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Advances in glycan array technology have provided
opportunities to automatically and systematically charac-
terize the binding specificities of glycan-binding proteins.
However, there is still a lack of robust methods for such
analyses. In this study, we developed a novel quantitative
structure–activity relationship (QSAR) method to analyze
glycan array data. We first decomposed glycan chains into
mono-, di-, tri- or tetrasaccharide subtrees. The bond in-
formation was incorporated into subtrees to help distin-
guish glycan chain structures. Then, we performed partial
least-squares (PLS) regression on glycan array data using
the subtrees as features. The application of QSAR to the
glycan array data of different glycan-binding proteins
demonstrated that PLS regression using subtree features
can obtain higher R2 values and a higher percentage of
variance explained in glycan array intensities. Based on
the regression coefficients of PLS, we were able to effect-
ively identify subtrees that indicate the binding specificities
of a glycan-binding protein. Our approach will facilitate
the glycan-binding specificity analysis using the glycan
array. A user-friendly web tool of the QSAR method is
available at http://bci.clemson.edu/tools/glycan_array.
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Introduction

Glycan-binding proteins play critical roles in many physio-
logical and pathological processes (Varki 1999), such as in-
flammation and cancer (Dube and Bertozzi 2005; Fuster and
Esko 2005; Lau and Dennis 2008), growth and development

(Dennis et al. 1999; Perrimon and Bernfield 2000; Lin 2004)
and microbial pathogenesis (Alkhalil et al. 2000; Liu et al.
2002; Stevens et al. 2006; Chandrasekaran et al. 2008). In
order to understand the biology of glycan-binding proteins, it
is essential to identify their glycan-binding specificities.
Recently, the glycan array technology (Drickamer and Taylor
2002; Blixt et al. 2004; Taylor and Drickamer 2009; Wu et al.
2009) provided a high-throughput method to simultaneously
measure the binding levels of a certain glycan-binding protein
to a large number of glycan molecules. The newest version
(V5.0) of the glycan array from the Consortium for
Functional Glycomics (CFG; Blixt et al. 2004) contains 611
glycan chains. Currently, large amounts of glycan array data
are freely available on the CFG website, and this number is
still increasing. These glycan array data have opened up op-
portunities to discern the binding specificities for glycan-
binding proteins.
The glycan array data usually are very complex, and simple

visual inspections may not be able to identify the binding spe-
cificities of glycan-binding proteins. This poses a great chal-
lenge to extract binding specificities of glycan-binding
proteins from glycan array data (Porter et al. 2010). Recently,
Porter et al. (2010) proposed motif-based methods to discern
the substructures that contribute to the binding intensities of
the glycan array to a specific glycan-binding protein. Porter
et al. manually generated a list of 63 motifs that are substruc-
tures of glycan chains identified previously by biological
experiments. By comparing the enrichment of those motifs in
high- and low-intensity data (intensity segregation) or by stat-
istical testing between glycan data with a certain motif and
those without a certain motif (motif segregation), Porter et al.
(2010) were able to find motifs that represent binding specifi-
cities. However, such predefined motifs may not be sufficient
to identify all glycan-binding specificities.
We have developed a novel quantitative structure–activity

relationship (QSAR) method to analyze glycan array data.
First, we automatically generated different size subtrees from
glycan chains as our features. Then, we established the rela-
tionship between subtree features and glycan array data using
partial least-squares (PLS) regression. We demonstrated our
QSAR method on the glycan array data of different glycan-
binding proteins. We were able to identify subtrees that repre-
sent the glycan-binding specificities of glycan-binding pro-
teins using the regression coefficients of PLS regression. We1To whom correspondence should be addressed: Tel: +1-864-656-4793;
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also showed that the subtree features may be better representa-
tions of the glycan-binding specificity than the motifs defined
by Porter et al. (2010) are. Furthermore, we developed a user-
friendly web tool to facilitate the rapid and automatic analysis
of glycan array data. A complete description of our results
and methods is given in the sections below.

