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Dendritic spines arise as small protrusions from the dendritic 
shaft of various types of neuron and receive inputs from excita-
tory axons. Ever since dendritic spines were first described in the 
nineteenth century, questions about their function have spawned 
many hypotheses. In this review, we introduce understanding of 
the structural and biochemical properties of dendritic spines with 
emphasis on components studied with imaging methods. We then 
explore advances in in  vivo imaging methods that are allowing 
spine activity to be studied in living tissue, from super-resolution 
techniques to calcium imaging. Finally, we review studies on spine 
structure and function in vivo. These new results shed light on the 
development, integration properties and plasticity of spines.
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two-photon imaging
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Introduction
In 1888, the legendary neuroanatomist Ramón y Cajal was the first to 
describe dendritic spines on neurons [1]. Since this first description, 
technical advances have driven our knowledge of the structural and 
functional properties of dendritic spines but the function of spines 
remains the subject of intense study and debate [2,3]. Dendritic 
spines arise as small protrusions from the dendritic shaft of various 
types of neuron, including the pyramidal neurons of the neocortex, 
the medium spiny neurons of the striatum and the Purkinje cells of 
the cerebellum. Depending on the neuronal type, spines occur at 
various densities and are found in all vertebrates and in some inverte-
brates. A striking characteristic of spines is their variety of shapes and 
sizes, suggesting a high degree of functional diversity. Until relatively 
recently, it was only possible to study putative functions of the spines 
in vitro and in fixed tissue. In such preparations, much progress has 
been made on defining the structural and biochemical properties 
of spines. Now, however, advances in imaging techniques make it 
possible to investigate spine function and plasticity at high spatial 
resolution in living tissue.

Dendritic spines: synaptic transmission and plasticity
Spine morphology. The morphology of spines is highly variable 
and they are commonly classified into three types: thin, mushroom 

and stubby (Fig 1A; [4]). Thin spines have a thin, long neck and a 
small bulbous head, whereas mushroom spines have a larger 
head. Stubby spines are devoid of a neck [5] and are prominent 
between postnatal development [6]. The size of dendritic spines 
varies among brain areas, as well as between species. For example, 
the area of spine heads in the temporal cortex is around 0.37 μm2 
in mice and 0.59 μm2 in humans, and the length of the spine neck  
in the same cortical area is on average 0.73 μm in mice and 0.94 μm 
in humans [7]. Importantly, on the same dendrite a continuum of 
shapes can be observed, and the morphology of a spine can change 
rapidly through activity-dependent and -independent mecha-
nisms [8–12]. In addition, thin, hair-like protrusions called filopodia, 
which lack a bulbous head, are found on dendrites of developing 
neurons (Fig  1A). They are transient structures that might receive 
synaptic input and can develop into dendritic spines [13,14].

The morphological changes of spines are tightly linked to 
biochemical reactions taking place inside the spine. The tiny 
spine head is biochemically isolated from the dendrites by the  
spine neck. In this small volume, an astonishingly high number of 
biochemical reactions take place [15]. Typically, spine heads form 
an asymmetric excitatory synapse with a presynaptic axon  [16]. 
These synapses are characterized by a ‘postsynaptic density’ (PSD), 
which appears as an electron-dense, dark area under the electron 
microscope. Most proteins in the PSD are directly or indirectly 
involved in synaptic communication and in the regulation of syn-
aptic strength [15]. Ultrastructural studies have shown a correlation 
between the size of the PSD, the spine head volume and the number 
of vesicles in presynaptic terminals in CA1 pyramidal neurons [9], 
cerebellar Purkinje cells [8] and in the olfactory cortex [10]. These 
results led to the idea of a causal link hypothesis between spine 
structure and the function of spine synapses. This was further sup-
ported by studies of calcium dynamics in spines, which revealed 
a close relationship between spine morphology and function [11]. 
Later, by using glutamate uncaging on single spines (for a review 
see [12]), it was demonstrated that spine morphology—mushroom 
compared with thin spines—correlates directly with the number 
of AMPA receptors  [17], and that the spine–neck geometry is an 
important determinant of NMDA receptor-dependent calcium sig-
nalling in spine heads and dendritic shafts [18]. Furthermore, there 
is evidence that the induction of long-term potentiation (LTP) cor-
relates with spine enlargement  [19]. Using imaging to monitor 
the changes in spine shape is thus a useful way in which to study 
their  function.

