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Many organisms locate resources in environments in which sensory
signals are rare, noisy, and lack directional information. Recent
studies of search in such environments model search behavior
using random walks (e.g., Lévy walks) that match empirical move-
ment distributions. We extend this modeling approach to include
searcher responses to noisy sensory data. We explore the conse-
quences of incorporating such sensory measurements into search
behavior using simulations of a visual-olfactory predator in search
of prey. Our results show that including even a simple response to
noisy sensory data can dominate other features of random search,
resulting in lower mean search times and decreased risk of long
intervals between target encounters. In particular, we show that a
lack of signal is not a lack of information. Searchers that receive no
signal can quickly abandon target-poor regions. On the other hand,
receiving a strong signal leads a searcher to concentrate search
effort near targets. These responses cause simulated searchers to
exhibit an emergent area-restricted search behavior similar to that
observed of many organisms in nature.
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Organisms routinely locate targets in complex environments.
Organisms can find targets by following gradients in the

strength of sensory signals, provided such gradients are available
and reliably lead toward targets (1). But search conditions are not
always so favorable. In many natural settings sensory signals are
infrequent, noisy, and contain little directional information (2).
For example, moths, sharks, and sea birds search environments
that contain scent cues emitted by prey or mates, but these cues
are often extremely sparse and subject to large fluctuations (3–5).
Under such sparse-signal conditions, it is not clear what behaviors
allow organisms to efficiently and reliably locate resources.

Researchers have developed much of the theory of sparse-sig-
nal search by studying mathematical models of searching organ-
isms (6–11). The dominant paradigm for developing such models
emerged from the random foraging hypothesis—the idea that
searchers can encounter targets efficiently by adopting statistical
movement strategies that can be described as random walks [(6,
7), see refs. 2, 4, 12 for alternative approaches]. This hypothesis,
which has been applied to searching organisms ranging from bees
(6) to sea turtles (13), is often invoked when it is not possible or
practical for searchers to remember explicit spatial locations (7)
and the typical distances between targets exceed the searcher’s
sensory range (14). This framework has been used to compare
the performance of searchers moving according to different kinds
of random walk behavior. In particular, many studies have tried
to determine whether searchers moving according to Lévy walks
outperform searchers that move according to other types of ran-
dom walk strategies (e.g., refs. 8–11).

If models are to yield insight into the behavior of searching
organisms in nature, they must be simple enough to be studied,
but should also capture the dominant features of search behavior.
Implicit in the random foraging approach is the assumption that
changes in a searchers’movement behavior in response to sensory
data are second-order effects, and that search behavior and per-
formance are dominated by the features of the intrinsic (random)
search strategy that the searcher employs. Here we explore an
alternative hypothesis: that sensory processes can have a domi-

nant effect on search performance, even when sensory signals
are rare, noisy, and lack directional information.

Below we develop a general mathematical framework for mod-
eling search decision-making. As in past models, the framework
allows a searching organism to make movement decisions based
on an intrinsic movement strategy (e.g., Lévy walk), but allows
such decisions to be modified based on noisy sensory data. This
framework thus provides an explicit way to model changes in
behavior in response to sensory measurements. We explore the
effect of incorporating sensory data into search decisions using
individual-based simulations of searching predators. We compare
search times of simulated predators that make search decisions
using random strategies alone (Lévy walk and a unique diffusive
strategy), to predators that modify their search behavior based on
olfactory measurements.

Model Development
To study search decision-making, we consider an idealized model
of a predator in search of prey. We wish to compare the behavior
and performance of predators that search using a single intrinsic
random strategy to predators that adaptively change their search
behavior using the incomplete information gained from sensory
measurements. To evoke a strong intuition we consider two types
of predator: a visual predator that makes movement decisions
based on an intrinsic strategy and locates prey through a short-
range, high acuity sense (vision), and a visual-olfactory predator
that changes its search behavior based on noisy olfactory data
and detects prey at short-range using vision. Predators wander
through a large (periodic) two-dimensional habitat in which the
mean distance between prey is large. We assume prey emit a scent
that can be detected by nearby predators. Similar to previous
approaches (e.g., ref. 15), we assume that search is divided into
two phases: a local scanning phase and a movement phase
[Fig. 1A, (16)].

