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Abstract

At sufficiently high mass accuracy, it is possible to distinguish phosphorylated from unmodified
peptides by mass measurement alone. We examine the feasibility of that idea, tested against a
library of all possible /n silico tryptic digest peptides from the human proteome database. The
overlaps between in silico tryptic digest phosphopeptides generated from known phosphorylated
proteins (1-12 sites) and all possible unmodified human peptides are considered for assumed mass
error ranges of +10, +50, +100, £1,000, and £10,000 ppb. We find that for mass error +50 ppb,
95% of all phosphorylated human tryptic peptides can be distinguished from nonmodified peptides
by accurate mass alone through the entire nominal mass range. We discuss the prospect of on-line
LC MS/MS to identify phosphopeptide precursor ions in MS1 for selected dissociation in MS2 to
identify the peptide and site(s) of phosphorylation.
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1. Introduction

Phosphorylation is a reversible modification affecting both the folding and function of
proteins and regulation of many cellular processes such as cell cycle, growth, apoptosis, and
differentiation [1, 2]. Among the commonly occurring 20 amino acids, serine, threonine,
tyrosine, histidine, arginine, lysine, cysteine, glutamic acid, and aspartic acid residues may
be phosphorylated. However, phosphorylation of the hydroxyl group of serine, threonine or
tyrosine residues by forming a phosphate ester bond is most frequently observed, with
relative occurrence of 90% (pS), 10% (pT), and 0.05% (pY) [3]. Identification of the
number and site(s) of phosphorylation is thus a major aspect of proteomics [4].
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1.1. MS/MS for identifying the presence and sequence location of phosphorylation in

peptides

Mass spectrometry is playing an increasingly important role in the characterization of
posttranslational modifications, including protein phosphorylation [5, 6]. A simple way to
identify the presence of a phosphopeptide by MS is from proteolytic peptide mass spectra
before and after phosphatase treatment, revealing an 80 Da mass reduction (HPO3) for each
phosphorylation [7, 8], but is limited to analysis of abundant peptides.

Most modern methods for phosphoproteome analysis rely on the use of MS/MS techniques:
for example, from precursor ion and neutral loss scans by triple quadrupole mass
spectrometry [9-13]. For parent ion scanning, the first quadrupole (Q1) scans through the
entire m/z range, precursor ions are subjected to collision-induced dissociation in the second
quadrupole (Q2), and the third quadrupole (Q3) monitors the specific fragment ion
characteristic of the modification of interest, e.g., the loss of PO3_ (79 Da) for a negative
phosphopeptide ion. In the neutral loss scan, Q1 and Q3 are scanned simultaneously over
two different m/z ranges with the (fixed) difference corresponding to the /2 value of the
appropriate neutral (e.g., 98 Da for H3PO,) that is lost in Q2 [1]. These methods can identify
the presence (but not the sequence location) of phosphorylation. Moreover, efficiency of the
method decreases as sample complexity increases [14].

Electron capture dissociation (ECD) and electron transfer dissociation (ETD) techniques
mainly generate ¢/Z ions by cleavage of the N-C backbone bond and are particularly useful
for analysis of large multiply charged peptides and for identification and localization of
posttranslational modifications. Both methods typically provide more extensive sequence
coverage and retain labile posttranslational modifications relative to slow-heating
dissociation methods (e.qg., collision-induced dissociation (CID), infrared multiphoton
dissociation), thereby enabling more complete sequencing of peptides and more precise
assignment of phosphorylation sites simultaneously in a single MS/MS experiment [15-17].
For example, in a global phosphoproteome analysis, ETD identified 60% more
phosphopeptides than CID, with an average of 40% more fragment ions to facilitate
localization of phosphorylation sites. With combined ETD and CID, more than 80% of the
known phosphorylation sites in more than 1,000 phosphorylated peptides were identified
[18].

Another problem is that phosphorylation occurs at low stoichiometry and/or for a protein
with low expression level versus nonphosphorylated proteins found /n vivo. Moreover, for a
complex mixture containing many other unmodified peptides, phosphopeptides can exhibit
low ionization efficiency due to more efficient ionization of other species. Although that
effect is less pronounced for negative ions, their low fragmentation efficiency (e.g., electron
detachment dissociation, negative electron capture dissociation) can preclude
phosphorylation identification.[1] Therefore, because current MS methods do not distinguish
between phosphorylated and non-phosphorylated precursor ions before MSIMS, it is
typically necessary to resort to other methods to pre-select phosphorylated peptides: e.g.,
protease-specific digestion, phospho-enchrichment steps, and/or LC separation.

