Skip to main content
. Author manuscript; available in PMC: 2012 Aug 1.
Published in final edited form as: Biochemistry. 2007 Oct 26;46(46):13310–13321. doi: 10.1021/bi701386f

Table 2.

Effects of FAF-modification on the thermal and thermodynamic stability of NarI-based DNA duplexesa,b

entry −ΔG°c (kcal/mol) −ΔH°c (kcal/mol) Tmc,d (°C) ΔΔG°c,e (kcal/mol) ΔΔH°c,f (kcal/mol) ΔTmc,g (°C)
NarI-dC Control 16.2 107.9 68.5
NarI-dC/G3 12.0 65.9 60.2 4.2 42 −8.3
NarI-dC/G1 11.7 76.7 59.1 4.5 31.2 −9.4
NarI-dC/G2 11.6 70.7 61.7 4.6 37.2 −6.8
NarI-dT Control 11.7 77.5 66.3
NarI-dT/G3 11.0 81.9 56.3 0.7 4.4 −10.0
NarI-dT/G1 12.3 85.7 59.3 −0.6 8.2 −7.00
NarI-dT/G2 12.2 121.4 52.6 −0.5 43.9 −13.7
a

see Figure 1 for full structure and sequence details (G* = FAF-adduct).

b

The results of curve fit and Tm−lnCt dependence were within ± 15% of each other and therefore these numbers are average of the two methods.

c

The average standard deviations for −ΔG°, −ΔH°, and Tm are ± 0.22, ± 6.33, and ± 0.4 respectively.

d

Tm values at 14 μM taken from the 1/Tm − lnCt/4 Meltwin plots

e

ΔΔG = ΔG° (FAF-modified duplex) − ΔG° (control duplex).

f

ΔΔH = ΔH° (FAF-modified duplex) − ΔH° (control duplex).

g

ΔTm = Tm (FAF-modified duplex) − Tm (control duplex).