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unsaturated group-14 element compounds
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Abstract: Structure and properties of silicon-silicon doubly bonded compounds (disilenes)
are shown to be remarkably different from those of alkenes. X-Ray structural analysis of a series of
acyclic tetrakis(trialkylsilyl)disilenes has shown that the geometry of these disilenes is quite flexible,
and planar, twist or trans-bent depending on the bulkiness and shape of the trialkylsilyl
substituents. Thermal and photochemical interconversion between a cyclotetrasilene and the
corresponding bicyclo[1.1.0]tetrasilane occurs via either 1,2-silyl migration or a concerted
electrocyclic reaction depending on the ring substituents without intermediacy of the corresponding
tetrasila-1,3-diene. Theoretical and spectroscopic studies of a stable spiropentasiladiene have
revealed a unique feature of the spiroconjugation in this system. Starting with a stable
dialkylsilylene, a number of elaborated disilenes including trisilaallene and its germanium congeners
are synthesized. Unlike carbon allenes, the trisilaallene has remarkably bent and fluxional geometry,
suggesting the importance of the :-<* orbital mixing. 14-Electron three-coordinate disilene-
palladium complexes are found to have much stronger :-complex character than related 16-electron
tetracoordinate complexes.
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Introduction

So-called “double-bond rule” states that unlike
carbon, the elements with a valence principal
quantum number of three or greater do not
effectively participate in : bonding.1) In accord with
this rule, multiply bonded compounds of silicon had
been believed to be non-existent or highly unstable
until the first synthesis of stable disilene (Mes2SiF
SiMes2; Mes F 2,4,5-trimethylphenyl)2) and silaeth-
ene [Ad(Me3SiO)CFSi(SiMe3)2, Ad F 1-adamantyl]3)

were achieved by West et al. and Brook et al.,
respectively, in 1981. Since then, much attention
has been focused on various aspects of the chemistry
of silicon unsaturated compounds including their
bonding and structure, spectroscopic properties,
reactivity, and application to the synthesis of novel

types of organosilicon compounds; a number of
reviews have been published for their experimental4)

and theoretical aspects.5) Now studies in this research
field look heading for two directions, in addition
to further synthetic development of new types of
unsaturated silicon compounds; (1) application of
their unique electronic properties towards the mate-
rial science and (2) restructuring of a general theory
of bonding and structure of heavy main group
elements including silicon. The former is just its
beginning but the latter looks biding its time.
Actually, thanks to interplay between theory and
experiment, remarkable distinctions of bonding
and structure between silicon unsaturated com-
pounds and their carbon congeners have been
accumulated.

We have created a number of thermally stable
silicon unsaturated compounds with SiFSi, SiFC,
and SiFX (X F S, Se, Te, etc.) bonds and elucidated
their unique properties since 1994.6) In this account,
the results are discussed with a focus on the
differences in bonding and structure between carbon
and silicon unsaturated compounds and their origin.
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1. Stable acyclic tetrakis(trialkylsilyl)disilenes

1.1. Synthesis. A series of acyclic tetra-
kis(trialkylsilyl)disilenes 1a–1c are synthesized
typically using reductive coupling of the correspond-
ing bis(trialkylsilyl)dibromosilanes 2a–2c (eqs [1]–
[3]).7),8a) The products of the reduction of 2a–2c
are dependent on the reaction conditions and steric
bulkiness of the substituents. For example, the
reduction of 2a and 2b with sodium in toluene
affords disilenes 1a and 1b but the reduction of 2a
and 2b with lithium naphthalenide (LiNaph) in THF
at !78 °C gives the corresponding cyclotrisilanes 3a
and 3b, which are further converted to 1a and 1b
by the photolysis using a high-pressure Hg lamp
(eq [3]).8a) Disilene 1c with bulkier silyl substituents
is obtained directly by the reduction of 2c using
LiNaph/THF at the low temperature (eq [2]), while
1c is not formed by reducing 2c with Na in
toluene.8a) (E)- and (Z)-tetrakis(triakylsilyl)disilenes,
(E)-1d and (Z)-1d, are synthesized using a similar
reductive coupling of dibromosilane 2d with two
different silyl substituents (eq [4]). The reduction

affords a ca. 2:1 mixture of (E)- and (Z)-1d in
solution but pure (E)-1d is obtained as single crystals
by recrystallization of the mixture from hexane.8b)

A2SiFSiB2 type disilenes 1e and 1f are synthesized
by the reduction of the corresponding tetrasilyl-1,2-
dibromodisilanes 4e and 4f, respectively (eq [5]).8c)

Digermenes 5a–5c8d),8e) and germasilene 6a8e)

are synthesized using similar reduction methods
(Chart 1).

All these dimetallenes are thermally stable and
can be handled in a glove box at ambient temper-
atures but are highly air- and moisture-sensitive in
solution and in the solid state.
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1.2. Spectroscopic properties. Tetrasilyldi-
silenes 1a–1c are yellow to light orange in the solid
state, and expectedly, the UV-vis spectra of disilenes
1a–1c measured in KBr pellets are similar to each
other with the band maxima at around 420 nm.8a)

In Table 1 are summarized the UV-vis absorption
spectra of acyclic tetrasilyldimetallenes 1a–1f and
related dimetallenes at room temperature in a
hydrocarbon solvent. Interesting spectral features
of tetrasilyldimetallenes are found in the table: (1)
Whereas these tetrasilyldisilenes have no aromatic
substituents, the longest absorption maxima are
found at a wavelength longer than 400 nm. Sterically
less hindered dimetallenes 1b, 1e, 5a, 5b, and 6a
show the longest wavelength band maxima at around
420 nm with relatively large absorptivity (C > 5000);
the 6max is even similar to that for Mes2SiFSiMes2
(7).9) The band assignable to the :!:* transition
of normal or less distorted dimetallenes appears at
much longer wavelengths than those of alkenes,
which are usually transparent in the wavelength
region longer than 300 nm. It is suggested that the
energy splitting between : and :* MOs in these
dimetallenes is similar irrespective of the central
elements that are silicon or germanium, while the
splitting is much smaller than that in alkenes. (2)
Absorption spectral behavior of disilene 1c and

digermene 5c with relatively bulky silyl substituents
is rather unusual. In solution, 1c and 5c show the
longest wavelength band at much longer wavelength
of 480 and 472 nm with relatively smaller absorptiv-
ity than those for dimetallenes categorized as (1).
The spectra of 1c and 5c with bulky tri(isopro-
pyl)silyl substituents are remarkably temperature
dependent with increasing absorptivity of the 420 nm
bands at lower temperatures. The behavior may be
explained by the temperature-dependent equilibrium
between trans-bent and twist forms in solution as
shown in eq [6], where the twist form is supposed
to have a smaller :-:* splitting energy than that for
the trans-bent form. The explanation is consistent
with the UV-vis spectral characteristics of a disilene
with bulkier di(t-butyl)methylsilyl substituents 8
[(tBu2MeSi)2SiFSi(SiMetBu2)2] reported by Sekiguchi
et al.10) that has remarkably twisted geometry
around the SiFSi bond (twist angle, 55°); the longest
wavelength band of 8 shows the maximum at 620 nm
with the absorptivity of 1300. (3) Disilene 1a and
digermene 5a with intermediate bulkiness of silyl
substituents show the longest wavelength band at
around 420 nm but with smaller absorptivity and
broad bandwidth than those of dimetallenes catego-
rized as (1). The bands sharpened remarkably at
lower temperatures. The less remarkable temperature

Table 1. UV-vis absorption maxima and absorptivity (in parentheses)a) and 29SiNMR chemical shifts for unsaturated silicon nuclei of
tetrasilyldimetallenes

Compound 6max/nm (C/103) /(29Si)/ppm Ref.