1.2 Phosphopeptide enrichment strategies

Immobilized metal-ion affinity chromatography (IMAC) is the most frequently used
technique for enrichment by electrostatic interaction between a negatively charged
phosphate and positively charged metal ion (e.g. Fe3*, Ga3*, or AI3*) bound to the
stationary phase via linkers [19], and is compatible with subsequent separation and detection
in LC-ESI-MS/MS [20]. However, nonspecific binding of peptides containing acidic amino
acids such as Glu and Asp limits selectivity. Moroever, minor alteration of pH, ionic
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strength, and/or organic solvent composition can significantly affect the selectivity of the
IMAC stationary phase [1]. Although esterification of carboxylic acids to methyl esters by
use of HCl-saturated, dried methanol can eliminate the nonspecific binding of acidic
peptides in subsequent IMAC enrichment, but at the cost of additional analysis time, sample
loss, and increased sample complexity due to incomplete esterification and side reactions,
etc. [1, 21].

Alternatively, strong cation exchange chromatography can separate singly charged positive
tryptic digest phosphopeptides from doubly positively charged nonphosphopeptides at acidic
pH (~2.7). However, specificity is low [22]. Other enrichment methods include TiO,
column chromatography, ZrO, microtips, chemical modification of the phosphate by an
affinity tag, calcium phosphate precipitation, etc. [23-26]. In all of the above techniques,
interference from abundant, nonspecific peptides complicates MS/MS, especially when
coupled with on-line LC separation.

1.3. Phosphate identification based on mass defect

Mass defect is the difference between exact mass and the nearest-integer (nominal) mass.
The atomic mass defects for 12C, 1H, 160, 14N, 31P, and 32S are shown in Table 1. The
limited elemental compositions (C, H, O, N and S) of 20 common amino acids localize the
possible mass defects for unmodified peptides to only approximately one-third of each 1-
Dalton mass range. Moreover, peptide masses are discrete, so that amino acid composition
can be uniquely inferred from sufficiently resolved and accurate mass measurement. [27,
28]. The introduction of another element with a large mass defect into the elemental
compositions can shift a modified peptide ion into an otherwise empty mass spectral
segment, for unique identification by accurate mass measurement. Originally introduced to
provide non-overlapping (typically fluorinated) mass calibrants [ref to pfk mixtures], mass
defect labeling of peptides has been used to identify protein serine (pS) and tyrosine (pY)
phosphorylation. [27, 29-32]. Here, we point out that, by virtue of its large mass defect
(-0.0262 Da, see Table 1), the presence of 3P in a peptide ion can in principle be identified
by sufficiently accurate mass measurement alone.

2. Methods

Tryptic peptides were generated /n silico from the ProSightPC human protein database [33].
Two types of N-terminal modifications (acetylation and methionine cleavage) were
considered, and each digested peptide was allowed one missed tryptic cleavage site. To
calculate the overlaps of unmodified and phosphorylated peptides at each nominal mass, a
database consisting of the /n silico trypsin-digested unmodified human proteome and a
database containing /in silico tryptic digest phosphopeptides generated from human proteins
phosphorylated at known positions. Each database includes unique elemental composition
and corresponding accurate monoisotopic neutral mass for each

peptide. 1H, 12C, 14N, 160, 31p, and 32S atomic mass values (see Table 1 [34]) were used to
compute the monoisotopic neutral mass for each elemental composition.

3. Results and discussion

3.1. Phosphorylated vs. non-phosphorylated human peptides; elemental composition vs.
amino acid composition

The total entries, non-redundant (i.e., not counting separately isomeric peptides with
identical elemental composition but different sequence or amino acid composition—see
below) entries, and neutral mass ranges for both phosphorylated and nonphosphorylated
human tryptic digest peptide databases are given in Table 2. There are 73,407
phosphorylated and 956,594 nonphosphorylated (non-redundant) peptides with masses
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ranging from 580-10,088 Da and 500-10,040 Da. As many as 12 phosphorylation sites have
been found on a single database peptide, whereas ~34% of observed phophorylated peptides
are modified at two or more sites: ~65.7%, 22.0%, 7.8% and 4.5% containing, one, two,
three, and greater than three phosphates. (see Figure 1).