Results
Coding glycans using subtree features
Glycan chains consist of different kinds of saccharides, such as
glucose (Glc), galactose (Gal), mannose (Man), fucose (Fuc),
N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine
(GalNAc). The structure of a glycan chain can be represented
as a rooted tree. Figure 1 shows an example glycan chain that
consists of five different saccharides. The binding specificity of
a glycan chain to glycan-binding protein usually relies only on
its substructures (Chandrasekaran et al. 2008; Porter et al.
2010). In order to capture the structure characteristics of the
glycan chain, we parsed the glycan tree into four sets of sub-
trees (Kuboyama et al. 2006; Yamanishi et al. 2007), each of
which has mono-, di-, tri-, or tetrasaccharide subtrees, respect-
ively. Figure 2 shows that the example glycan chain depicted in
Figure 1 has been decomposed into five monosaccharide sub-
trees, five disaccharide subtrees, five trisaccharide subtrees and
four tetrasaccharide subtrees, respectively. For each version of
the glycan array from the CFG (Blixt et al. 2004), we generated
four sets of subtrees for the glycan on the array, including

mono-, di-, tri- and tetrasaccharide subtree sets. For example,
the CFG glycan array version 2.0 contains 264 glycan chains.
We obtained 112 monosaccharide subtrees, 280 disaccharide
subtrees, 385 trisaccharide subtrees and 318 tetrasaccharide
subtrees from those 264 glycan chains. The four sets of sub-
trees for the CFG glycan array version 2.0 are listed in
Supplementary data, Tables SI–SIV.
In order to represent better the substructural characteristics,

we included also the bond information in the subtrees. For
each saccharide, we included the positions of its bond connec-
tions in its representation. Different monosaccharide subtrees
will be generated if the same saccharide has different bond
connections. For example, we had five monosaccharide sub-
trees for Gal: (2, 3Galβ); (2, 3Galβ1); (2, 4Galβ1); (2Galβ)
and (2Galβ1) from the glycan chains of CFG version 2.0
array. Furthermore, the disaccharides are also represented dif-
ferently if the bonds between the same pair of saccharides are
different. For example, we had two disaccharide subtrees
between GlcNAc and Gal: (3,4GlcNAcβ1-3Galβ1) and
(3,4GlcNAcβ1-4Galβ1). With the bond information, the sub-
trees extracted from glycan chains can help distinguish the
glycan chains structurally to a certain extent.
After obtaining the subtrees, we used them as features to

code the structures of glycan chains on the glycan array. This
new coding system has an advantage over the motif-based ap-
proach in which the subtree features are more precise and
more flexible. Many substructures potentially cannot be repre-
sented well in motif-based features since there have been only

Fig. 2. An example of decomposing the glycan chain in Figure 1 into different subtrees. The N indicates the number of saccharide in each subtree.

Fig. 1. An example of the glycan chain and its structure. The Sp denotes the spacer arm attached to array.
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63 defined motif features (Porter et al. 2010). On the other
hand, the number of subtree features in our method can be
much larger (e.g. 112 monosaccharide subtrees, 280 disac-
charide subtrees, 385 trisaccharide subtrees and 318 tetrasac-
charide subtrees for the CFG glycan array version 2.0). Our
method requires more computation than the motif-based
method, but this fact shall not be considered as a significant
limitation of our method.
For each glycan chain in a certain version of the CFG

glycan array, we coded one vector based on each set of
mono-, di-, tri- or tetrasaccharide subtrees. The elements in
each vector were 1 and 0. If a glycan chain contains a
subtree, we coded the feature with 1; otherwise, we coded the
feature with 0. Then, feature vectors were used for PLS re-
gression study. A Java program was implemented to automat-
ically parse the glycan chains into mono-, di-, tri- or
tetrasaccharide subtrees, and then code the glycan chains with
different subtrees.

PLS regression on glycan array data using different features
We first applied the PLS regression to the glycan array data of
three plant lectins: Concanavalin A (ConA), Vicia villosa
lectin (VVL) and wheat germ agglutinin (WGA), which were
also studied by motif-based methods (Porter et al. 2010). The
binding specificities of ConA and VVL are relatively simple
(Supplementary data 1 and 2). A visual inspection may help
to identify some common features from the data. For example,
it is shown clearly from the data that ConA binds to the
glycans that contain terminal GlcNAc (Supplementary
data 1). On the other hand, the binding specificity of WGA is
broad and cannot be determined easily by visual examination
(Supplementary data 3). To understand how different sub-
structures contribute to binding specificity, we performed
PLS regression studies on the glycan array data of those
three plant lectins using the mono-, di-, tri- and tetrasacchar-
ide subtree features as well as the motif features of Porter
et al. (2010). We first examined the percentage of variances
of binding intensities that can be explained using PLS re-
gression models. The percentage of variance explained mea-
sures the amount of variation in the given data that a
regression model accounts for and it can be used to indicate
how well the regression model is. The higher the percentage
of variance explained is, the better the PLS regressions
perform and the better the subtree features are. Figure 3
plots the percentage of variance explained in the binding in-
tensities of three plant lectins against the number of latent
variables (components) in PLS regression. The number of
components is automatically determined by their contribu-
tions to the variance (see Methods section for more details).
Thus, the number of components varied for PLS regressions
using different features. Figure 3 shows that the PLS regres-
sion using disaccharide subtrees achieved the highest per-
centage of variance explained for all three glycan array data.
The PLS regression using monosaccharide subtrees achieved
high percentage of variance explained in the glycan array of
ConA and the PLS regression using trisaccharide subtrees
achieved high percentage of variance explained in the glycan
array of WGA. The PLS regression using a tetrasaccharide
subtree and motif features did not obtain high percentage of