The final determinant of spine morphology is the cytoskeleton. 
Spine heads contain actin filaments that interact with the plasma 
membrane and the PSD at their barbed ends (Fig 1B). In spine necks, 
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actin filaments form long bundles (Fig 1B; [20]). It was shown that 
actin polymerization occurs within seconds of LTP, underlying the 
enlargement of dendritic spines [21]. Thus, there is good evidence 
that, at least for hippocampal synapses, the reorganization of the 
actin cytoskeleton is tightly linked to synaptic efficacy [12,22].

Calcium imaging assessment of spine function. A powerful way to 
study spine function is to monitor changes in intracellular calcium 
concentration in this small neuronal compartment. Calcium is an 
intracellular secondary messenger that regulates the functional 
and structural properties of individual synapses, with remarkable 
spatio-temporal specificity [23,24]. In this section, we focus on 
the biochemical reactions that involve calcium influx and calcium 
homeostasis in spines.

A main source of calcium entry in spines is influx through 
ionotropic glutamate receptors and voltage-gated calcium channels 
(Fig  1B). NMDA and AMPA glutamate receptors are non-specific 
cation channels with a variable permeability for calcium ions; 
NMDA receptor channels are particularly calcium-permeable. 
Typically, the spine is first depolarized by AMPA receptor activation, 
which removes the blocking action of extracellular magnesium ions 
on NMDA receptor channels, and leads to further depolarization 
and calcium entry. Spine depolarization can then be further ampli-
fied by voltage-gated calcium or sodium channels [24]. Thus, spines 
act as NMDA-receptor-dependent coincidence detectors of pre- and 
postsynaptic activity [25,26]. It is well accepted that the onset of LTP, 
spine enlargement and an increase in receptor trafficking are coin-
cident and mechanistically linked processes [27]. LTP induction is 
associated with exocytosis from endosomes and insertion of AMPA 
receptors into the plasma membrane [28]. Importantly, AMPA recep-
tors diffuse laterally along the plasma membrane [29,30], reaching 
PSD proteins on which they can be anchored in an actin-dependent 
manner [31,32].

Another important form of synaptically mediated spine cal-
cium signalling involves calcium release from internal stores, 
through either ryanodine receptors [33] or inositol trisphosphate 
(IP3) receptors (Fig 1B; [34,35]). In the cerebellar Purkinje neu-
rons, metabotropic glutamate type 1 receptors (mGluR1s), through 
a signal cascade involving activation of G protein and phospho-
lipase C, can produce IP3 and cause calcium release from the 
endoplasmic reticulum in dendritic spines [34,35]. This calcium 
release is mediated through calcium-permeable IP3 receptors. 
These spine calcium signals can act as coincidence detectors [36], 
having important roles for long-term synaptic depression  [37]. 
Calcium levels inside the endoplasmic reticulum are tightly regu-
lated by the sarco/endoplasmic reticulum calcium ATPase (SERCA) 
(Fig  1B). Interestingly, mGluR1s are located perisynaptically at 
some distance from the presynaptic glutamate release sites [38]. 
Therefore, only repetitive presynaptic activity can efficiently 
activate them.