During the scanning phase, the predator locates any prey with-
in its vision distance rv (Fig. 1A, solid inner circle) with probability
one. This encounter probability reflects the high local acuity of
vision. Visual-olfactory predators also scan for olfactory signals.
The duration of the scanning phase is denoted τv and τo for visual
and visual-olfactory predators respectively. τv includes the time
needed to visually search a region of radius rv and reorient before
taking another step. τo includes the time taken to collect and pro-
cess olfactory signals, visually search a region of radius rv, and
reorient before taking another step. We define the olfactory ra-
dius ro (Fig. 1A, dashed outer circle) as the distance where the
predator registers an average of one scent signal per scanning
period τo (see below). We assume that each prey item emits scent
at rate λ. During the movement phase, the predator travels in a
random uniform direction, a distance of l, at speed v. Visual pre-
dators draw the step length l from a prescribed step length dis-
tribution θðlÞ, examples of which are described in the next
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subsection. Visual-olfactory predators draw from a modified step
length distribution defined below by Eq. 1.

During the movement phase, we assume that the predator can-
not locate prey or detect scent signals. Additionally, we assume
that the predator only responds to the most recent scent signal
information and does not store information about the locations
it has visited. We study this limiting case where sensory signals are
rare, lack directional information, and are not remembered by
the predator because this is the scenario in which random search
strategies are often invoked. We thus evaluate the scenario in
which noisy sensory data are least likely to yield improvement
over purely random search. However, we point out that more
sophisticated strategies are possible if predators remember past
signal encounters or previously visited locations (1, 2, 17).

Searching Without Olfactory Data. To model predator movements,
we begin with a model of decision-making in the absence of any
interaction with olfactory data. Researchers typically model the
decision process of random searchers by selecting two actions
from prescribed probability distributions: a step length l, and a
turn angle ϕ. The details of these distributions determine asymp-
totic properties of the search and strategies are often categorized
by this asymptotic behavior: diffusive behavior, in which long-
term mean-squared displacement (MSD) scales linearly with
time, and superdiffusive behavior in which MSD increases super-
linearly with time. An important feature of these strategies is that,
unless the searcher encounters a target, the distributions that
define how searcher moves (i.e., the distributions of l and ϕ)
are fixed. The distributions are not altered in response to sensory
measurements.

We model the movements of visual predators using two types
of strategies: a Lévy strategy and a unique diffusive strategy.
For both, we take the distribution of turn angles between suc-
cessive steps to be independent and identically distributed
ϕ ∼ unifð0; 2πÞ (6). The Lévy strategy draws step lengths from
a Pareto distribution, θLðlÞ ¼ ðα − 1Þlα−1m l−α, with tail with para-
meter α and minimum step length lm [Fig. 1B solid curve, super-
diffusive for 1 < α < 3 (6)]. For the second strategy, we introduce
a step-length distribution which we call the true distance distribu-
tion (TDD) θTðlÞ: a greedy strategy wherein the predator selects
step lengths from the probability distribution of the distance to
the nearest prey item (Fig. 1B dashed curve, see SI Text for further
discussion). When prey are distributed according to a Poisson
spatial process with intensity η in two dimensions, the TDD is
given by the Rayleigh distribution θTðlÞ ¼ 2ηπle−ηπl2 . This strat-
egy is quite distinct from the Lévy strategy (compare curves in
Fig. 1B) and later serves to illustrate the strong homogenizing
effect of olfactory data on search behavior.

Incorporating Olfactory Data to Make Search Decisions. The key dis-
tinction between visual and olfactory senses in our model is that
the visual sense yields perfect information about the location
of prey whereas the olfactory sense does not. Thus, including
olfactory data allows us to model a predator’s ability to gather
and respond to partial information about target positions gleaned
from sensory measurements. Below we develop a model for in-
corporating olfactory signals into search decision-making, but
note that this framework could be modified to model responses
to other types of sensory cues.

