change in the shape of the PH trend, with a faster increase in
TPR with PH.

The warning time distribution plot is in Figure 2C, which is
a snapshot of the entire range of PH values. Because a large
amount of data was analyzed, the probability that an alarm
will occur within a specific time, tw, can be deduced by this
plot. As the PH increases, the probability that the majority of
alarms would occur further before the event increases. This
observation is useful when comparing parameter settings for
different methods of action. For example, to prevent hypo-
glycemia using pump suspension, a setting that alarmed more
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FIG. 2. Sample results from the demonstrative case study using the Dexcom SEVEN sensor. Data include 98.5 days with 83
hypoglycemia events ( < 70 mg/dL [3.9 mmol/L]). (A) True-positive ratio (TPR) values and false-positive rate (FPR) values are
shown for three different prediction horizon (PH) values for the numerical logic algorithm (NLA) and the Optimal Estimation
(OE) algorithm (15, 30, and 60 min in circles, squares, and triangles, respectively), with NLA with successive alarms required
(SAR) of 1 (open symbols), an SAR of 2 (solid symbols), and OE (striped symbols). (B) The relative density of first alarms is shown
for the NLA with PH = 30 min and SAR = 2. (C) The percentage of first alarms that are longer than tW time before the event are
shown for NLA and OE with three PH values (15, 30, and 60 min in circles, squares, and triangles, respectively), with an SAR of 1
(solid lines and open symbols), an SAR of 2 (dashed lines and filled symbols), and OE (dash-dotted line with striped symbols).
The legend entries indicate the algorithm, the SAR, and the PH. Color images available online at www.liebertonline.com/dia
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than 45 min ahead with the highest probability is required. A
line drawn at 45 min would indicate that either NLA with an
SAR of 1 and a PH of 60 min or OE with a PH of 60 min could
be chosen, as first alarms have a probability of occurring more
than 45 min ahead 53% and 35% of the time, respectively.
Figure 2B displays the precision plot for the NLA with PH =
30 min and SAR = 2. The bin with the maximum normalized
warning time rate is shown with a value of 1. This PH has
moderately high precision, with the rmax within Bin 2 (15–
30 min), and a very similar rate in Bin 1 (87% of Bin 2) with a
sharp drop-off in Bins 3 and 4 (57% and 39%, respectively, of
the rate in Bin 2). This observation indicates that a large ma-
jority of the alarms would occur close to the event. With a 78%
TPR and only 3.0 false alarms per day, this setting may be a
good choice for an alerting application.

In silico study

The NLA was tested retrospectively to determine pa-
rameter settings with the appropriate qualities for different
methods of hypoglycemia mitigation. A prospective study
with induced hypoglycemia and accompanying mitigation
using several parameter settings was performed in silico
with the NLA, with major results in Figure 3. Each subplot
displays the spectrum of CGM values for all 10 subjects for
the duration of the simulation. Values below 70 mg/dL (3.9
mmol/L) and above 180 mg/dL (10 mmol/L) are shown as
dark blue and red cells, respectively, to easily visualize
hypo- and hyperglycemia and quickly surmise differences
between protocols. One can see by the abundance of dark
blue that no hypoglycemia was experienced in the control
(Fig. 3A) and that severe hypoglycemia was experienced in
the control with protocol (Fig. 3B). The first alarm produced
from the hypoglycemia prediction algorithm is shown
either as a square (false-positive alarm) or a circle (true-
positive alarm) in Fig. 3A and B. For the control with pro-
tocol, 30.5 – 5.0 units of insulin was delivered over an 18-h
period, with missed meal boluses of 8.0 – 3.8 units. There
were no hypoglycemic events for the control versus 10
events for the control with protocol (14.9% of time spent
below 70 mg/dL [3.9 mmol/L]).

The pump suspension protocol results are shown in Figure
3C–E for SAR = 2 and PH values of 15, 30, and 60 min, with an
average number of 90-min suspensions per subject of 1.1 –
0.6, 1.8 – 0.4, and 2.5 – 0.7, respectively. Although the dura-
tion of hypoglycemia decreased, as seen by the decrease in
dark-blue cells from Fig. 3B to Fig. 3C–E, from 14.9% to 10.1%,
8.7%, and 8.3%, respectively (significant only for the 30- and
60-min PH values), the duration of hypoglycemia was sig-
nificant, even with long warning times and multiple suspen-
sions. This observation suggests that, in the event of an over-
bolus or bolus without a meal, suspending the insulin pump is
insufficient to avoid or alleviate subsequent hypoglycemia. Not
only was hypoglycemia not avoided, but an increase in rebound
hyperglycemia (over 180 mg/dL [10 mmol/L]) was observed,
as seen by the introduction of red cells on the plot (difference not
significant, from 0.4% to 1.9%, 3.5%, and 3.7%, respectively).