1a 290 (2.5), 360 (1.9), 420 (2.8) 142.1 8a

1b 293 (2.1), 357 (1.4), 412 (7.6) 144.5 8a

1c 296 (5.4), 370 (2.4), 425 (1.9), 480 (2.2) 154.5 8a

1d —

b) 141.9 8b

1e 293 (2.6), 359 (2.0), 413 (5.0) 132.4, 156.6 8c

1f —

b) 142.0, 152.7 8c

8 290 (8.2), 375 (2.0), 612 (1.3) 155.5 10

5a 266 (5.3), 295 (2.6), 362 (3.1), 421 (7.0) — 8d, 8e

5b 361 (2.9), 413 (16.1) — 8d

5c 277 (3.5), 367 (2.2), 432 (2.1), 472 (2.0) — 8d

6a 359 (2.0), 413 (5.0) 144.0 8e

a) In hexane or 3-methylpentane. b) Not measured.
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dependence of the spectra of 1a and 5a than that
of 1c and 5c may not be compatible with the
equilibrium shown in eq [6] but suggest significant
fluctuation around their trans-bent geometry.

29SiNMR chemical shifts for the unsaturated
silicon nuclei of acyclic tetrasilyldisilenes are shown in
Table 1. The chemical shifts are in the range of 136–
157 ppm, which are much lower field shifted than
those for typical alkyl- and aryl-substituted disilenes;
/ 63.7 for 79) and / 90.3 for (E)-tBu(Mes)SiF
Si(Mes)tBu (9).9) The origin of remarkable lower
field shift of 29Si resonances for tetrasilyldisilenes has
been studied by the analysis of their chemical shift
tensors in the solid state.11) Extremely large deshield-
ing along one principal axis for disilenes 1b and 1c is
related to their low <!:* transition energies; the
values /11, /22, and /33 are found to be 414, 114, and

!100 for 1b; 412, 149, and !69 for 1c, while 181, 31,
and !22 for 7.11)

1.3. Molecular structures determined by
X-ray crystallography. Structural parameters of
dimetallenes 1a–1f, 5a–5c, and 6a determined by
X-ray crystallography are listed in Table 2, together
with those of related dimetallenes reported by other
groups; EFE bond distances (d) in Å, bent angles (3)
in deg defined as the angle between E-E bond and
R-E-R plane, and twist angle (=) in deg, the angle
between two R-E-R planes for R2EFER2. The
geometry around EFE double bond of all the
dimetallenes is diversified depending on the trialkyl-
silyl substituents. Disilenes 1b and 1c and diger-
menes 5b and 5d are bent without twisting with
the bend angles in the order 1b < 5b < 1c < 5c.
Disilenes 1a, 1e, 1f, and 7, digermene 5a, and

Table 2. Structural parameters for tetrasilyldimetallenes and related dimetallenes

Chart 2. 
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Ref.

Disilenes

1a 2.202(1) 0.1 8.9 8a

1b 2.228(2) 5.4 0.0 8a

1c 2.251(1) 10.2 0.0 8a

1d 2.196(3) 0.65 0.0 8b

1ec 2.198(1), 2.1942(8) 0.0, 0.0 8.97, 11.73 8c

1f 2.2011(9) 0.0 27.95 8c

Mes2SiFSiMes2 (7) 2.143 12, 14 3 13

7/C7H8 2.160 18 12 9

7/THF 2.146 0 13 13

(tBu2MeSi)2SiFSi(SiMeBut2)2 (8) 2.2598(18) 90 54.5 10

Digermenes

5a 2.2703 0.3 7.47 8e

5bc 2.268(1), 2.266(1) 5.9, 7.1 0.0, 0.0 8d

5c 2.298(1) 16.4 0.0 8d

Mes2GeFGeMes2 (9) 2.2856(8) 33.4 2.9 14

Tip2GeFGeTip2 (10) 2.213(1) 12.3 13.7 15

Germasilenes

6a 2.2208(8) 0.6 7.51 8e

Mes2GeFSi(SiBut3)2 (11) 2.2769(8) 0 24.67 16

a) Bent angle (3) in deg is defined as the angle between E-E bond and R-E-R plane. b) Twist angle (=) in deg is defined as the angle
between two R-E-R planes. c) Two crystallographically independent molecules show slightly different structural parameters.
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germasilene 6a are twisted without bending with
the twist angles in the order 5a96a < 1a < 1e =

1f = 7. Disilene (E)-1d has highest planarity among
dimetallenes shown in the table probably because the
two different substituents in (E)-1d can be arranged
so as to minimize the steric strain between the
substituents at the planar geometry. Dimetallenes
having isopropyl-substituted silyl groups favor trans-
bent geometry in the solid state, while dimetallenes
with t-butyl-substituted silyl groups tend to twist.
Because electronic effects of all trialkylsilyl groups
studied here are similar to each other, the distortion
modes seem to be determined mainly by the effects of
the size and shape of the substituents. Theoretical
studies have revealed that the geometry around an
EFE bond of simple dimetallenes like H2EFEH2

and Me2EFEMe2 is trans-bent,5) while (H3Si)2EF
E(SiH3)212) features planar geometry. The geomet-
rical preference of tetrakis(trialkylsilyl)dimetallenes
found experimentally suggest that the geometry is
very flexible and the major factor determining the
preference is the steric effects. In the next section,
electronic models for the distortion around EFE
bond and important factors controlling the geo-
metrical preference are discussed more in detail.

1.4. Theoretical models for distortion modes
around double bond. Theoretical studies have
shown that optimized geometry of heavy group-14

ethylenes (dimetallenes; H2MFMH2, M F Si, Ge, and
Sn) is trans-bent in contrast to planar ethylene
(E F C) (Chart 3).5)

Bonding nature of the EFE double bonds is
outlined using the CGMT (Carter-Goddard-Malrieu-
Trinquier) model17) as follows: When two EH2 groups
having an in-plane n orbital and an out-of-plane p:
orbital approach to each other to form a planar EFE
double bond, an overlap between the two n orbitals
form < and <* orbitals and an overlap between the
two p: orbitals forms : and :* orbitals, where the
orbital energy levels of p:, n, <, <*, : and :* are given
by Cp:, Cn, C<, C<*, C: and C:*, respectively (Fig. 1a).
The n orbital is usually lower in energy than p:
orbital with "Cpn, which is often replaced by "EST

(singlet-triplet energy difference, ET ! ES) in the
CGMT model.17c) The <-<* and :-:* splitting
energies are reasonably assumed to be the < and :
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Fig. 1. (a) Schematic MO representation of the formation of dimetallenes by dimerization of the corresponding metallylene.
(b) Stabilization of the bonding : MO level by its secondary interaction with a higher-lying <* MO orbital.
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and E: F C:* ! C:. The condition of forming a
double bond is C: < C<* and C< < C:*, i.e. (!1/
2)E<D: < "EST < (1/2)E<D:, where E<D: F E< D E:.
We can expect using PMO (perturbation molecular
orbital) theory18) that when C<* and C: are close to
each other, effective :-<* orbital mixing will lead
to significant trans-bending (Fig. 1b). The CGMT
model predicts that a dimetallene would favor
the trans-bent geometry if (1/4)E<D: <"EST <
(1/2)E<D:. Bond dissociation energy (BDE) of the
heavy ethylene to two heavy methylenes (H2E:)
is estimated to be BDE F E<D: ! 2"EST. The
BDE will decrease with increasing "EST, if E<D: is
constant.