We hypothesize that predators utilize olfactory data through
two steps. First, a predator uses a signal observation to estimate
the likely distance to the nearest prey. Second, the predator modi-
fies its intrinsic tendency to move in a particular way (represented
by θðlÞ) based on this information. In keeping with recent models
of olfactory search, simulated predators collect olfactory data for
τo units of time and encounter H ∈ f0; 1; 2;…g detectable units
of scent (2, 17). In order to act optimally, a predator must make
movement decisions based on two distinct uncertainties. First,
the predator’s distance to the nearest target is uncertain and is
characterized by the probability distribution ν. Second, for a par-
ticular ν, the optimal step length distribution θ is also uncertain.
Identifying optimal predator behavior requires calculating a
Bayesian posterior for the distance distribution νjH , and then
determining the associated optimal step length distribution θjH .
This problem remains unsolved and is perhaps intractable. In-
stead, we approximate this process.

We wish to capture two elements of search decision-making:
an intrinsic tendency to move in a particular way θðlÞ, and a
likelihood function PðH ¼ hjlÞ that translates an observed scent
signal h into information about the distance to the nearest prey. A
natural model for signal response that incorporates these features
is a Bayesian update of the step length distribution θ itself:

θðljH ¼ hÞ ¼ PðH ¼ hjlÞθðlÞR ∞
0 PðH ¼ hjlÞθðlÞdl : [1]

We refer to this as “signal-modulation” of the step length distri-
bution θðlÞ. This approximation to the optimal strategy yields
significant improvement in search performance (see SI Text for
further elaboration).

Interpreting Scent Signals. We assume the predator can estimate
or intuit the probability of registering h units of scent in τo units
of time, as a function of its distance to the nearest prey. This task
amounts to being able to estimate the likelihood function
PðH ¼ hjlÞ, which depends on the process of scent propagation.

In the complex environments where many species search, tur-
bulent fluctuations in fluid velocity cause large local fluctuations
in scent concentration (18). When a prevailing wind or water
current is present, predators can gain additional information
about the location of a scent source by measuring the velocity
of the current (2, 3). We consider the more difficult scenario
in which there is no prevailing current. Under these conditions,
we model scent arrival as packets that appear at the prey position
x0 according to a Poisson arrival process and then move as a
Brownian motion. From the predator’s perspective, this scenario
is equivalent to encountering a random number of units of scent,
H ∼ PoisðτoRðjx − xojÞÞ, at its location x during a scanning phase
of length τo, where R is the rate of scent arrival defined by Eq. 3
(see Materials and Methods). Denoting l ¼ jx − x0j, under these
assumptions, the likelihood of h encounters is

PðH ¼ hjlÞ ¼ ½τoRðlÞ�he−τoRðlÞ∕h!: [2]

Eq. 2 depends on values of several physical parameters (e.g.,
the rate at which detectable patches of scent decay) that may be
difficult for a predator to infer from measurements of its physical
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Fig. 1. Schematic of predator search. (A) During the scanning phase of
the search, a prey encounter occurs if the predator is within a radius of rv
(solid inner circle) of a prey item (black square). The predator also detects
scent signals emitted by prey within a radius of ro (dashed outer circle) at
an average rate of ≥1 per τo units of time. The predator then turns a random
uniform angle between 0 and 2π. During the movement phase, the predator
moves a distance of l units determined by its step length distribution. (B) Step
length distributions corresponding to visual Lévy (solid curve, α ¼ 3; lm ¼ 1

body length) and TDD (η ¼ 1∕ð1; 000Þ2 body lengths, dashed curve) strate-
gies. Inset shows distributions on log-log scale.
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environment. We therefore take a qualitative view in prescribing
the parameters of scent propagation. The most important quali-
tative feature is the length scale ro, which corresponds to the dis-
tance at which a predator will register on average one unit of
scent per scanning period τo. Heuristically, ro is the distance at
which the predator is likely to detect a faint, yet nontrivial scent.
A second qualitative restriction is the expected number of en-
counters per unit τo at a distance of one body length from the
prey λa. Given these two measurements, the likelihood function
can be estimated.

The quantities ro and λa are much more readily measurable by
a searching organism than are the explicit parameters in Eq. 3. It
thus seems likely that these quantities may constitute part of an
organism’s “olfactory search image” (19), and may serve as the
direct measurements useful for reinforcement learning.