Apart from sequence isomers (e.g., AlaGlyHis vs. GlyHisAla), peptides of a given elemental
composition may arise from multiple isomeric amino acid compositions (e.g., Met & Ala vs.
Val & Cys) [35]. Although positional isomers have different heat of formation, an energy
difference of (E, — E1) = 1 eV corresponds to a mass difference of ~10~° Da according to
Einstein’s mass-energy relation, (Eo — E1) = (my — mq)c?, a mass difference not accessible
by any existing mass analyzer [35, 36]. Both the number of amino acid compositions and
unique elemental compositions at different nominal masses are shown in Figure 2 (human
non-phosphopeptides) and Figure 3 (human phosphopeptides). The number of isomers at
each nominal mass is readily obtained from difference between amino acid compositions
and unique elemental compositions. Note that 2038 of the 2109 amino acid compositions of
unmodified peptides of nominal mass 730 Da (i.e., 97%!) are isomers, requiring MS/MS for
identification.

3.2. Mass accuracy required to identify phosphopeptides by mass alone

Figure 4 shows the possible mass distributions of phosphorylated and nonphosphorylated
human (neutral) peptides across a 0.05 Da segment of the mass range at a mass accuracy
(i.e., mass bin width) to within £0.1 ppm. For that small mass segment, at that mass
accuracy, it is clear that every phosphopeptide can be distinguished from every
nonphosphopeptide. By comparison, Conrads et al. previously showed that at 0.1 ppm mass
measurement accuracy, more than 80 % of yeast phosphopeptides of 2,000 Da nominal mass
can be identified directly from their masses.[37] To establish the mass measurement
accuracy required to distinguish phosphopeptides from nonphosphopeptides at various
nominal masses, Spengler et al. recently assembled a database of theoretically possible
peptides up to 2000 Da and calculated the fraction of mass-distinguishable mono- and di-
phosphorylated peptides from unmodified peptides, for assumed mass error of 100 and 1000
ppb [38]. Here, we restrict our database to the human proteome (but do not limit the mass
range), and then consider the overlap between experimentally confirmed peptides
phosphorylated at 1-12 sites and all possible unmodified human peptides for assumed mass
error values ranging from 1-10,000 ppb.

We now consider the feasibility of distinguishing phosphorylated from unphosphorylated
precursor peptide ions in the first stage of an MS/MS experiment, so as to be able to select
only phosphopeptides for subsequent fragmentation in the second MS/MS stage. Figure 5
shows the percentage of overlaps between phospho- and non-phosphopeptides at every
nominal mass up to 10,000 Da, for each of five mass measurement error ranges. Although
the overlap percentage is less than 50% throughout the entire mass range even for a mass
measurement error range of +1,000 ppb, overlap drops to less than 5% of the nominal
masses, for a mass measurement error range of £50 ppb, with no overlaps below 1,148 Da.
Stated another way, Figure 6 shows the lowest nominal mass at which overlap first appears,
starting at 580 Da for mass error of +10 ppm and increasing to 1,967 Da for £0.01 ppm.
Note that ~ 83%, 52%, 29%, 6%, and 0.3% of total phosphopeptides (173,101) overlap with
at least one nonphosphopeptide at respective mass measurement error of £10,000, +1,000,
+100, +50, and +10 ppb. Consideration of possible interferants from other modified peptides
such as sulfation, nitrosylation, and ubiquitination (each type is from in silico tryptic digest
of corresponding known human modified proteins) doesn’t change the overlap results
between phosphopeptides and nonphosphopeptides at each mass error, due to the relatively
few occurrences for each modified peptide: e.g., 1702 total entries (469 nonredundant) for
sulfated peptides at up to 7 sites, 48 total entries (42 nonredundant) for nitrosylated peptides
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at up to 3 sites, and 606 total entries (577 nonredundant) for ubiquitinated peptides (leaving
only a GG tag on each peptide after tryptic digest) at up to 2 sites.

Finally, Figure 7 shows that even at 1 ppb mass accuracy, there are still two phosphopeptide/
non-phosphopeptide pairs of unique elemental compositions at nominal masses 3,885 and
4,443 Da that cannot be distinguished, corresponding to the mass doublets, C45Hg2N1g VS.
O33P11 (~1.3 pDa) and CogH1701S1P1 vS. Nog (~3.5 wDa). The mass accuracy required to
resolve each pair, 0.3 ppb and 0.8 ppb, is not currently attainable.