Although the CGMT model has reasonable
grounds and is useful to understand the distinct
differences in bonding between planar ethylene and
trans-bent heavy ethylenes, the model should be
utilized with several cautions.19) (1) Because both
"EST and E<D: are variables depending on element
E, the proximity of the : and <* levels is determined
by the two factors, "EST and E<D:. Although large
"EST values of R2E: are often taken to be an
indication of the trans-bent geometry of the
H2EFEH2, the rule cannot be extended to the
discussion between different elements; E< and E: for
heavier group-14 elements are much smaller than
those for carbon. In accord with the CGMT model,
tetrasilyldimetallenes [(H3Si)2EFE(SiH3)2, E F Si,
Ge, and Sn] whose component silylene (H3Si)2E:
has smaller "EST than the corresponding H2E: are
shown theoretically to be planar around the EFE
bond.12) However, although the "EST of F2C:
(57.6 kcalmol!1)20) is even much larger than that
of GeH2 (23.1 kcalmol!1),21) F2CFCF2 is a planar
molecule, while H2GeFGeH2 is trans-bent. (2) In the
CGMT model, the <* orbital participating in the
:-<* orbital mixing is only <*(E–E) orbital, whereas
other valence <* orbitals in H2EFEH2, i.e. four
<*(E–H) orbitals, may contribute to the :-<* orbital
mixing for the distortion modes of the geometry. A
theoretical study has shown that mono-anion of
disilene [H2SiFSiH2]•! adopts trans- and cis-bent
geometries due to significant mixing between the
:*(SOMO) and a <*(Si-H) orbital with proper
symmetry representation.19c),22) (3) Applicability of
the CGMT model to heavy ethylenes with bulky
substituents is less satisfactory because the steric
effects are the controlling factor determining the
geometry as discussed in the previous section.

Recently, the author has discussed the distortion
modes, trans- and cis-bending and twisting of

H2EFEH2 (E F C, Si, and Ge) and their anions in
detail in terms of a more generalized :-<* orbital
mixing model using the PMO theory.19c) The model
predicts that trans- and cis-bent geometries of
neutral dimetallenes may be more stable than the
planar geometry but with very small energy gains,
while these geometries should be largely stabilized
with significant bent angles and stabilization energies
in dimetallene anions. Twisting around the double
bonds of dimetallenes may lower the energy of
the anions. The above prediction is verified by the
potential energy surface calculations at the B3LYP/
6-311DDG(3df,3pd) level.19c) It should be noted that
the :-<* orbital mixing underlie the bonding and
structure issues of unsaturated compounds of heavy
main-group elements, even though the substituent
steric effects are often the controlling factor of the
geometry as shown in Section 1.3.

1.5. E,Z- and formal dyotropic isomerization
of disilenes. Thermal E,Z-isomerization of alkenes
is known to occur through the rotation around the
CFC bond but usually with very high activation
energy of 40–60 kcalmol!1. On the other hand, at
least three distinct pathways should be taken into
account for the E,Z-isomerization of heavier alkenes
as shown in Scheme 1; rotation around Si-Si bond
(path 1), dissociation-recombination (path 2), and
disilene-silylsilylene interconversion (path 3). While
paths 1 and 2 give rise to only E,Z-isomerization,
path 3 may produce an A2SiFSiB2-type isomer in
addition.

Si Si
A

B

B

A

1. Rotation

Si Si
A

B

A

B
Si

B

A
Si

B

A

2. Dissociation-Recombination

E
Z

Si
A

B

B

A
E

Si
A

B

A

B
Z

2 Si
A

B

3. Disilene-Silylsilylene Interconversion

Si
A

B

B

A
Si

A

B A

B

E

Si
A

B

A

B

Z

SiSi

Si Si Si

Scheme 1. Three possible pathways of E,Z-isomerization of
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Among disilenes shown in Chart 4, 12–15 are
shown to undergo Z!E isomerization via path 1
with the activation free energy ("Gº at 350K) of ca.
26.2–27.4 kcalmol!1.4a) On the other hand, the Z!E
isomerization of disilene 16 was confirmed to occur
via path 2 with the "Gº value of 22.7 kcalmol!1 at
350K.4a),23) The dissociation of 16 into a pair of the
corresponding silylene is evidenced by trapping of the
silylene with alkenes and acetylenes. Easy SiFSi
double bond cleavage of 16 into the corresponding
silylenes suggests that the BDE of the SiFSi bond in
16 is reduced by large steric hindrance among bulky
substituents, in addition to the intrinsically small
BDE of disilene as expected by the CGMT model
(Section 1.4).

Related isomerization of (Z)-ABSiFSiAB-type
tetraaryldisilenes into A2SiFSiB2-type disilenes and
its reverse reaction has been proposed by West et al.
to occur via a concerted dyotropic mechanism24)

rather than path 3.25) Typically, disilene 17 is shown
to isomerize to 18 at around 70 °C probably via a
bicyclobutane-like transition state or intermediate
(eq [7]). The activation free energy for the dyotropic
rearrangement is estimated to be even smaller
than that for the E,Z-isomerization via path 1 but
the activation entropy is much larger in accord
with the highly restricted transition state; for
18!17, "Hº F 15 ’ 2 kcalmol!1 and "Sº F

!36 ’ 4 calmol!1K!1.25b)

The 29SiNMR spectrum of a ca. 2:1 mixture of
(E)-1d and (Z)-1d is remarkably dependent on
temperature (eq [8]). Two pairs of signals due to

tBuMe2Si and iPr2MeSi groups are observed inde-
pendently at 273K, but coalesce at around 303K to
give two sharp singlets at higher temperature than
330K, indicating that facile isomerization between
(E)- and (Z)-1d occurs even at room temperature
with the "Gº value of ca. 15.3 kcalmol!1 (Z!E) at
303K.8b) Two 29Si signals due to a small amount of
contaminated A2SiFSiB2 type isomer 1e is observed
to remain sharp in the temperature range of 273–
310K, indicating that a dyotropic or path 3 rear-
rangement does not participate in the E,Z-isomer-
ization. Because no dissociation of the tetrasilyldisi-
lenes into the corresponding silylenes is observed,
the E,Z-isomerization is concluded to occur via
the rotation around the Si-Si bond (path 1). The
activation free energy for the E,Z-isomerization of
1d is 10 kcalmol!1 smaller than those of disilenes
12–15, probably because of effective <-: conjugation
at the twisted transition state of the former.