variance explained in all three glycan array data. Thus, the
tetrasaccharide subtree and motif features cannot fully
capture the intensity variations in those glycan array data.
These results implied that the motif-based method may not

Fig. 3. Plot of the percentage of variance explained in the binding intensities
of the glycan array data of three plant lectins against the number of
components in PLS. Four subtree features and the motif features of Porter
et al. (2010) are used for PLS regression. (A) ConA, (B) VVL and (C) WGA.
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have sufficient sensitivity to cover all binding specific
substructures.
Then, we calculated the R2 statistics of PLS regressions.

The R2 is a statistical measurement indicating how well a re-
gression approximates real data. The R2 analysis (Table I) is
consistent with these results of variance explained in the pre-
vious paragraph. For ConA, the PLS regressions with all five
features can obtain an R2 > 0.8. For VVL, only the PLS re-
gression using disaccharide subtrees as features can obtain a
significant high R2 = 0.9955. For WGA, the PLS regression
using both di- and trisaccharide subtrees can obtain high R2 >
0.8. Those results confirmed that disaccharide subtrees are
good features for characterizing the glycan array data of three
plant lectins. We also tested the PLS regression using disac-
charide subtrees on the glycan array data of more than 50
plant lectins (Supplementary data, Table SV). We obtained
good results (R2 > 0.8) on most of the glycan array data
except two of them, which have good regression results using
trisaccharide subtrees as features. To further examine the
results of PLS regressions, we plotted the observed intensities
against the fitted intensities calculated by PLS regression
using disaccharide subtrees for all three plant lectins. As
shown in Figure 4, there are good correlations between the
observed intensities and fitted intensities for ConA, VVL and
WGA. The dots in Figure 4C are distributed more widely
than those in Figure 4A and B, which is consistent with rela-
tively a low R2 value obtained by the PLS regression on the
glycan array data of WGA. Those plots implied that the disac-
charide subtrees can represent the binding specificity of
ConA, VVL and WGAwell.

Identification of significant structural features in glycans
We applied the PLS-β method (see Methods section for more
details) to identify significant subtrees from the PLS regres-
sions of glycan array data. Tables II–IV list the significant di-
saccharide subtrees binding to three plant lectins. A
significant positive coefficient value indicates the correspond-
ing subtrees have high binding intensities, whereas a negative
coefficient value suggests the existence of the subtree feature
will reduce the binding intensity. A negative co-efficient value

Table I. The R2 of PLS regressions on the glycan array data of different
glycan-binding proteins using different features

Motifs Mono Di Tri Tetra

ConA 0.8052 0.9428 0.9539 0.8276 0.8021
VVL 0.4943 0.6893 0.9955 0.7461 0.3024
WGA 0.6242 0.7132 0.9002 0.8742 0.7027
Peanut agglutinin 0.7774 0.5752 0.9603 0.9966 0.7619
Sambucus nigra lectin 0.6760 0.7871 0.9085 0.7431 0.6509
Dendritic cell-specific ICAM-3
grabbing non-integrin

0.4190 0.5490 0.9179 0.9533 0.8521

Sialic acid-binding
immunoglobulin-like lectin 8

N/A 0.9882 0.9927 0.9969 0.9949

CSLEX1 (human CD15s
antibody)

N/A 0.3954 0.6362 0.983 0.9952

Sialyl lewisx antibody-10 N/A 0.1374 0.5147 0.9463 0.9949

The highest values of R2 are in bold.