3.3. Feasibility of identifying phosphopeptides by mass measurement alone

The best prospect for realizing the identification of phosphopeptides is with Fourier
transform ion cyclotron resonance mass spectrometry, which provides ten-fold higher mass
resolution and mass measurement accuracy than other mass analyzers [36]. For example, we
have recently achieved mass measurement rms error of <50 ppb for a constantly infused
petroleum crude oil sample with thousands of resolved peaks in a single mass spectrum [39].
For peptide mixtures analyzed by LC/MS, mass resolving power and mass accuracy are
necessarily lower, due to the need to acquire each precursor mass spectrum in ~1s.
However, with recently introduced phase correction to yield absorption-mode display [40],
improved ICR cell designs (Tolmachev, Nikolaev), and high magnetic field [41], it should
be possible to achieve mass measurement accuracy to within ~50 ppb up to 1000 Da
sufficient to identify phosphopeptides unambiguously up to ~1,200 Da It is worth noting
that current instruments typically perform MS/MS only for the (say) five most abundant
precursor ions, and therefore fail to access phosphopeptides present at lower abundance.
Being able to identify the phosphopeptides before MS/MS should thus significantly improve
their detection efficiency (and subsequent sequence location by MS/MS).
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Figure2.
Amino acid compositions and unique elemental compositions at each nominal mass for the
human non-phosphopeptide database.
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Figure 3.
Amino acid compositions and unique elemental compositions at each nominal mass for the
human phosphopeptide database (1-12 phosphorylations per peptide).
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Histogram of phosphorylated and nonphosphorylated neutral human peptides (counting
sequence isomers) across a 0.05 Da mass segment at nominal mass 2000 Da, at a mass
resolution (mass bin width) of £0.1 ppm.
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Human phosphopeptide vs. nonphosphopeptide mass overlap likelihood for each of five
mass measurement errors (10-10,000 ppb) at nominal masses up to 10,000 Da.
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Figure6.

The lowest nominal mass at which overlap between human phospho- and non-
phosphopeptides, for each of five mass measurement error ranges.
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Nominal Mass Elemental Accurate Mass Minimum Mass
(Da) Composition (Da) Error Range (ppb)

ss8s C,.H,NO, 38850478482 1032

C,..H,, N,O P,  3885.0478494
1443 C,H, N, O, 44430658043 10,80
C,.H, N0, S P, 4443.0658008

196" "296° "47 67 "1 1

YSPTSPTYpSPpTpSPKYpSPpTpSPpTpYpSPpTpSPK (11 Isomers), vs.
TWVRNAEFSFHEALTHLLHSHLLPEVFTLATLR (No Isomers),

4443 Da (CyH,;,0,S,P; vs. Ny;) ~3.5 pDa Mass Difference
PLNRTLpSMSSLPGLEDWEDEFDLENAVLFEVAWEVANK (1 Isomer), vs.
AEQQQQQQQAAAAAHAHAQQAQQAQQAAAAAAAAHLSR (No Isomers),

Figure?.

Elemental compositions, accurate masses, and amino acid sequences of the (only) two
phosphopeptide/non-phosphopeptide pairs not resolved at +1 ppb mass measurement error
range.
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The accurate atomic masses and corresponding mass defects for five elements found in amino acids [34]. Note
the large negative mass defect for 31p.

Elements AccurateMass(Da) MassDefect (Da)
H 1.007825032 +0.007825032
2c 12.000000000 + 0.000000000
14N 14.003074005 +0.003074005
160 15.994914622 - 0.005085378
s1p 30.973761487 - 0.026238513
823 31.972070690 - 0.027929310
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Total entries, non-redundant entries, and neutral mass range for phosphorylated and nonphosphorylated human

tryptic digest peptides.

Phosphopeptide Database (N-terminal acetylation and methionine cleavage)

No. of phosphorylation modification sites  Total entries  Non-redundant entries

Neutral massrange (Da)

© 00 N oo o~ W N

=
~ O

12
Total

80357
40415
23228
13712
7873
4222
2043
860
299
78

13

1
173101

48265
16090
5709
2074
799
290
111
46

17

3

2

1
73407

Nonphosphopeptide Database (N-ter minal acetylation and methionine cleavage)

Total entries  Non-redundant entries

2307173

956594

580-10088
662-10127
772-10069
1040-10077
1225-9742
1554-9189
2071-9269
2151-9248
2231-9328
3805-5799
3885-5879
3965

Neutral massrange (Da)

500-10040
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