Skip to main content
. 2012 Jan 30;5(Suppl 1):137–145. doi: 10.4137/BII.S8963

Table 2.

Performance of the SVM classifier with different feature combinations on the testing data.

Feature set Micro-averaged F-measure Precision Recall
N-gram feature Nu 0.4492 0.5971 0.3601
Nu + Nb 0.4707 0.6505 0.3687
Nu + Nb + Nt 0.4542 0.6128 0.3609
Knowledge-based features Nu + Nb + Km 0.4623 0.5946 0.3781
Nu + Nb + Kl 0.4650 0.6161 0.3734
Nu + Nb + Km + Kl 0.4750 0.6525 0.3734
Syntactic features Nu + Nb + Km + Kl + Sd 0.4781 0.6667 0.3726
Nu + Nb + Km + Kl + Sp 0.4783 0.6553 0.3766
Nu + Nb + Km + Kl + St 0.4798 0.6584 0.3774
Nu + Nb + Km + Kl + St + Sp 0.4818 0.6612 0.3789
Nu + Nb + Km + Kl + St + Sp + Sd 0.4804 0.6657 0.3758
Context features Nu + Nb + Km + Kl + St + Sp + Cm 0.4697 0.6218 0.3774
Nu + Nb + Km + Kl + St + Sp + Cp 0.4758 0.6508 0.3750
Nu + Nb + Km + Kl + St + Sp + Cm + Cp 0.4787 0.6593 0.3758
Class-specific features Nu + Nb + Km + Kl + St + Sp + R 0.4883 0.6667 0.3852
Nu + Nb + Km + Kl + St + Sp + R + F 0.4878 0.6694 0.3837
All All features 0.4720 0.6279 0.3781