Fig. 4. Plot of observed intensities against the fitted intensities calculated by
PLS regression using disaccharide subtrees as features. The black lines
indicate the line of y = x. (A) ConA, (B) VVL and (C) WGA.
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can be achieved when two glycan chains contain the same
subtree structure, one with high binding intensity and the
other with low binding intensity. For ConA, we identified
nine disaccharide subtrees, which cover all 19 glycan chains
(Table II) with high binding intensities. Among these nine di-
saccharide subtrees, α-linked Man is involved in seven and
four of these α-linked Mans locate at terminal. Both motif
and intensity segregation methods (Porter et al. 2010) ranked
the “terminal Manα” as a significant motif. The QSAR results
showed internal α-linked Man may also contribute to the
binding specificity of ConA as four of our significant disac-
charides contained internal α-linked Man. The QSAR method
identified that a disaccharide: 3,6Manβ1-4GlcNAcβ1, contrib-
uted to binding of 10 glycan chains in CFG glycan array
version 2.0:

• 50 (Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-
Gly)

• 51 (GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Gly)

• 52 (Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-
2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Gly)

• 53 (Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5A
cα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-
4GlcNAcβ-Gly)

• 54 (Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Ac
α2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-
4GlcNAcβ-Sp8)

• 192 (Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn), 193
(Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-
2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn)

• 194 (Manα1-2Manα1-2Manα1-3(Manα1-2Manα1-3(Man
α1-2Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-
Asn)

• 197 (Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-3)
Manβ1-4GlcNAcβ1-4GlcNAcβ-Asn)

• 198 (Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Asn)

This disaccharide is a subset of both “N-glycan high Man” and
“N-Glycan complex” that are identified as significant motifs by
both motif and intensity segregation methods (Porter et al.
2010). The “N-glycan high Man” motif is defined by Porter
et al. (2010) as “a glycan chain with a Manα1-3(Manα1-6
(Manα1-3)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ base” and
the “N-glycan complex” is defined as “a glycan chain with a
GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNA
cβ1-4GlcNAcβ base” In CFG glycan array version 2.0, the
“N-glycan high Man” motif exists in five glycan chains: 192,
193, 194, 197 and 198 and the “N-glycan complex” motif
also exists in five glycan chains: 51, 52, 53, 54 and 201
(Porter et al. 2010). The glycan chain 201 (Neu5Acα2-3
(Galβ1-3GalNAcβ1-4)Galβ1-4Glcβ-Sp0) does not contain the
disaccharide 3,6Manβ1-4GlcNAcβ1 and its binding intensity

Table II. The significant disaccharide subtrees binding specifically to ConA

Disaccharide Regression
coefficient

Glycan numbers

Man5-Asn 46,769.84 199
α-D-Man-Sp8 46,010.46 9
3,6Manα-Sp9 24,403.98 190, 195, 196
Glcα1-4Glcβ 20,758.13 177
3,6Manβ1-4GlcNAcβ1 18,295.47 50, 51, 52, 53, 54, 192, 193,

194, 197, 198
2Manα1-3Manα 17,959.44 189, 191
3Manα-Sp9 17,959.44 189, 191
Manα1-3,6Manα 16,141.64 195, 196
Manα1-3,6Manβ1 10,828.64 50, 198

The subtrees are ordered in descending of coefficients from up to bottom.
The numbers of glycan chains including the significant disaccharide in CFG
glycan array V2.0 are listed. The regression coefficients are obtained by PLS
regression using disaccharide subtrees as features. The glycan numbers are the
numbers of glycan chains in CFG glycan array V2.0.

Table III. The significant disaccharide subtrees binding specifically to VVL

Disaccharide Regression coefficient Glycan numbers

GalNAcα1-3Galβ 47,501.78 86
GalNAcβ1-4GlcNAcβ 46,390.05 92, 93
a-GalNAc-Sp8 44,524.76 10
b-GalNAc-Sp8 44,432.05 20
GalNAcβ1-2,3Galβ 36,068.33 89
GalNAcβ1-3Galα1 20,391.86 90
Galα1-2,3Galβ −14,522 99
GalNAcα1-2,3Galβ −14,717.1 84

The subtrees are ordered in descending of coefficients from up to bottom.
The numbers of glycan chains including the significant disaccharide in CFG
glycan array V2.0 are listed. The regression coefficients are obtained by PLS
regression using disaccharide subtrees as features. The glycan numbers are the
numbers of glycan chains in CFG glycan array V2.0.