Molecular mechanisms in spines assessed by live cell imaging.  
Live cell imaging experiments involving the use of sensors with a 
high specificity for target proteins have greatly advanced our under-
standing of the signalling mechanisms in spines. Of significant 
importance is the imaging of the action of CaMKII, which is a cru-
cial component of the PSD (Fig 1B; [39,40]). CaMKII is essential for 
the induction and maintenance of some forms of synaptic plastic-
ity [41–44]. For imaging, CaMKII can be tagged by fluorescent pro-
teins [45,46], for example to directly study the dynamics of CaMKII 
inside spines in response to synaptic activation [47]. The activity of 
one of the CaMKII downstream targets, the small GTPase Ras, was 
also imaged after induction of LTP in the spines of hippocampal 
neurons [48]. Ras is active when bound to GTP, and inactive when 
bound to GDP (Fig 1B). This cycle is regulated through interaction 
with GTPase-activating proteins (GAPs) and guanine nucleotide 
exchange factors   (GEFs)[49]. It is important to note that not only 
Ras, but also other members of the small GTP-binding protein super-
family, for example, Rho, Rab, Sar1/Arf and Ran, are involved in neu-
ronal function [49]. They have been shown to regulate a wide variety 
of processes including gene expression, cytoskeletal reorganization 
and vesicle trafficking [49]. More specifically, Ras is involved in the 
regulation of dendritic protein synthesis and gene transcription, 
whereas Rho GTPases have key roles for the regulation of the actin 
cytoskeleton and thereby spine morphology [50–52]. The activation 
of Rho GTPases was directly determined in single spines in relation 
to structural changes induced by LTP [27,53].

Accumulating evidence supports a role for dendritic mRNAs in 
the regulation of synaptic functions in spines. The classical view is 
that proteins are synthetized in the soma and then transported to 
appropriate locations in the dendrites. However, in addition to this 
mechanism, it has been shown that local translational machinery 
exists in dendrites, such that mRNAs can be shipped to the dendrites 
and then translated according to local needs, often in an activity-
dependent manner [54,55]. For example, in the developing neurons 
of the optic tectum in Xenopus tadpoles, Bestman and Cline have 
imaged in vivo RNA-binding proteins tagged with fluorescent pro-
teins [56]. They have also shown that these RNA-binding proteins 
are distributed throughout the developing dendritic tree and can 
locally regulate branch dynamics [57].

Advances in spine imaging
Recent years have seen the rapid development of molecular and 
cellular imaging techniques that allow spine morphology to be 
studied at high resolution, even in the living brain. In addition to 
imaging of spine morphology and localization, new methods have 
been developed to functionally analyse molecular interactions and 
spine activity.

Imaging spine morphology with two-photon microscopy. Since the 
early work of Ramón y Cajal, the morphological properties of spines 
have been studied in fixed tissue at various levels of spatial resolution, 
ranging from light microscopy to ultrastructural studies involv-
ing electron microscopy [8,16,58]. In vital preparations, important 
insights into spine morphology and dynamics were obtained by 
using camera imaging and confocal microscopy  [59‑61]. A major 
step forward was the implementation of two-photon laser scanning 
microscopy  [62], which is nowadays widely used for the imaging 
of spines in the highly scattering brain tissue (see reviews [63,64]). 
An advantage of two-photon microscopy is that the use of long 
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wavelength-excitation light provides a depth penetration of several 
hundred micrometres into the intact nervous tissue. In addition, 
because excitation is limited to a small focal volume, photo-damage 
outside the focal plane is strongly reduced compared with standard 
one-photon microscopy (for a review see [65]). Neurons of interest 
are typically labelled with fluorescent proteins such as GFP or YFP 
(Fig 2A), either in transgenic mouse lines or after labelling through 
viral transduction. It is now possible to image spines in vivo up to a 
depth of about 800 μm [66].

Another area of application of two-photon excitation involves 
the activation of compounds at precise locations. Thus, it is possible, 
in a single spine, to activate proteins tagged with photoactivat-
able GFP to study the dynamics of these proteins after, for example, 
inducing LTP. This approach has been used to monitor the dynam-
ics of PSD95—tagged with photoactivatable GFP—during activity-
dependent synaptic growth [67,68]. Several studies have used 
two-photon uncaging of a caged glutamate compound to establish 
the direct structure–function relationship between spine shape and 
synaptic activity (see review [12]). In addition, the role of the spa-
tial and temporal sequence of synaptic inputs can be studied by 
uncaging glutamate, at specific locations, in a defined temporal 
sequence [69–71]. Two-photon glutamate uncaging has also been 
adapted for in vivo studies [72].