When pure 1e is kept at 283K for 7 days, an
equilibrium was established with the ratio of (E)-1d,
(Z)-1d, and 1e F 1:0.47:0.67 (eq [8]).8b),8c) The
activation free energy for the rearrangement from
1e to (Z)- or (E)-1d at 283K is 17.4 kcalmol!1,
which is ca. 2 kcalmol!1 larger than that for the E,Z-
isomerization and 7.7 kcalmol!1 smaller than those
for the dyotropic rearrangement of tetraaryldisilenes
reported by West et al.25) A disilene-silylsilylene
rearrangement may not be excluded for the formal
dyotropic rearrangement between 1e and 1d, be-
cause of the high 1,2-migratory aptitude of silyl
groups.
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2. Stable cyclic persilyldisilenes

2.1. Cyclotrisilene and cyclotetrasilene. As
the first stable cyclic disilene, cyclotetrasilene 19 was
synthesized in 13.5% yield by co-coupling of bis(t-
butyldimethylsilyl)dichlorosilane and (t-butyldimeth-
ylsilyl)trichlorosilane using lithium naphthalenide in
THF at !78 °C (eq [9]).26) An improved synthetic
method using the reduction of (trisilylsilyl)dibromo-
chlorosilane 20 with Na in toluene at room temper-
ature gave 19 in 64% yield.27) Interestingly, the first
cyclotrisilene 21 was obtained as a major product
when the reduction of 20 was performed with KC8 in
THF at !78 °C (Scheme 2).27),28) The SiFSi bond
lengths of cyclotetrasilene 19 (2.174(4)Å)26) and
cyclotrisilene 21 (2.132(2)Å)29) are a little shorter
than those of acyclic tetrasilyldisilenes 1a–1f
(Table 2), while the ring Si–Si single bond length of
19 (2.544(4)Å) is even longer than the normal Si-Si
length (2.35Å).26) The longest absorption maxima
for 19 and 21 appear at 465 nm (C 6810)26) and
482 nm (C 2640),27) respectively. These maxima are
more than 40 nm red-shifted from those of the acyclic
tetrasilyldisilenes (Table 1). Two 29SiNMR reso-
nances of the unsaturated silicon nuclei of cyclo-
trisilene 21 appeared at / D81.9 and / D99.8, which
are significantly high-field shifted relative to those for
acyclic tetrasilyldisilenes (/ 142–157, Table 1) and
cyclotetrasilene 19 (/ 160.4). The tendency of the 29Si
chemical shifts among the acyclic tetrasilyldisilenes,
19, and 21 is parallel to that of the corresponding
13CNMR chemical shifts among ethylene (/ 123.5),
cyclopropene (/ 108.7), and cyclobutene (/ 137.2),
suggesting a similar origin for the tendency.

2.2. Interconversion among Si4R6 isomers.
Thermal and photochemical interconversion among
C4H6 isomers 22–24 is one of the most fundamental
electrocyclic reactions, and hence, has been inves-

tigated in detail including its stereochemistry
(Scheme 3).30) However, it is hard to investigate the
interconversion between cyclobutene 23 and bicyclo-
butane 24, partly because 1,3-butadiene is the most
stable isomer among 22–24. Although the thermal
interconversion between 23 and 24 is predicted to
occur concertedly,30a) no direct isomerization among
them has been observed.

Thermal and photochemical isomerization
among Si4R6 (R F tBuMe2Si) isomers is observed
only between cyclotetrasilene 19 and the correspond-
ing bicyclotetrasilane 25 without intervention of the
corresponding 1,3-tetrasiladiene 26 (Scheme 4).26)

Cyclotetrasilene 19 isomerizes to bicyclotetrasilane
25 under irradiation (>420 nm) and 25 reverts to 19
thermally. In this particular system, cyclotetrasilene
19 is more stable than bicyclotetrasilane 25, while
theoretical calculations have shown that, among
parent Si4H6 isomers, bicyclotetrasilane is more stable
than cyclotetrasilene and s-trans-1,3-tetrasiladiene
with the energy differences of 3.0 and 33.3 kcalmol!1

at the B3LYP/6-311DG** level.31) Because the
energy difference between bicyclotetrasilane and
cyclotetrasilene is not very large, the relative stability
may be dependent on the substituents.

Labeling experiments using 19 and 25 that are
partially substituted by tBu(CD3)2Si groups have
revealed however that the interconversion between
19 and 25 occurs through a 1,3-diradical intermedi-
ate formed by the 1,2-silyl migration of 19 as shown
in eq [10].32)
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Cyclotetrasilene 27 having t-butyl groups at
unsaturated silicon atoms is thermally less stable
than the corresponding bicyclotetrasilanes 28 and
28′ (eq [11]). Thus, heating 27 in benzene affords
irreversibly a mixture of 28 and 28′, which are
produced via concerted skeletal isomerization and
1,2-silyl migration, respectively (eq [11]).33) During
the isomerization, no evidence is obtained for the
intermediary formation of the corresponding 1,3-
tetrasiladiene. Irradiation (6 > 420nm) of 27 at low
temperature gives 28′ quantitatively (eq [12]).33)

Thermal isomerization of 27 to 28 is regarded to be
complementary to the concerted isomerization ob-
served among C4H6 isomers, because direct electro-
cyclic isomerization between bicyclobutane and cyclo-
butene is hard to be observed in the carbon systems.

2.3. Spiropentasiladiene. Spiropentadiene
constitutes one of the smallest spiroconjugation
systems and has attracted much attention theoret-
ically;34) the two perpendicularly arranged anti-bond-
ing :* orbitals of spiropentadiene with D2d symmetry
interact to each other to split into two :* orbitals
[(:1* D :2*) and (:1* ! :2*)] with different energy
levels, while the two bonding : orbitals do not interact
and remain degenerate (Fig. 2, left). The synthetic
study of parent spiropentadiene 29a and its 1,1B-
dichloro substituted one 29b has shown that they are
thermally unstable and only detectable below!100 °C
by NMR spectroscopy (Chart 5).35) During the
reduction of 20 with KC8 in THF at !78 °C
(Scheme 2), an interesting spiropentasiladiene 30, a
silicon congener of spiropentadiene, was isolated as a
minor but thermally stable compound with mp 216–
218 °C.36)

The remarkable stability of spiropentasiladiene
30 is ascribed partly to much smaller strain energy
(SE) of the silicon spiro-ring system than that of the
carbon analog, in addition to the kinetic stability due

to steric protection by four bulky tris(t-butyldi-
methylsilyl)silyl groups; the SE value of the parent
spiropentasiladiene Si5H4 with D2d symmetry (61.1
kcalmol!1) calculated using homodesmic reactions at
the B3LYP/6-311DDG(3df,2p)//B3LYP/6-31G(d)
level is almost a half of that of the corresponding
spiropentadiene C5H4 (D2d, 114.2 kcalmol!1).36) The
large SE difference between C5H4 and Si5H4 is
ascribed to the difference in the effects of the intro-
duction of EFE double bonds into a small ring
system; although the SE of cyclopropene (55.5
kcalmol!1) is almost twice of that of cyclopropane
(25.8 kcalmol!1), the SE of cyclotrisilene (34.6
kcalmol!1) is even smaller than that of cyclotrisilane
(35.4 kcalmol!1), being in accord with the flexible
nature of the SiFSi double bond.

Because 30 is a sole stable spiropentadiene
system known among its group-14 congeners, 30
serves as a probe to verify the theoretical spiroconju-
gation model. The structure of spiropentasiladiene 30
determined by X-ray crystallography shows however
that the ring skeleton has D2 symmetry, where the
two cyclopropene rings are not perpendicular to each
other with the dihedral angle of 78.25° and the silicon
atoms substituted at a cyclotrisilene ring are not
coplanar with the ring plane.36) The distortion of a
spiropentadiene from D2d to D2 requires modification
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Si Si
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of the previous theoretical model34) because through-
space interaction between two bonding : orbitals is
allowed in addition to that between :* orbitals, as
shown in Fig. 2. The modified spiroconjugation
model for a D2 spiropentadiene can be tested by
comparing the UV-vis spectrum of 30 with that of
reference cyclotrisilene 21. The UV-vis spectrum of
30 shows four :!:* bands at 6max/nm (C/103) 560
(2.53), 500 (3.64), 428 (11.7), 383 (18.1), while only
one :!:* band is observed at 6max/nm (C/103) 482
(2.64) for 21 (Fig. 3). The spectral pattern with four
distinct :!:* bands as well as the red shift of the
longest wavelength band of 30 is not compatible with
the simple model for a D2d spiropentadiene system
but the modified model for a D2 spiropentadiene.