Table IV. The significant disaccharide subtrees binding specifically to WGA

Disaccharide Regression coefficient Glycan numbers

GalNAcα1-3Galβ 42,672.23 86
(6OSO3)GlcNAcβ-Sp8 38,904.61 47
GlcNAcβ1-4MDPLys 36,691.11 168
GalNAcβ1-3,4GlcNAcβ 35,613.5 91
GlcNAcβ1-3,6GlcNAcα 34,575.78 121, 159
β-GlcNAc-Sp0 33,127.88 21
GalNAcα1-2,3Galβ 32,604.2 84
GlcNAcβ1-6Galβ1 31,649.8 176
α-GalNAc-Sp8 31,345.39 10
β-GlcNAc-Sp8 30,441.15 22
GalNAcβ1-4GlcNAcβ 29,082.38 92, 93
GlcNAcα1-6Galβ1 27,593.5 157
2,3Galβ1-4GlcNAcβ 27,091.45 81, 82, 97, 141, 142
Galβ1-4GlcNAcβ 26,658.48 152, 153
2Galβ1-4GlcNAcβ1 26,061.04 60, 70
GlcNAcβ1-3Galβ1 24,471.77 163, 164, 165, 166, 167
Fucα1-4GlcNAcβ −24,945.3 77
Galα1-4GlcNAcβ −25,069.7 112
(6OSO3)Galβ1-4GlcNAcβ −25,093.5 44
KDNa2-3Galβ1 −25,176.4 187, 188

The subtrees are ordered in descending of coefficients from up to bottom.
The numbers of glycan chains including the significant disaccharide in CFG
glycan array V2.0 are listed. The regression coefficients are obtained by PLS
regression using disaccharide subtrees as features. The glycan numbers are the
numbers of glycan chains in CFG glycan array V2.0.
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with ConA is low. We then performed similar motif segrega-
tion study to compare the disaccharide 3,6Manβ1-4GlcNAcβ1
with the “N-glycan high Man” and “N-glycan complex”
motifs. We used the two-tail unpaired t-test. The P-values are
2.45E−21 for the “N-glycan high Man” and 1.18E−15 for the
“N-glycan complex” without counting glycan chain 201. On
the other hand, the P-value for 3,6Manβ1-4GlcNAcβ1 is
4.61E−33. Thus, the disaccharide 3,6Manβ1-4GlcNAcβ1 may
be a better representation of the binding specificity of those
10 glycan chains. We also identified a significant disacchar-
ide, Glcα1-4Glcβ, which corresponds to the terminal Glc
motifs identified by motif-based methods (Porter et al. 2010).
Furthermore, the listing of glycan chains that contain the sig-
nificant disaccharide in Table II shows that some of those sig-
nificant disaccharides are dependent of each other. For
example, 2Manα1-3Manα and 3Manα-Sp9 both exist in
glycan chains 189 (Manα1-2Manα1-2Manα1-3Manα-Sp9)
and 191 (Manα1 -2Manα1-3Manα-Sp9). We may be able to
merge them as a trisaccharide: 2Manα1-3Manα-Sp9.
For VVL, we identified six disaccharide subtrees with sig-

nificant positive regression coefficients (Table III), which
included all seven glycan chains with high binding intensities.
All six disaccharides involved terminal β-linked GalNAcβ or
terminal α-linked GalNAcα. Previously, terminal β-linked
GalNAcβ was ranked high by both motif and intensity segre-
gation methods, and terminal α-linked GalNAcα was only
ranked high by the intensity segregation method (Porter et al.
2010). In the CFG glycan array version 2.0, there are 10
glycan chains that have terminal α-linked GalNAcα and only
two have high binding intensity with VVL. Moreover, there
are 13 glycan chains that have terminal β-linked GalNAcβ in
the CFG glycan array version 2.0 and five of them have high
binding intensity with VVL. Thus, using only terminal α- and
β-GalNAcs to determine the binding specificity of VVL may
be insufficient. When the terminal α- and β-GalNAcs are not
attached directly to a spacer in the glycan array, our QSAR
results implied that the saccharides attaching to terminal α-
and β-linked GalNAcs affect the binding specificity to VVL.
For example, in number 86 (GalNAcα1-3Galβ–Sp8) glycan
chains of the CFG glycan array version 2.0, a terminal
GalNAcα attached to a Gal with an α1-3 link and then
attached to the spacer. This glycan chain has high binding in-
tensity. However, when the Gal is also attached with a Fuc,
the glycan chain (number 84 (GalNAcα1-3(Fucα1-2)Galβ–
Sp8) of the CFG glycan array version 2.0) loses its binding
specificity. The QSAR method even showed that the
GalNAcα1-2,3Galβ has a significant negative coefficient
(Table III). Similarly, a terminal GalNAc attached to a Gal
with β1-3 linkage leads to high binding intensity
(Supplemental data 2) as in number 89 (GalNAcβ1-3
(Fucα1-2)Galβ-Sp8) and number 90 (GalNAcβ1-3Galα1-4Gal
β1-4GlcNAcβ-Sp0) glycan chains of the CFG glycan array
version 2.0. However, a terminal GalNAc attached to Gal
with β1-4 linkage does not lead to high binding intensity
(Supplemental data 2) as in five glycan chains of the CFG
glycan array version 2.0:

• 203 (NeuAca2-8NeuAca2-8NeuAca2-8NeuAca2-3(GalN
Acb1-4)Galb1-4Glcb-Sp0)

• 204 (Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3(GalNAcb1-4)
Galb1-4Glcb-Sp0)

• 206 (Neu5Aca2-8Neu5Acα2-3(GalNAcβ1-4)Galβ1-4Gl
cβ–Sp0)

• 209 (Neu5Aca2-3(GalNAcb1-4)Galb1-4GlcNAcb-Sp0)
• 210 (Neu5Aca2-3(GalNAcb1-4)Galb1-4GlcNAcb-Sp8)

Our results suggested that the binding specificity of VVL
needs to be determined more carefully by considering the sac-
charides attached to the terminal GalNAc and how they are
attached. This is consistent with the variance explained and
R2 results of the PLS regression study as the PLS regression
using disaccharide subtrees as features gets much higher per-
formance. Our results also suggested that visual inspection
may not be able to identify the true binding specificities even
for simple glycan array data. Furthermore, as shown in
Table III, each glycan chain contains only one significant di-
saccharide, which suggests that all significant disaccharides
binding to VVL are independent.
For WGA, we identified 16 disaccharide subtrees with sig-

nificant positive regression coefficients and four disaccharide
subtrees with a significant negative regression coefficient
(Table IV). The 16 significant disaccharides exist in 28 glycan
chains of the CFG glycan array version 2.0, which all have
high binding intensity with WGA. All 16 significant disacchar-
ides of WGA are independent as each glycan chain contains
only one significant disaccharide. There are three kinds of
glycan in those 16 disaccharides: Gal, GlcNAc and GalNAc.
Those 16 disaccharides cover the “terminal Lactosamine”, “in-
ternal Lactosamine”, “terminal GlcNAcβ”, “Branching” and
“terminal GalNAcα” motifs identified by motif and intensity
segregation methods (Porter et al. 2010). However, one highly
ranked motif, “terminal Neu5Acα2-3Gal”, identified by motif
and intensity segregation methods is missing. We then careful-
ly examined the glycan array data of WGA. There are 37
glycan chains in CFG glycan array version 2.0 containing the
“Terminal Neu5Acα2-3Gal” motif. The binding intensities of
those 37 glycan chains to WGA are very broad, from −73 to
50,264. It is likely that the disaccharide subtree, “terminal
Neu5Acα2-3Gal”, may not discern the binding specificity of
those 37 glycan chains completely. We then used the tri- and
tetrasaccharide subtrees as features for the PLS regression. We
were able to find one significant trisaccharide (Neu5Acα2-
3Galβ1-3GlcNAcβ) and four significant tetrasaccharides
(Neu5Acα2-3Galβ1-3GlcNAcβ-Sp8, Neu5Acα2-3Galβ1-4
(6OSO3)GlcNAcβ-Sp8, Neu5Acα2-3Galβ1-4GlcNAcβ-Sp0,
Neu5Acα2-3Galβ1-4GlcNAcβ-Sp8) that contain terminal
Neu5Acα2-3Gal. The results implied that the terminal
Neu5Acα2-3Gal may need to attach to a GlcNAc to make the
binding to WGA more specific.

Evaluation of QSAR model on other glycan-binding proteins
To further demonstrate the effectiveness of the QSAR
method, we tested it on glycan array data (Supplementary
data 4, 5, 6, 7, 8 and 9) of six glycan-binding proteins with
known motifs: two plant lectins (peanut agglutinin and
Sambucus nigra lectin), two animal lectins (dendritic cell-
specific ICAM-3 grabbing non-integrin and sialic acid-binding
immunoglobulin-like lectin 8) and two antibodies [CSLEX1
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(human CD15s antibody) and Sialyl Lewisx antibody
(CD15s)-10]. For all six glycan-binding proteins, the PLS re-
gression obtained high R2 > 0.9 (Table I). The PLS-β method
also identified known binding motifs. The detail descriptions
of the analyses are available in Supplementary notes.