Imaging spines at super-resolution. With two-photon imaging, the 
spatial resolution is typically limited to around 300 nm, due to Abbe’s 
diffraction law stating that features closer than half the wavelength 
of light cannot be distinguished  [73]. Super-resolution techniques 
have overcome this resolution barrier [73–76]. Two main strategies  
have been developed to increase spatial resolution. First, saturated 
stimulated emission depletion (STED) microscopy [73] has been 
applied to image spines at a nanoscale resolution [75]. Features such 
as the thickness of the spine neck or subtle changes in the shape of 
the spine head—for example, from thin to mushroom shape—can be 
studied with this approach at a resolution smaller than 70 nm. STED 
has been applied to image spines in the living brain (Fig 2B; [74]). So 
far, this technique is limited to layer 1 (around 15 μm) in conditions in 
which the mouse is anaesthetized and paralysed. The second strategy 
is based on the techniques of photoactivation localization micro
scopy (PALM) [77] and stochastic optical reconstruction microscopy 
(STORM)  [78]. Both approaches rely on the sequential, statistical 
excitation of a fraction of fluorophores spaced at distances larger 
than the diffraction limit [76]. This gives a spatial resolution of around 
20 nm. However, for the moment, the time needed to acquire a 
super-resolution image and the associated bleaching of fluorophores 
make the two methods suitable mostly for fixed specimens (cultured 
cells) and limit the temporal resolution.
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Imaging spine activity in vivo. As introduced above, calcium imag-
ing has proven to be a powerful tool for studying neuronal activity 
at the cellular and subcellular scale. This method has benefited 
from the development of sensitive fluorescent calcium indica-
tor dyes, including synthetic dyes (e.g. Fura2, OGB1) and, more 
recently, FRET-based and single fluorophore genetically encoded 
calcium sensors [79]. In parallel, high-resolution imaging 
techniques have been developed to monitor changes in the fluo-
rescence of such dyes in neuronal somata, dendrites and spines, 
in vivo.

The initial calcium imaging experiments performed in 
spines [80,81] used a CCD camera to image fluorescence changes 
of the calcium dye Fura2 in slices. A few years later, the use of two-
photon imaging greatly improved spine calcium imaging [25]. 
However, until just recently, imaging calcium signals in spines was 
largely restricted to studies performed in  vitro, mainly because of 
the phototoxic damages produced by strong laser light in  vivo. 
Development of the low-power temporal oversampling (LOTOS) 
procedure, which uses an acousto-optic deflector-based two-pho-
ton microscope [82], minimizes phototoxic damage and allows the 
imaging of prolonged periods of spine activity. Thus, multiple trials 
of stimulus-evoked calcium signals can be recorded in the same 
spiny dendrite (Fig 2C). In brief, the LOTOS-based procedure relies 
on the acquisition of images at high frame rates (e.g. 1,000 Hz), short 
pixel dwell-times (50 ns) and low intensities of the excitation laser 
beam [82]. Another study has shown that LOTOS can also be used 
in combination with a resonant galvoscanner-based two-photon 
imaging device [83].

Determining spine structure and function in vivo
Knowing how spines are structurally modified by experience, 
and how single spine synaptic inputs are distributed in dendrites, 
is crucial for determining how neurons integrate information 
and generate their output signals. Thus, clustered inputs might 
bind behaviourally relevant clustered synapses within individual 
dendrites promoting the generation of local dendritic spikes, as indi-
cated by in vitro brain slice experiments (for reviews see [84–86]).  
Alternatively, inputs with similar features might be widely distrib-
uted over multiple dendrites and integrated linearly within the 
dendritic tree [3,87]. Although these two modes of synaptic input 
arrangement on dendrites are not necessarily mutually exclusive, a 
specific knowledge of the functional organization of the input pat-
terns is essential for an understanding of the neuron-type-specific 
algorithms of input integration. 