3. Trisilaallene and its germanium congeners

In 1999, we synthesized the first isolable
dialkylsilylene 31 by the reduction of the correspond-
ing dibromosilane 33, which was obtained by the
reaction of 1,4-dilithiobutane 3237) with dichlorosi-
lane followed by the bromination, using KC8 in a
good yield (eq [13]).38) Because silylene 31 is divalent

and highly reactive though it is sterically protected,
versatile thermal and photochemical reactions of 31
have been observed.6a),39)

The first compound with cumulative SiFSi
double bonds, trisilaallene 34a, was synthesized
starting with stable silylene 31.40) The insertion of
silylene 31 into a Si-Cl bond of tetrachlorosilane
followed by the reduction with KC8 affords trisilaal-
lene 34a as dark-green crystals (eq [14]). Related
heavy allenes R2EFEBFER2 (E, EB F Si and Ge)
34b–34d are synthesized similarly (Chart 6).41)

These heavy allenes are all thermally stable and
stored under inert atmosphere but their structural
characteristics are remarkably different from those
of carbon allenes that have a rigid linear C–C–C
skeleton and two orthogonal C–C : bonds.19a),40),41)

The geometries of all the synthesized heavy allenes
are not linear but bent with the E1

–E2
–E3 bond

angles of 122–137°. Typically, the SiFSi double bond
distance and the SiSiSi bond angle of trisilaallene
34a are 2.183(1)Å and 136.49(6)°, which are in good
accord with the values calculated theoretically; they
are 2.230Å and 130.2° at the B3LYP/6-31G(d)
level,42) and 2.230Å and 135.7° at the BP86/TZVPP
level.43) The optimized geometry of relatively small
trisilaallenes, H2SiFSiFSiH2 and Me2SiFSiFSiMe2,
is quite different with a very narrow bend angle of
around 70–90° and a small twist angle between two
R2Si plane (R F H, Me)40),42),44) from that of synthe-
sized trisilaallene 34a, and hence, the structural
characteristics of the two types of heavy allenes
should be discussed separately.

600500400300
Wavelength/nm

1

2

0

ε/
10

4
(d

m
3

cm
-1

m
ol

-1
) 30

21

Fig. 3. UV-vis spectra of spiropentasiladiene 30 and cyclo-
trisilene 21 in hexane.
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The bent skeletons of 34a–34d determined by
X-ray crystallography are not rigid but fluxional both
in the solid state and in solution (Fig. 4).

The origin of the bent and fluxional skeleton of
heavy allenes is ascribed to the Jahn-Teller dis-
tortion18) associated with the effective :-<* orbital
mixing, as schematically shown in Fig. 4.19a) The
:-<* distortion (Section 1.4) is caused by the
existence of a low-lying <* orbital in heavy allenes
stemming from the hybridization defects in heavy
main group elements (Fig. 5).5f ),45) A more detailed
discussion for the :-<* distortion in heavy allenes is
given in a full paper.19a)

The 1H, 13C, and 29SiNMR spectra of 34a–34d
are very simple and show that eight SiMe3 groups,
four ring methylene groups, four ring quaternary
carbon atoms, and two allenic terminal silicon atoms

(if they exist) are equivalent, indicating the fluxional
nature of the bent allenic structure in solution. The
29SiNMR chemical shifts of the allenic silicons for
34a are / 196.9 (terminal) and / 157.0 (central),
which are consistent with those calculated for
Me2SiFSiFSiMe2 with the bent structure determined
by X-ray crystallography using the GIAO method at
the B3LYP/6-311DG(2df,p)//B3LYP/6-31DG(d,p)
level (/ 205.5 and / 161.2, respectively).40)

The heavy allenes show at least two bands in the
:!:* band regions of disilenes and digermenes. The
longest band maxima [6max/nm (C)] of 34a–34d are
remarkably red shifted from those of tetraalkyldisi-
lenes (6max F ca. 390 nm)46) and appear at around
584 (700), 599 (1100), 612 (3100), and 630 (5300),
respectively, being indicative of significant conjuga-
tion between two double bonds of heavy allenes.

4. Other stable disilenes

4.1. Fused bicyclic disilene. Fused bicyclic
disilene 35 is synthesized by the reduction of 36 with
lithium in THF at room temperature.47) Formation of
35 from monocyclic precursor 36 suggests that initial
reductive coupling product 37 is highly strained and
undergoes facile formal dyotropic rearrangement
(Section 1.5) to give 35 as shown in eq [15].
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Si2A Si3Si1C2

C1
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A D
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Fig. 4. (a) A schematic representation of bent and fluxional characteristics of trisilaallene skeleton of 34a determined by X-ray
crystallography. Central Si2 atom is disordered with occupancy at four positions Si2A to Si2D. (b) A Newmann-like projection along
axis through Si1 and Si3 atoms. The Si2A to Si2D are located in quadrants A to D, respectively, which are separated by two
silacyclopentane ring planes. The occupancy factor for Si2A to Si2D depends on temperature as well as the space area of the quadrant.
The corresponding dihedral angles are 82.8, 92.1, 92.7, and 92.6° for Si2A to Si2D with the occupancy factors of 0.755, 0.175, 0.0, and
0.070 at !150 °C.
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Although intermediate 37 is not detected
during the reaction (eq [15]), the proposed pathway
is supported by a study of a related reaction. Thus,
a similar reaction of 38 with (tBuMe2Si)2SiCl2 at
low temperature gives disilene 39 in a high yield
(eq [16]). Disilene 39 isomerizes to cyclopentasilene
40 quantitatively at room temperature (eq [17]).48)

Activation enthalpy ("Hº) and entropy ("Sº)

for the first-order isomerization of 39 to 40
are determined to be 24.8 ’ 1.0 kcalmol!1 and
D6.5 ’ 3.2 calmol!1K!1, respectively. The positive
"Sº is not compatible with the dyotropic re-
arrangement through a restricted transition state,
suggesting preferable disilene-silylsilylene intercon-
vertion via 1,2-silyl migration as discussed in
Section 1.5.
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Fig. 5. Schematic :-<* orbital mixing diagram for the deformation of a linear D2d allene to a bent C2 allene. Degeneracy of : orbitals
(:a and :b) in D2d is removed by the deformation to C2 allowing the interaction between :a-<a* interaction. The mixing coefficients c
and c’ are small positive numbers. Atomic orbitals on E1 and E3 and those on E2 are shown in blue and red, respectively.
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Fused cyclic disilene 35 features topologically a
partial structure of the Si(001) surface up to the third
layer. The SiFSi double bond of 35, whose distance is
2.180(3)Å, adopts rather unusually a slightly cis-
bent geometry with the bent angle of 3.6°, while all
other disilenes whose structures were determined
by X-ray analysis are trans-bent, twist, or planar.
However, because the disilene moiety in the recon-
structed Si(001) surface is known to have unsym-
metric and significantly cis-bent structure,49) fused
bicyclic disilene 35 is not yet an ideal model for the
silicon surface.