Results
Visual-Olfactory Predators Find Targets Faster and More Reliably than
Visual Predators. Fig. 2A shows mean search times of simulated
visual and visual-olfactory predators (search time ¼ time until
first target encounter). Visual predators that use the Lévy strat-
egy (Fig. 2A, solid line, see alsoMaterials and Methods) have low-
er mean search times than predators that use the TDD strategy
(Fig. 3A, dashed line). However, when conditions are such that
the olfactory radius ro is greater than the vision radius rv, visual-
olfactory predators find prey faster than their visual counterparts
(Fig. 2A; circles represent results from visual-olfactory Lévy with
optimal α, where optimal α was in the range 2.6–3.0 for all ro∕rv;
diamonds represent visual-olfactory TDD strategy; see also
Figs. S1–S3). Mean search time of visual-olfactory predators con-
tinues to decrease as the distance over which prey scents can be
detected increases.

Visual-olfactory predators have lower mean search times than
visual predators primarily because they rarely search for long per-
iods of time without finding prey. Fig. 2B shows that the tails of
the search time distributions for the visual-olfactory predators
(Fig. 2B, circles) decay roughly exponentially at a rate that is
much faster than the decay rate of the visual predators (Fig. 2B,
squares).

At least two factors contribute to the difference in perfor-
mance between the two predator types. First, visual-olfactory
predators learn from “no-signal” events and respond to these
events by leaving regions that do not contain targets. Second, as
has been observed in many species in nature (3, 20), visual-
olfactory predators perform area-restricted search (21) and
concentrate search effort in regions that contain prey. Below
we discuss how both of these behaviors emerge naturally through
responses to sensory data.

To characterize changes in predator behavior in response to
sensory data in the following sections, we use a metric of infor-
mation gain: the Kullback-Leibler divergence [KL, (22)]. The
magnitude of the change in behavior of a visual-olfactory preda-
tor when it receives a signal of strength h relative to its intrinsic
behavior θðlÞ, is given by KL ¼ ∫ θðljhÞ logðθðljhÞ∕θðlÞÞdl. A lit-
eral interpretation of the quantity KL is the following: suppose an
observer must decide, based on empirical data, whether a search-
er is using olfactory data or not. The KL gives a mean rate of gain
of information obtained by observing a visual-olfactory searcher
moving in response to a signal of magnitude h. In regimes where
the signal contains little useful information (for example when
ro∕rv ≈ 1 and h ¼ 0), the behavior is not modified greatly from
θðlÞ. The resulting KL value is small. However, when information
is substantial (say when h ¼ 5, for small ro∕rv) the KL is larger.