Activity-dependent spine remodelling. Chronic two-photon imag-
ing has emerged as a powerful tool for the analysis of in vivo spine 
remodelling over time [88,89]. These structural changes have been 
monitored during postnatal development or in adulthood, and after 
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inducing plasticity through various paradigms such as sensory depri-
vation or motor skill learning. Chronic two-photon imaging has been 
used to study the development of spine motility in different cortical 
areas. It was shown that, at early postnatal ages, spines are highly 
plastic and spine turnover decreases with age [90,91]. In adults, the 
total spine number is globally stable over time due to comparable 
rates of spine formation and elimination [92–94]. However, spine 
remodelling occurs in the adult brain after induction of experience-
dependent plasticity. As described below, with some examples, 
these activity-dependent structural changes in spines were investi-
gated in primary sensory cortical areas, in the motor cortex and in 
higher cortical areas such as the frontal cortex, in both physiological 
and pathological conditions (Fig 3).

In the somatosensory cortex, chronic two-photon imaging was 
used to study structural changes of dendritic spines after whisker 
potentiation in layer 5 neurons [88,95]. The results show that both 
structural—stabilization of new spines—and functional—somatic 
activity—changes were most pronounced in layer 5 neurons 
located at the border between spared and deprived barrel col-
umns [96]. In the visual cortex, the turnover of spines was studied 
in the binocular region after monocular deprivation [97]. In adult 
mice, a monocular deprivation episode of four  days was found 
to double the rate of spine formation in apical dendrites of layer 
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5 pyramidal neurons. The resulting increase in spine density was 
specific to layer 5 cells located in the binocular cortex, in which 
most neurons increase their responsiveness to the non-deprived eye 
(Fig  3A; [94]). However, the relationship between structural and 
functional changes is not always clear. For example, although the 
output of the layer 2/3 binocular neurons was strongly modified 
by monocular deprivation [98–100], no structural modification 
of the spines could be identified in the apical dendrites of these 
neurons [94]. It could be that structural changes occur in deeper 
parts of the dendritic trees [101], or that different mechanisms of 
ocular dominance plasticity take place in the upper layers. Indeed, 
two studies strongly suggest that inhibition is important in this 
experience-dependent plasticity. They both used fluorescently 
tagged gephyrin to label inhibitory synapses in the mouse visual 

cortex in vivo. They found that a short period of monocular dep-
rivation caused the pruning of a significant number of inhibitory 
synapses, mainly located on dendritic spines [102–104].

Structural changes associated with motor skill learning have been 
investigated in the motor cortex [105]. Morphological changes were 
monitored in spines of apical dendrites of layer 5 neurons in the 
contralateral motor cortex (Fig 2A). New spines were formed within 
one hour after initiation of a forelimb reaching task or within two 
days after rotarod running training [92,106]. Spine formation during 
initial learning was followed by enhanced spine elimination, leading 
to a total spine count that was the same as control levels [92,106]. 
In addition, it was shown that one-third of new dendritic spines 
emerge in clusters during the initial learning phase, and that most 
of these clusters are neighbouring spine pairs [107]. These findings 
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Fig 4 | Imaging spine activity in vivo. (A) In vivo two-photon calcium imaging of synaptic inputs evoked by visual stimulation in a layer 2/3 pyramidal neuron of 
the mouse visual cortex. Red dots indicate the location of each hotspot of local dendritic calcium signal, on the Z‑projection of the reconstructed dendritic tree. 
Red dashed lines point to the polar plot obtained for the corresponding local dendritic calcium signal. The frame (grey dashed line) indicates the area of imaging. 
Reprinted by permission from Macmillan Publishers Ltd: Nature [131] © 2010. (B) In vivo two-photon calcium imaging of dendritic spines of a layer 2/3 neuron 
in the mouse auditory cortex, using the LOTOS procedure. Frequency tuning curves of the narrowly tuned spine S1 and of the widely tuned spine S2, shown in 
the two-photon image in the left panel. Error bars, s.e.m. Reprinted by permission from Macmillan Publishers Ltd: Nature [82] © 2011. (C) In vivo two-photon 
calcium imaging of dendritic spines using conventional two-photon imaging. Left panel, a stack image of dendrites of a layer 2/3 pyramidal cell in the mouse 
somatosensory cortex in vivo. Right panels, typical traces of spontaneous calcium activity from eight spines detected as functionally clustered and indicated in the 
left panel. Reprinted by permission from the American Association for the Advancement of Science (AAAS) [127]. LOTOS, low-power temporal oversampling.
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suggest that repetitive activation of cortical networks during learning 
induces clustering of new synapses along dendrites.