4.2. Fused tricyclic disilenes. Dimerization of
a silylene to the corresponding disilene and its reverse
reaction constitute an important pair of chemical
processes in organosilicon chemistry. Tetramesitylsi-
lylene 7, the first stable silylene, was prepared by the
dimerization of the corresponding silylene generated
photochemically.2) Disilene 1623) and tetrakis(dial-
kylamino)disilene and a lattice-framework disilene
designed by Sakamoto et al.50) dissociate into the
corresponding two silylenes. Because dialkylsilylene
31 is sterically well protected and does not dimerize
to the corresponding disilene either in solution or in
the solid state, tethering two dialkylsilylene moieties
may be possible to give a stable tethered bissilylene.
However, the reduction of tetrabromides (2S*, 2S*)-

41 and (2R*, 2S*)-41 with KC8 affords unexpectedly
fused tricyclic disilenes trans-42 and cis-42, respec-
tively (eqs [18] and [19]).51)

The geometry around the SiFSi bond in trans-42
is highly distorted with a central twist-boat six-
membered ring. The SiFSi bond length of trans-42
(2.2687(7)Å) is much larger than those of usual
stable disilenes (Table 2). The SiFSi bond in trans-42
adopts significantly trans-bent and twisted geometry
with bend angles of 32.9 and 30.9° and a twist angle of
42.5°. Distortion around the SiFSi bond in cis-42 is
relatively small with a boat six-membered ring; the
SiFSi bond length, the bend angles, and the twist
angle are 2.1767(6)Å, 3.9 and 12.4° at the two
unsaturated Si atoms, and 3.9°, respectively.

Neither cis-42 nor trans-42 dissociates into the
corresponding bissilylene upon heating at 100 °C or
upon irradiation with a Xe lamp. Highly distorted
trans-42 undergoes unprecedented intramolecular
[2sD2a] cycloaddition of the Si–Si single bond to the
SiFSi double bond at 110 °C to give a tetracyclic
compound 43 (eq [20]).

4.3. 1,2-Disilacyclohexene. A novel type of
stable six-membered cyclic disilene 4452) is synthe-
sized as shown in eq [21] using a unique 1,4-
dilithiobutane 32 that was applied for the synthesis
of stable dialkylsilylene 31 (Section 3).37)
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The X-ray analysis shows that the SiFSi double
bond distance of 44 is rather normal with
2.1595(9)Å. The geometry around the double bond
is slightly trans-bent and the six-membered ring
adopts a conformation between an ideal chair and an
ideal half-chair, which are known as the most stable
conformations in all-carbon cyclohexane and cyclo-
hexene, respectively.

4.4. Aryltrialkyldisilenes. Stable aryldisilenes
are usually substituted by two to four aromatic
groups, and hence, are not suitable for defining the
nature of the electronic interaction between a disilene
: and an aromatic : system (:Si-:C interaction).
Using stable dialkylsilylene 31 (Section 3)38),39) as a
key precursor, the synthesis of monoaryl-trialkyldisi-
lenes allowing elucidation of the mode and extent of
the :Si-:C interaction has been achieved.53) Prereq-
uisite trialkyldisilenide 50 is obtained as single
crystals by the reaction of trichlorodisilane 49 with
KC8 in THF.54) Disilenes 51a–51c are synthesized by
the reactions of 50 with the corresponding aryl
bromides as air-sensitive colored crystals (eq [22]).

Molecular structures of disilenes 51a–51c de-
termined by X-ray analysis feature trans-bent
geometry around the SiFSi double bond. The SiFSi
bond lengths [2.1754(12), 2.1943(14), and 2.209(2)Å
for 51a–51c] are in the region of those for typical
acyclic disilenes (Table 2). Disilene : (:Si) and
aromatic : (:C) systems are almost perpendicular
to each other with the dihedral angle of 88°, 83°, and
80° for 51a, 51b, and 51c.

No appreciable :Si-:C conjugative interaction
is observed in 51a–51c because of the mutually
perpendicular arrangement of the two : systems.
However, anthryl-substituted disilene 51c with low-
lying :* LUMO shows an unprecedented :Si!:*C
intramolecular charge transfer (ICT) absorption
bands at 520 nm (C 420), suggesting the occurrence
of the charge-transfer from a :Si donor to a :C
acceptor system in certain circumstances.

4.5. Tetrasila-1,3-diene. As a conjugated
siladiene, tetrasila-1,3-diene 52 is synthesized as air-
sensitive red crystals in 13% yield by the reaction of
silylene 31 with Me3SiSiBr3 giving tribromodisilane
53 followed by the reduction with sodium metal in
toluene at room temperature (eq [23]).55)

The SiFSi double bond distances of 52 in a
crystal are 2.1980(16) and 2.2168(16)Å and the
central Si-Si single bond distance is 2.3400(15)Å.
The tetrasiladiene skeleton of 52 is not planar but
highly twisted with an anticlinal conformation (the
Si1-Si2-Si3-Si4 dihedral angle F 122.56(7)°), while
known tetrasila-1,3-dienes 5456) and 5554b) have a
synclinal conformation (Chart 7).

The longest wavelength absorption maximum of
52 is observed at 510 nm (C 1200) at 77K in a 3-
methylpentane glass matrix and assignable to a
:!:* transition band. The maximum is comparable
to those of 54 (518 nm)56) and 55 (531 nm)54b) even
though no aromatic substituent is in 52, suggesting
significant conjugation between the two :(SiFSi)
systems. The 29SiNMR signals of central and

Si
Si Si

Si Tip

TipTip

Tip

Tip Tip

Si
Si Si

Si si

sisi

si

Mes Mes

Tip = 2,4,6-triisopropylphenyl
Mes = 2,4,6-trimethylphenyl
si = t Bu2MeSi

5554

Chart 7.
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terminal unsaturated Si nuclei of 52 appear at / 9.3
and / 210.2. Thermolysis of 52 at 80 °C in benzene
gives cyclotrisilene 56 and cyclic silene 57 in high
yields (eq [24]). Similarly, photolysis of 52 using a
filtered high-pressure mercury arc lamp (6 > 390nm)
in benzene affords 56 and silacycloheptatriene 58
(eq [25]). Because 5738),57) and 5858) are known as
major products of the thermal and photochemical
reactions of silylene 31 in benzene, respectively, the
initial step of these reactions should be the cleavage
of a SiFSi double bond of 52 into 59 and 31
(eq [26]). Preferential cleavage of the SiFSi double
bond to the central Si-Si single bond is a straightfor-
ward indication of the smaller bond dissociation
energy of the double bond than that of the single
bond in 52 as predicted by the CGMT model
(Section 1.4).

4.6. Tetraaminodisilenes. In accord with the
CGMT model (Section 1.4), theoretical calculations
have shown that dimerization of diaminosilylene
(H2N)2Si: (60) with high "EST [79.3 kcalmol!1

at the B3LYP/6-311DDG(3df,2p)//MP2/6-31G(d)
level] does not form the corresponding disilene 61
but a four-membered cyclic bridged dimer 62
(Scheme 5).59),60) On the other hand, we have found
that diaminosilylene 63 generated by the photolysis
of silacyclopropene 64 is marginally stable in solution
and dimerizes to the corrresponding disilene-type
dimer 65 at low temperature (eq [27]).61) The
temperature dependent equilibrium between 63 and
65 is observable UV-vis spectroscopically.