Visual-Olfactory Predators Learn from No-Signal Events. Fig. 3 shows
typical search paths of the four strategies through a target field in
the regime where ro > rv. When searching such an environment,
a predator will frequently be too far from prey to receive scent
signals. For example, the inset boxes in Fig. 3 C and D show that
the number of signals received in scanning phases is typically
zero, with signals of greater than zero only occurring when the
predator is close to prey. Intuitively, it may seem that a predator
gains little information from these no-signal events. Yet, by not
receiving a scent signal, the predator gains a vital piece of infor-
mation: prey are not likely to be nearby.
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Fig. 2. Predator search times. (A) Mean search time as a function of the ratio
of the olfaction radius (ro) to vision radius (rv ). Solid orange line (visual Lévy),
dashed blue line (visual TDD), orange circles (visual-olfactory Lévy), and blue
diamonds (visual-olfactory TDD) each represent mean search time of 1,000 re-
plicate simulations. Confidence bands represent �2 SEM. The following para-
meters values were used: a ¼ 1, rv ¼ lm ¼ 50a, τv ¼ 1 s, τo ¼ 30 s, mean inter-
target distance was 1; 000a, and λa ¼ 100 units of scent per τo (see Model
Development for description of parameters, also SI Text). (B) Empirical distri-
bution of search times of visual Lévy (orange solid line, squares), visual TDD
(blue dashed line, squares), visual-olfactory Lévy (orange solid line, circles), and
visual-olfactory TDD (blue dashed line, circles) strategies. In the case of the
visual-olfactory strategies, frequencies are shown for ro∕rv ¼ 4. Note the large
number of searches resulting in long search times for visual predators.
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Fig. 3. Typical search paths through a scent field with log10(1 þ mean num-
ber of scent encounters per unit τo) indicated by grayscale (darker gray
denotes more encounters). In white regions, mean number of encounters
is effectively zero. Paths for (A) visual Lévy, (B) visual TDD, (C) visual-olfactory
Lévy, and (D) visual-olfactory TDD are shown. Color scale of path changes
from blue to red with increasing time. Inset boxes in (C) and (D) show the
number of hits received during each scanning period with colors correspond-
ing to colors in search paths. ro∕rv ¼ 4 in all boxes; all other parameters as in
Fig. 2A.
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Fig. 4A shows step length distributions of visual-olfactory pre-
dators after receiving no signal. Both strategies exhibit a low
probability of making small steps. The Lévy strategy in particular,
is strongly affected; Fig. 1B shows that this strategy has a high
probability of taking small steps between reorientations. Yet,
when the visual-olfactory Lévy predator receives no signal, it is
unlikely to make a small step (Fig. 4A, Fig. S4). Fig. 4B shows
that when h ¼ 0, KL increases as the olfaction radius becomes
larger. In fact, as ro∕rv becomes large, both strategies change
more in response to no-signal events than when h ¼ 5 (Fig. 4B,
circles (h ¼ 0) cross above squares (h ¼ 5) for both strategies).
For ro∕rv sufficiently large, the change in behavior in response
to no-signal events allows visual-olfactory predators to avoid per-
forming area restricted search (ARS) when they are far from prey
(Fig. 5). The visual Lévy predator, on the other hand, spends 24%
of its steps in ARS but only 2.4% in ARS near targets. Avoiding
these wasted steps strongly affects search time. Even by respond-
ing only to no-signal events and ignoring cases in which h > 0, a
visual-olfactory Lévy predator can find prey much more rapidly
than a visual Lévy predator (Fig. S5).

The observation that no-signal events contain valuable infor-
mation is qualitatively similar to an observation from optimal
foraging theory regarding a forager searching a discrete patch
for hidden resources. In that scenario, the more time the forager
spends in the patch without encountering resources, the more
certain it becomes that the patch does not contain resources
(23). Our model extends this idea to searchers moving through
continuous spatial environments using two sensory modalities
and reveals that the change in a searchers behavior in response

to no-signal events depends critically on the length scales of these
sensory modalities.

Visual-Olfactory Predators Concentrate Search Effort Near Targets.
From Fig. 3 A and B, it is clear that visual predators behave si-
milarly in regions that are near and far from prey. Visual-olfac-
tory predators, on the other hand, make more short exploratory
steps in the vicinity of prey (Fig. 3 C andD). The strong change in
strategy that occurs when a visual-olfactory predator receives a
nonzero scent signal is reflected in the large value of KL for
all values of ro∕rv (Fig. 4B). Both visual-olfactory strategies in-
crease their probability of making a short step when they encoun-
ter a nonzero scent signal (Fig 4A). Because of this behavior,
visual-olfactory predators perform ARS near targets and are
more likely to encounter nearby prey than are visual preda-
tors (Fig. 5).

Discussion
The framework presented here allows one to include responses to
partial information gained from noisy sensory measurements
when modeling random search. Our results reveal that analysis
of the length scales of sensory modalities, in this case ro and
rv, is crucial to determining whether such a sensory response will
dominate search performance. The distinction between different
types of intrinsic strategies [e.g., Lévy vs. TDD (8, 10)] is impor-
tant when it is genuinely not possible to learn about resources
from a distance (ro∕rv ≤ 1). However, when ro∕rv > 1, searchers
that dynamically modify their behavior in response to sensory
data experience a qualitative improvement in search perfor-
mance. This improvement holds over a wide range of the para-
meters of the scent model and other features of predator
behavior (Figs. S1–S3). This finding suggests a connection be-
tween sensing, decision-making, and search performance, even
under sparse-signal conditions.