Spine dynamics have also been studied in higher order cortical 
areas. For example, spine dynamics were monitored in the fore-
brain nucleus HVC of zebra finches during song learning, which 
revealed that a higher level of spine turnover is correlated with a 
greater capacity for subsequent song imitation [108]. Another 
study using the mouse frontal association cortex investigated how 
spines of layer 5 pyramidal neurons are modified by fear learn-
ing and extinction (Fig  3B; [109]). Whereas fear conditioning 
increased the rate of spine elimination, fear extinction increases 
the rate of spine formation. In addition, extinction causes the for-
mation of dendritic spines within a distance of 2 μm from spines 
eliminated after fear conditioning [109].

Finally, two-photon chronic imaging has been used to study syn-
aptic functions in pathological conditions. The impact of strokes 
was assessed in the somatosensory cortex, revealing increased 
spine formation in the peri-infarct dendrites [110,111]. Spinal 
cord injury was shown to decrease spine density in the motor cor-
tex [112], whereas retinal lesions induce massive remodelling of 
spines in the visual cortex [113]. Several studies have revealed 
spine loss in mouse models of Alzheimer disease, in hippo
campal [114] and cortical pyramidal neurons [115,116]. Finally, a 
developmental delay in the downregulation of spine turnover and 
an overproduction of transient spines were revealed in a mouse 
model of fragile X syndrome [117,118].

To conclude, most studies so far have been performed in the api-
cal tuft of layer 5 pyramidal neurons. Other types of plasticity might 
occur in other cell types. For example, it was found that a subset 
of inhibitory neurons carry dendritic spines that form glutamater-
gic synapses  [119]. Given the spine changes observed in these 
inhibitory neurons after deprivation induced by retinal lesions, it 
seems that structural changes in inhibitory neurons might precede 
structural changes in excitatory circuitry. Thus, comprehensive stud-
ies of other neuronal cell types are essential, for a more complete 
understanding of synaptic plasticity, at the level of local networks. 
Otherwise, despite the correlations between spine dynamics and 
experience-dependent changes, the causality of this relationship 
remains unclear.

Molecular mechanisms of synaptic function in vivo. To gain func-
tional insight into experience-dependent synaptic changes, new 
probes and markers are being developed in rapid sequence to image 
the expression of proteins known to be involved in synaptic plastic-
ity. For example, a FRET-based CaMKII sensor [44,120] and a FRET 
reporter of Ras GTPase activation [121] were used for LTP studies in 
hippocampal cultured slices. For in vivo studies, a genetically engi-
neered FRET probe for the detection of CaMKII activity was used to 
monitor CaMKII activity in single synapses of layer II/III neurons in 
the ferret visual cortex (Fig 3C). The results suggest that spines lost 
after monocular deprivation have a low basal concentration of 
CaMKII, whereas spines that are preserved show increased activa-
tion of CaMKII [122,123]. An elegant optical approach was also 
used for the in vivo study of the dynamics of AMPA receptor traffick-
ing, after inducing synaptic plasticity through sensory experience 
or deprivation (Fig 3D; [124]). This approach revealed that experi-
ence-driven GluR1 incorporation into synapses is clustered on por-
tions of dendrites, and that such clusters are eliminated when mice 
are deprived of sensory experience. By contrast, the incorporation 

of synaptic GluR2, through sensory deprivation, occurred in a 
distributed manner with little evidence for clustering [124,125].