Apparent conflict in the dimerization mode
between theoretical diaminosilylene 60 and the
experimental diaminosilylene 63 is ascribed to the
dependence of the "EST value on the dihedral angle
between an n orbital on N and vacant p: orbital on Si
in (R2N)2Si:. The dihedral angle in silylene 63 is
significantly increased by the steric effects of bulky
isopropyl substituents, and hence, the "EST value is
reduced to 54.3 kcalmol!1; the bridged dimer of 63 is
higher in energy by 16.0 kcalmol!1 than the Si-Si
bonded dimer 65.60) The geometry of tetraaminodi-
silene 65 calculated at the B3LYP/6-31G(d) level is
very unusual with a dramatically long SiFSi distance
of 2.472Å, which is even longer than the Si-Si
single bond (2.340Å in Me3SiSiMe3); 65 is strongly
pyramidalized around the silicon atoms with the
bend angle of 42.6°.60)

5. Disilene transition metal complexes

The bonding of an alkene to a transition metal
center in a complex is usually understood in terms of
alkene-to-metal <-donation and metal-to-alkene
:-back donation, according to the Dewar-Chatt-
Duncanson model.62) The geometry around CFC
double bond depends significantly on the relative
importance of <-donation and :-back donation; the
complexes are classified into :-complexes (I) having a
major contribution of <-donation and metallacycles
(II) having dominant :-back donation (Chart 8).63)

52
Δ (80 °C)

benzene Si

si si

si si
Si

Si
si

si
56

si = SiMe3

Si

si

si si

si

57

½24�

Si

si si

si si

52
benzene

56

si = SiMe3

hv (λ >390 nm)

58

½25�

Si

si si

si si

Si

si

Si:
si

Si

sisi

sisi

59 31

52
Δ or hν

½26�

Si

Me3Si SiMe3

NPri
2

iPr2N
hν (λ > 300 nm) iPr2N

Si:
iPr2N

iPr2N
Si

iPr2N NPr i
2

Si
NPr i

2
1/2

3-MP

63 5664

SiMe3− Me3Si ½27�

(H2N)2Si:2

H2N
Si

H2N

Si
NH2

NH2

Si

N
SiH2N

N

H2

H2

60

61

62

NH2

Scheme 5.

Bonding and structure of disilenesNo. 5] 181



The geometry around the alkene ligand in the :-
complex is not very much different from that of the
planar free alkene, while that in the metallacycle
is significantly distorted and characterized by an
elongated C1

–C2 bond length (d) and a large bent-
back angle (,) defined as the angle between the R1

–

C1
–R2 (or R3

–C2
–R4) plane and the C1

–C2 bond
(Chart 8, E F C). Ordinary alkene complexes have
an intermediate character between : complex and
metallacycle and often shown as a resonance between
them. Hereafter, for descriptive purposes in this
account, when the character of an alkene or disilene
complex is not well known or is not needed to be
considered, the structural formula is given as III with
a dotted line between M and EFE bond (Chart 8).

It is an interesting issue how the geometry
around SiFSi bond is modified when a disilene
coordinates to a transition metal. When we started
a study in this direction, however, knowledge about
the structure of 22-disilene metal complexes had been

very limited. Among isolated mononuclear 22-disilene
transition metal complexes 66a–66c,64) 67a–
67b,64b) and 68a–68b65) (Chart 9), only the struc-
ture of tungsten complex 68a65a) with a character of
metallacycle had been determined by X-ray crystal-
lography. The structural issue of the disilene-metal
complexes were first discussed theoretically by Sakaki
et al.66) and Gordon et al.67) The ab initio MO
calculations for (disilene)platinum complex 69a show
that 69a features a large bent-back angle (, F ca.
25°), elongated Si-Si bond ("d F 0.124Å) and small
Si-Si stretching force constant (3.08mdynÅ!1 for
disilene, while 2.63mdynÅ!1 for 69a), and hence,
69a is characterized as a metallacycle.66)

Various four-coordinate 16-electron palladium
and platinum complexes 70a–70d68) with tetrakis(t-
butyldimethylsilyl)disilene ligand (1a) are synthe-
sized using the reactions of the corresponding
dichlorobis(phosphine)metals 71a–71d with 1,2-di-
lithiodisilane 7269) (eq [28]).

L2MCl2 Si Si

LiLi

THF
L2M

Si

Si

si = SiMe2
t Bu

dmpe = Me2PCH2CH2PMe2

70a, M = Pt, L = PMe3
70b, M = Pd, L = PMe3

70c, M = Pd, L = PMe2Ph
70d, M = Pd, L2 = dmpe

71a, M = Pt, L = PMe3

71b, M = Pd, L = PMe3
71c, M = Pd, L = PMe2Ph
71d, M = Pd, L2 = dmpe

72

si si

si si

si
si si

si

−2LiCl

½28�

Pt
SiR2

SiR2
P

P

R' R'

R' R'

(R3P)2Pt
SiMes2

SiMes2
Cp2M

SiMe2

SiMe2

66a, R' = Ph, R = iPr
66b, R' = Ph, R = Me
66c, R' = Cy, R = Ph

67a, R = Et
67b, R = Ph

68a, M = W
68b, M = Mo

(H3P)2M
SiH2

SiH2

69a, M = Pt
69b, M = Pd

Chart 9.

E2

E1

R2R1

R3 R4

LnM

I, π-Complex

E2

E1

R2R1

R3 R4

II, Metallacycle

α

d

E = C, Si

LnM

E2

E1

R2R1

R3 R4

LnM

III

Chart 8.

M. KIRA [Vol. 88,182



72+ Pd
Cy3P Si

si

Si

si

si

si

(Cy3P)2PdCl2
THF

−Cy3P,−2LiCl

74

73

si = t BuMe2Si
Cy = cyclohexyl

½29�

Pd
Si

Si
si si

si si

70b
R'NC (1 equiv)

−Me3P

R'NC

Me3P

R'NC (1 equiv)

−Me3P
Pd

Si

Si
si si

si si

R'NC

R'NC

75a 76si = t BuMe2Si
R' = 2,6-dimethylphenyl

½30�

Pd
Si

Si
si si

si si

74
R'NC (1 equiv)

−Cy3P

R'NC

Cy3P

R'NC (1 equiv)

−Cy3P

75b

76

si = t BuMe2Si
R' = 2,6-dimethylphenyl
Cy = cyclohexyl

½31�

The reaction of bis(tricyclohexylphosphine)pal-
ladium dichloride 73 bearing bulky tricyclohexyl-
phosphine ligands with dilithiodisilane 72 gives
rather unusual three-coordinate 14-electron disilene-
palladium complex 74 (eq [29]).70)

Related (disilene)palladium complexes with iso-
cyanide ligands 75a, 75b, and 76 are synthesized by
the reactions of 70b and 74 with the corresponding
isocyanide (eqs [30] and [31]) in high yields.68c)

Recrystallization of (disilene)metal complexes
70a–70d, 74, 75b, and 76 gives single crystals
suitable for X-ray structural analysis. The geomet-
rical characteristics of these complexes are summa-
rized in Table 3.

If the Dewar-Chatt-Duncanson model62) is appli-
cable to disilene complexes, the bent-back angle , and
bond elongation "d/d0 should decrease with increas-
ing :-complex character of the disilene complexes.
The , (°) and "d/d0 (%) values for 16-electron Pt
complex 70a are 29.3 and 5.4 and those for Pd
complex 70b are 27.5 and 4.6, respectively. These
values are the largest among disilene complexes
shown in Table 3 and close to those observed for
(disilene)tungsten complex 68a (, F 30.2° and "d/
d0 F 3.7%) and theoretical values for (H3P)2M(Si2H4)
(M F Pt and Pd),66b) and hence, complexes 70a and
70b are characterized as metallacycles, while the :-
complex character of 70b seems slightly larger than
that of 70a. On the other hand, the , and "d/d0

values for 14-electron Pd complex 74 are much
smaller than those of the 16-electron complexes.70)

On this basis, complex 74 is regarded as the complex

having the largest :-complex character among the
disilene complexes.