A web tool for analyzing glycan array data
To facilitate the utilization of our method by biologists to
analyze their own glycan array data, we developed a web tool
called, Glycan Array QSAR Tool, and hosted it at http://bci.
clemson.edu/tools/glycan_array. Our tool employs client/
server architecture. It has a client web interface as shown in
Supplementary data, Figure S1. The users first need to choose
three parameters: the array version, subtree features and
z-score for selecting significant subtrees. They then need to
paste a one-column binding intensities of the glycan array.
After clicking the “Submit” button, the parameters and data
are transferred to the server. A Matlab program on the server
side will perform the PLS regression and generate significant
subtrees. The server will then generate a results page and send
back to client. As shown in Supplementary data, Figure S2,
the results page contains a summary section of input para-
meters and the R2 value; a table of the significant subtrees,
their regression coefficients and glycan chains containing each
feature; a figure that plots the percentage of variance
explained against the number of PLS components and a figure
that plots the observed intensities against fitted intensities.
The user will be able to download results and figures from the
results page.

Discussion

The application of the glycan array is impeded currently by
the lack of automatic and systematic methods to extract useful
information (Porter et al. 2010). In this study, we proposed a
novel QSAR method to address this need. We first automatic-
ally decomposed the glycan chains into subtrees. Then, we
applied PLS regression to the glycan array data using subtrees
as features. Based on PLS regression, we were able to identify
significant subtrees that contribute to binding. We demon-
strated our methods on the glycan array data of multiple
glycan-binding proteins. Moreover, the substructure features
are generated automatically. We also developed a user-friendly
web tool that can facilitate the rapid and automatic analysis of
glycan array data.
Compared with predefined motifs, automatic decomposition

of glycan chains into substructures provides much broader fea-
tures for selecting binding specificity. For example, in the
glycan array data of VVL, terminal α-linked GalNAc exists in
glycan chains with both high and low binding intensities.
Simply using terminal α-linked GalNAc as a feature to deter-
mine the binding specificity is insufficient. Actually, the motif
segregation methods did not rank terminal α-linked GalNAc
high. Meanwhile, by using disaccharide subtrees as features,
our QSAR method successfully identified binding specific dis-
accharides that include terminal α-linked GalNAc. Our results
implied that the saccharide attached to terminal α-linked
GalNAc also determined the binding specificity of VVL.
Furthermore, the bindings of glycan chains to proteins are

complex. Fixed features, like predefined motifs, may not be
able to identify real binding specificity. For example, the
QSAR method identified that a disaccharide: 3,6Manβ1-
4GlcNAcβ1, contributed to binding of ConA. This disacchar-
ide is a subset of both “N-glycan high Man” and “N-glycan
complex” motifs. Further analysis showed that the
3,6Manβ1-4GlcNAcβ1 has a lower P-value based on motif
segregation. Thus, the 3,6Manβ1-4GlcNAcβ1 may be the real
contributor to the binding specificity of ConA. Further experi-
ments are needed to confirm the conclusion. But the QSAR
method showed the potential to determine more representative
binding specificities.
Both motif and intensity segregation methods need to sep-

arate the glycan data into two groups and then select the sig-
nificant motif based on statistical tests on the intensities of the
two groups. For intensity segregation, a threshold is needed to
determine high and low intensities, which will bring uncer-
tainty to the results (Porter et al. 2010). Meanwhile, as the
number of glycan chains containing a certain motif is low, the
motif segregation suffers from unbalanced data in the two
groups (Porter et al. 2010). Our QSAR method overcomes the
uncertainty and bias as it does not need to separate the glycan
data into two groups as motif and intensity segregation
methods.
Currently, we performed the PLS regression using different

size subtrees separately. Our current approach fixed the size of
substructures to represent binding specificity. However,
glycan-binding proteins may bind to different size subtrees in
glycan chains. For example, we showed that some disacchar-
ides of ConA are correlated and may be merged to trisacchar-
ide subtrees. In the future, we will further develop the QSAR
methods using all subtrees under a certain size as features.
However, directly using all subtrees will lead to overfitting as
features overlap. We are currently exploring feature selection
methods to remove overlapped features. Then, the PLS regres-
sion will be performed on selected features.
In conclusion, our QSAR method provides a new tool for

efficient analysis of glycan array data. Our method is general
and can be applied to different types of the glycan array of
different glycan-binding proteins. Our method should prompt
the utilization of the glycan array and help understand the
biology of glycan-binding proteins.