The alert protocol is shown in Figure 3F–H for SAR = 2 and
PH values of 15, 30, and 60 min with an average number of
rescue CHO administrations per subject of 1.1 – 0.6, 1.6 – 0.7,
and 1.9 – 0.9, respectively. It is evident that the administration
of rescue CHOs significantly decreased the duration of hy-

poglycemia, displayed by very few dark-blue cells (from
14.9% to 4.7%, 0.5%, and 0.2%, respectively) and the number
of episodes (from 10 to seven, two, and one, respectively)
without causing rebound hyperglycemia. In addition, al-
though the improvement of a PH of 30 min over 15 min was
evident, improvement of a PH of 60 min over 30 min was
slight. This reinforces the findings of the retrospective study in
which the TPR of the 30- and 60-min PH values were high and
similar, whereas that of the 15-min PH was much lower. This
observation indicates that a low to moderate PH is sufficient
to avoid hypoglycemic events when alerting, even with a
large bolus without a meal.

Conclusions

The proposed metrics provide practical measures of the
performance of hypoglycemia prediction algorithms in a real-
world setting. They can be applied to compare and evaluate
prediction algorithms using ambulatory data and to select
appropriate parameter settings for the chosen method of ac-
tion. For example, if the application is to use NLA to alert the
subject to impending hypoglycemia and to recommend res-
cue CHOs, the results of the retrospective study suggest that
selecting parameter settings of PH = 30 min and SAR = 2 may
be ideal. On the other hand, for hypoglycemia prevention
using pump suspension, more sensitive settings, such as
PH = 60 min and SAR = 1, may be required. It is evident that
very different parameter settings may be required depending
on the method of action associated with the hypoglycemia
algorithm.

The results of the retrospective study were clearly reflected
in the results of the prospective study, specifically the impact
of the TPR and tw on the alert protocol. For example, with
parameter settings of PH = 30 min and SAR = 2, the probability
of alarms occurring greater than 15 or 30 min before a hypo-
glycemia episode was 71% and 34%, respectively (see Fig. 2C),
with the greatest density of alarms occurring between 15 and
30 min (see Fig. 2B). When the subjects were treated with
rescue CHOs, the parameter settings of PH = 30 min and
SAR = 2 were able to reduce the time in hypoglycemia from
14.9% to 0.5%. All first alarms occurred at least 25 min ahead
(four out of seven were 25–36 min), and eight out of 10 epi-
sodes were completely avoided. However, these parameter
settings were less successful for pump suspension (8.7% of the
time spent in hypoglycemia). Suspending with a setting of
PH = 30 min was insufficient to avoid hypoglycemia due to a
large over-bolus, even with a 78% TPR and an average
warning time of 27 min. With suspension, with a setting of
PH = 60 min was the time in hypoglycemia not greatly re-
duced ( - 8.3%). The TPR for this setting was only slightly
higher (82%), with an increase in average warning time to
34 min and 54% probability of occurring more than 30 min
ahead (see Fig. 2C). A much longer warning time would be
necessary for treating a large over-bolus by pump suspension.

The influence of the parameter settings for the hypoglyce-
mia prediction algorithms on its performance for a selected
mitigation method such as alerting or pump suspension must
be assessed before the algorithm is incorporated into an arti-
ficial pancreas system, whether current systems or a future
artificial pancreas design. Application of the proposed metrics
when assessing retrospective data is an easy and effective way
to design a hypoglycemia prediction algorithm.

HYPOGLYCEMIA PREDICTION METRICS 725



FIG. 3. Results of an in silico study on 10 adult subjects who were given their basal rate and a bolus (8.0 – 3.8 units) for a
65-g carbohydrate meal at 150 min to simulate an over-bolus that may lead to hypoglycemia: (A) the control with no over-
bolus, (B) the over-bolus protocol, (C–E) pump suspension protocol for 15-, 30-, and 60-min prediction horizon (PH) values,
respectively, and (F–H) alert protocol for 15, 30 and 60 min PH values, respectively. False-positive alarms (open squares) and
true-positive alarms (open circles) are shown for protocols without action (A and B). A value for successive alarms required of
2 was used throughout. CGM, continuous glucose monitor.
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