Using , and "d/d0 values, the :-complex
character of complexes in Table 3 is evaluated to
decrease in the following order: 74 > 76 > 75b
(av.) > 70c > 70b970d > 70a. The :-back dona-
tion in 14-electron disilene complex 74 is the smallest
because one basic ligand on palladium is missing.
Because :-accepting ability of ligands is expected to
increase in the order, Me3P < PhMe2P < R’NC on
the basis of the basicity of the ligands, the :-back
donation from the metal will increase in the order,
74 < 76 < 75b < 70c < 70b970d. Platinum has
higher lying occupied d orbitals than palladium,
and hence, the :-back donation from Pt would be
larger than that from Pd (70b < 70a). The inverse
order of the :-back donation is parallel to the
observed order of the :-complex character of the
disilene complexes, as expected.

Structural parameters of model 14-electron
(disilene)palladium complex [77, (Me3P)Pd((H3Si)2-
SiFSi(SiH3)2)] and 16-electron (disilene)palladium
complex [78, (Me3P)2Pd((H3Si)2SiFSi(SiH3)2)] cal-
culated at the B3LYP/6-31G* for H, C, Si, and P
and Lanl2DZ for Pd level70) are shown in Chart 11.
The unsymmetrical (T-shaped) structure observed
for 74 is well reproduced by the optimized unsym-
metrical structure (77U), while the P–Pd–Si1 angle
for 77U (114.3°) is significantly smaller than that
observed for 74 (128.9°), probably due to the steric
effects of bulky trialkylsilyl substituents in the
latter.70) Unsymmetrical complex 77U is only
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2.9 kcalmol!1 more stable than symmetrical (Y-
shaped) complex 77S‡ that is found as a transition
structure. Due to the intrinsic electron-deficient
nature of the central metal of a 14-electron complex,
:-back-bonding is much less effective in complex 77
than 16-electron complex 78.

A new 14-electron three-coordinated (disilene)-
palladium complex, 79, is synthesized by the reaction
of cyclic disilene 44 (eq [21]) with (Cy3P)2Pd
(eq [32]).52) Complex 79 is characterized as a Y-
shaped tricoordinate complex with roughly symmet-

ric coordination of the phosphine [the two P-Pd-Si
angles in 79 are 142.66(2) and 151.48(2)°]. The 3 (°)
and "d/d0 (%) values for 79 are 6.9 (average) and
1.9, which are both smaller than those for T-shaped
74 (Table 3), being indicative of larger :-complex
character of the former. While the substituents
around SiFSi bond are different between 74 and
79, the results support the theoretical prediction
that, in a 14-electron three-coordinated disilene
complex, Y-shaped complex has larger :-complex
character than the corresponding T-shaped complex.
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Table 3. Comparison of structural parameters of various (disilene)palladium complexesa

Si
si

si

Si

M

d α2si
siα1

L2 L1

si = tBuMe2Si

Chart 10.

Complexb d c/Å "d/d0
d (%) ,1 and ,2

e/° /(29Si)f

70a, M F Pt, L1 F L2 F PMe3 2.322(2) 5.4 29.3 !79.7

70b, M F Pd, L1 F L2 F PMe3 2.3027(8) 5.2 27.2 !46.5

70c, M F Pd, L1 F L2 F PMe2Ph 2.2952(13) 4.2 14.4, 26.8

(av 20.6)

!44.8

70d, M F Pd, L1L2 F dmpe 2.3180(8) 4.2 27.3 !51.9

75b, M F Pd, L1 F R’NC, L2 F PCy3g 2.2861(11)

2.2967(11)

av 2.291(6) av 4.0

5.2, 20.6

3.0, 36.5

(av 16.3)

!39.4, !60.4

76, M F Pd, L1 F L2 F R’NC 2.289(2) 4.0 9.5, 8.9

(av 9.2)

!41.2

74, M F Pd, L1 F PCy3, L2 F none 2.273(1) 3.2 9.7, 4.4

(av 7.0)

D65.3

a) ref. 68c. b) Cy F Cyclohexyl, dmpe F 1,2-(dimethylphosphino)ethane, R’ F 2,6-dimethylphenyl. c) d is the SiFSi distance in
complex in Å. d) d0 F d for 1a (2.202(1)Å); see Table 2. "d/d0 (%) F (d for complex !d0) # 100/d0. e) Bend angles ,1 and ,2 are
defined as angles between the SiFSi bond axis and si2Si planes that are trans to ligands L1 and L2, respectively. If the complex is
symmetric, only one , is shown. f ) 29SiNMR chemical shift for unsaturated silicon nuclei. g) Two crystallographically independent
molecules are in an asymmetric unit.
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The 29SiNMR resonance of 16-electron palla-
dium complex 70b–70d is considerably higher field
shifted than the corresponding free disilene (1a);"/Si
[/Si(free disilene) ! /Si(complex)] values for 70b and
70c are 188.9 and 186.9. On the other hand, the 29Si
chemical shift for 14-electron complex 74 is / D65.3
with "/Si value of 76.8 (Table 3). The remarkably
lower field 29Si chemical shift of 74 would be another
indication of its large :-complex character, in view
of the difference in the 29SiNMR resonances be-
tween hexakis(trialkylsilyl)cyclotrisilanes (/ !174–
!149)71) and free disilene 1a (/ D142.1).8a) The
29SiNMR chemical shift for 79 is / 40.2, which is even
higher than that for complex 74 but the "/Si value
for 79 (60.7) is significantly smaller than the "/Si
value for 74, which is consistent with the larger :-
complex character of 79 estimated by the structural
parameters. Recently, Marschner et al. have reported
more large difference in the 29SiNMR chemical shifts
between disilene group-4 metal complexes 80 and 81
(Chart 12) with / 132.8 for 80a and / !135.7 and /

!159.7 for 81, suggesting remarkable variation in the
bonding between disilene and metal.72)

Concluding remarks

The chemistry of silicon multiply bonded com-
pounds has rapidly evolved in these three decades. In
addition to those discussed in this account, we have
extended our studies to SiFC (silatriafulvenes73) and
silaketeneimines74)) and SiFX (X F S, Se, Te75) and
NR76)) compounds. Many silicon unsaturated com-
pounds with novel types of bonding and structure
including silabenzene,77) disilaacetylene,78) tetrasila-
cyclobutadiene,79) and silanone80) have been brought
forth by other research groups. Their structural
characteristics have been found often to be quite

unique and far from the analogical extension of those
of the carbon congeners.

The origin of the remarkable difference in the
bonding and structure between carbon and heavier
group-14 element compounds is usually ascribed to
the less effective hybridization between s and p
orbitals (hybridization defect) in the latter, in
association with the fact that the difference in
the radii between 2s and 2p orbitals of carbon is
exceptionally small compared with that between
valence ns and np orbitals of the heavier main group
elements.5f ),45) Although there is no doubt that the
hybridization defect principle underlies the unusual
properties of the heavier group-14 element com-
pounds, it is hard to say currently that the principle
is connected straightforwardly or logically to the
unusual properties. As shown in this article, the :-<*
orbital mixing may be one of convincing rationales
or concepts intervening between the hybridization
defect and the unusual properties. Discovering and
evaluating new such concepts will lead to construct
a systematic and useful structural theory of heavier
main-group elements.
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