Materials and methods
Data source
The structures of glycan chains were obtained from the CFG
(Blixt et al. 2004) website (www.functionalglycomics.org).
The glycan array data of lectins and antibodies were also
downloaded from the CFG website. Supplementary data and
Table S V list all data that we analyzed.

PLS regression
The PLS regression has been widely used to model the rela-
tionship between responses and predictor variables (Wold
et al. 2001). For example, responses are the properties of
chemical samples and predicator variables are the composition
of chemicals. In our study, the response is the binding inten-
sity of glycan chains to glycan-binding proteins and the
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predictor variables are the subtrees extracted from glycan
chains. Unlike general multiple linear regression, the PLS re-
gression can handle strong collinear data and the data in
which number of predictors is larger than the number of
observations. The PLS build the relationship between re-
sponse and predictors through a few latent variables con-
structed from predictors. The number of latent variables is
much smaller than that of the original predictors. Let vector y
(n × 1) denote the single response; matrix X (n × p) denote the
n observations of p predictors and matrix T (n × h) denote n
values of the h latent variables. The latent variables are linear
combinations of the original predictors:

Tij ¼
X

k

WkjXik ð1Þ

where matrix W (p × h) is the weights. Then, the response and
observations of predictors can be expressed using T as follows
(Wold et al. 2001):

Xik ¼
X

j

TijP jk þ Eik ð2Þ

ym ¼
X

j

CmjTij þ fm ð3Þ

where matrix P (h × p) is the is called loadings (the regression
coefficients of latent variables T for observations) and matrix
C (h × 1) is the regression coefficients of T for responses. The
matrix E (n × p) and vector f (n × 1) are the random errors of
X and y. The PLS regression decomposes the X and y simul-
taneously to find a set of latent variables that explain the co-
variance between X and y as much as possible (Wold et al.
2001).
The PLS regression was performed using the plsregress

function in Matlab. The plsregress function takes three para-
meters: X, y and the number of components. It is important to
determine the number of components in PLS regression. We
employed the following procedure to select the number of
components. We first ran the PLS regression using a large
number of components, e.g. 50. The plsregress returned the
percentage of variance explained in response for each PLS
component. Then, we counted the number of components that
contribute to variance explained beyond a threshold. This
number was our new number of components. In our study, we
set the threshold to be 0.5% of variance explained. We then
ran PLS regression again using the new number of
components.
The R2 of PLS regression is calculated using the formula:

R2 ¼ SSerr=SStotal. The SSerr is the sum of squares of fit
errors: SSerr ¼

P
i f

0
i , where f′ (n × 1) is the regression errors.

And the SStotal is the total sum of squares:
SStotal ¼

P
i ðyi � �yÞ2, where �y is the mean of y.

Selection of significant substructures
The PLS regression has established the relation between the
response y and original predictors X as a multiple regression

model:

ym ¼
X

k

BmkXik þ f 0m ð4Þ

where vector f′ (n × 1) denote the regression errors and matrix
B (p × 1) denote the PLS regression coefficients and can be
calculated by:

Bm ¼
X

i

CmiWki ð5Þ

Then, the significant predictors can be selected based on the
values of regression coefficients from PLS regression, which
is called the PLS-β method (Chong and Jun 2005).
To select the significant subtrees using regression coeffi-

cients, we modeled the distribution of regression coefficients
as a Gaussian distribution. The plots of the regression coeffi-
cient distribution obtained from PLS regression on three plant
lectins showed that approximating the coefficient distribution
as Gaussian distributions is reasonable (Supplementary data,
Figures S3–S5). Then, we determined the significant regres-
sion coefficients based on z-score: z ¼ Bi � u=s, where u is
the average of regression coefficients and σ is the standard
deviation of regression coefficients. We first calculated the
z-score value for each coefficient. We selected the subtrees
whose regression coefficients with z-score larger than a
threshold. The higher the z-score, the less number of subtrees
are selected.

Supplementary data

Supplementary data for this article is available online at http://
glycob.oxfordjournals.org/.
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