Moreover, behaviors such as area-restricted search near prey
(20) emerge naturally from responses to sensory information.
Visual-olfactory predators perform this behavior in our simula-
tions by turning more frequently when they receive scent cues.
Historically, ARS has been explained as a consequence of a pre-
dator concentrating search effort in areas where it has previously
found prey. This response is beneficial if prey are clustered in
space (21). Yet, we show that this behavior can also emerge when
prey are not spatially clustered, if predators change their move-
ment behavior in response to noisy sensory data. Recent evidence
suggests that some species may initiate area-restricted search
in this way. For example, wandering albatrosses appear to alter
turning patterns after encountering prey scent, effectively con-
centrating their search effort in local regions (3). Greater frigate-
birds forage primarily in highly productive mesoscale eddies (24).
These predators appear to track these eddies, at least in part,
using scent cues.

In our simulations Lévy predators intersperse periods of local
search with large-scale relocation movements. Movements of
many species including foraging marine fish and reptiles (13), and
ants in search of colony-mates (25) exhibit this qualitative pattern
(7, 13, 25), which is often cited as a feature of Lévy walks that
makes them effective strategies for encountering targets. Yet, our
results show that Lévy predators spend much of their time search-
ing locally in regions that do not contain prey (Fig. 5). On the
other hand, visual-olfactory predators appropriately match their
behavior to their proximity to targets, leading to shorter search
times. In light of our results, a natural hypothesis is that searching
organisms utilize different movement behaviors depending on
their perceived distance to targets. It has been shown that strate-
gies that mix movements with different length scales can outper-
form strategies that draw movements from a single distribution,
but that such mixed movement behavior can be difficult to distin-
guish from a Lévy strategy (11). Indeed, recent analyses have
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begun to find evidence of mixed behaviors in movement data
[e.g., (26)]. Our framework provides a means of studying how such
mixed behaviors can emerge through interactions with sensory in-
formation.

Materials and Methods
Scent Propagation. To see how RðlÞ depends on the distance between preda-
tor and prey, let uðxÞ represent the mean concentration of scent at predator
position x emitted by a prey item located at position x0. An expression for the
steady-state diffusion process without advection is given by 0 ¼ DΔuðxÞ−
μuðxÞ þ λδðx0Þ, where D represents the combined molecular and turbulent
diffusivity (m2 s−1), μ represents the rate of dissolution of scent patches
(s−1), and λ represents the rate of scent emission at the prey (s−1). In two
dimensions, the mean rate of scent patch encounters by a predator of linear

size a located at x is given by RðlÞ ¼ 2πD
− lnðaψÞuðlÞ where ψ ¼

ffiffiffi
μ
D

q
(2), which

implies

RðlÞ ¼ 2
λK0ðψlÞ

−πψ lnðψaÞ ; [3]

where K0 represents a modified Bessel function of the second kind.

Simulation Details. The SI Text shows the robustness of results to changes in
model parameters. For each of the four search strategies (visual Lévy, visual

TDD, visual-olfactory Lévy, and visual-olfactory TDD), we performed simula-
tions in which predators explored a periodic environment with 100 prey. Prey
were positioned according to a Poisson point process with the mean distance
between prey chosen to achieve the desired density. In each scanning phase,
hwas generated as a deviate from a Poisson distribution with mean given by
the product of τo and Eq. 3 summed over all prey. In each simulation, the
searcher was positioned at a random location and allowed to move through
the environment until it came within a distance of rv of a prey item during its
scanning phase. For each strategy, we performed 1,000 simulations and re-
corded the time until first prey encounter in each simulation. Predators were
assumed to travel at a constant speed of one body length per unit time.
Environments were constructed so that prey density had a mean of one prey
per 106 squared body lengths, a realistic low density for prey, but qualitative
results hold for lower prey densities (see Fig. S1 and SI Text). In the case of the
Lévy strategies, we repeated simulations across a range of α values from α ¼
1.2 to α ¼ 3. Note that the optimal value of α for the Lévy predator was α ¼ 3

for which the long-term behavior is expected to be Gaussian (6). In all figures,
Lévy strategies with the optimal value of α are shown unless otherwise noted.
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