In parallel to the development of molecular target-specific 
fluorescent probes, an increasing number of transgenic mice are 
available to monitor the expression or localization of synaptic com-
ponents. For example, adult transgenic mice in which GFP–GluR1 
is expressed under control of the c‑fos promoter have been used to 
probe the insertion of newly synthesized AMPA receptors after fear 
conditioning [126] and behavioural exploration in vivo [127]. The 
results indicate that glutamate receptors are preferentially inserted 
into neighbouring spines [127]. 

Functional neuroanatomy in vivo with calcium imaging. In vivo two-
photon calcium imaging was first used to map functional inputs in 
dendrites in invertebrates. In the cricket cercal system, simultaneous 
pre- and postsynaptic calcium imaging revealed different topo-
graphical organizations of sensory inputs into interneuron dendrites, 
underlying different computation processes of these inputs [128]. 
Further studies in the visual systems of locusts [129] and Xenopus 
tadpoles  [130] indicated that the topographical organization of 
sensory inputs on dendrites has an influence on the integration  
of visual information. Similar approaches were implemented for the 
functional analysis of dendrites in the mammalian brain. Studies 
performed in the mouse visual and somatosensory cortices identi-
fied dendritic NMDA-dependent calcium hotspots driven by visual 
(Fig 4A; [131,132]) or whisker stimulation [83] in layer 2/3 neurons. 
A common conclusion for both sensory modalities is that sensory 
input coding for the same feature is heterogeneously distributed 
throughout the entire dendritic tree, with no evidence for clustering 
on individual dendrites.

Recently, in vivo calcium imaging in single spines in the intact 
mouse brain became feasible. The first report of this approach 
involved the LOTOS two-photon imaging procedure [82] to 
detect sound-evoked responses in single spines in the auditory 
cortex (Fig  4B). Similarly to the dendritic ‘hotspots’ mentioned 
above, these results demonstrated a widespread distribution of 
afferent sensory inputs throughout the dendritic tree of a given 
neuron [82]. Although in a few instances spines with similar fre-
quency tuning were locally clustered, most other similarly tuned 
spines were located on remote sites throughout both apical and 
basal dendrites. Another study showed that, at least when record-
ing spontaneous activity, conventional two-photon imaging can 
also be used for in vivo spine calcium imaging [127]. The results 
provide evidence for local clustering of synaptic inputs in the den-
drites of layer 2/3 pyramidal neurons in the mouse somatosensory 
cortex (Fig 4C).

Finally, it should be remembered that synaptically evoked spine 
calcium signals have been detected unambiguously only in the 
absence of the back-propagation of action action potentials, or in 
neurons that had low resting membrane potentials and were not 
firing  [82], or that were hyperpolarized [83,131], or in the pres-
ence of intracellular sodium channel blockers [127]. In this last 
study, the neurons were additionally voltage-clamped at –30–0 mV. 
These recording conditions might have influenced the probability 
of occurrence of the spine calcium events that were detected. Thus, 
improved methods of spine activity detection might reveal synap-
tic input sites in conditions of spiking activity, which might help to 
increase our understanding of the mechanisms by which specific 
inputs drive the output signals.
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Conclusions
The insights into dendritic spine structure and function, resulting from 
the use of modern imaging techniques, have significantly increased 
our knowledge of synaptic function, ranging from a better under-
standing of the molecular mechanisms of experience-dependent 
plasticity to the dendritic organization of sensory inputs in the intact 
brain in vivo. As we have described, it is the technical developments 
that have driven forward studies of spine function, involving both 
new imaging technology—for example, two-photon microscopy, 
STED and LOTOS—and the development of a large variety of new 
fluorescent sensors. The main challenges that remain include ques-
tions related to spine function during the formation of circuits in vivo 
(Sidebar A), the mechanisms of single spine-dependent experience 
plasticity in conditions of behaviourally relevant learning processes 
and the changes that occur in pathophysiological conditions, such as 
stroke and Alzheimer disease.
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