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CPAP—a gene mutated in primary microcephaly—is required for
procentriole formation. Here we show that CPAP degradation
and function is controlled by the poly(ADP-ribose) polymerase
tankyrase 1. CPAP is PARsylated by tankyrase 1 in vitro and
in vivo. Overexpression of tankyrase 1 leads to CPAP proteasomal
degradation, preventing centriole duplication, whereas depletion
of tankyrase 1 stabilizes CPAP in G1, generating elongated
procentrioles and multipolarity. Tankyrase 1 localizes to centro-
somes exclusively in G1, coinciding with CPAP degradation.
Hence, tankyrase 1-mediated PARsylation regulates CPAP levels
during the cell cycle to limit centriole elongation and ensure
normal centrosome function.
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INTRODUCTION
The centrosome, the primary microtubule-organizing centre of the
cell, is comprised of two centrioles surrounded by pericentriolar
material that nucleates microtubules [1]. Centrosome duplication
is a highly regulated process whose accuracy is essential for
genome integrity [2]. The process involves the formation of two
new centrioles (procentrioles) next to the two preexisting parental
centrioles during S phase of the cell cycle. Studies in
Caenorhabditis elegans and Drosophila melanogaster have
defined a conserved pathway that relies on a key set of proteins
for centriole duplication [3]. In some cases, human homologues
have been identified and shown to have similar function. For
example, SAS4 was shown to be required for procentriole
formation through the deposition of centriolar microtubules in
C. elegans [4,5]. Centrosomal P4.1-associated protein (CPAP), a
human SAS4-related protein, was found to be required for
centrosome function in human cells [6,7]. Depletion of CPAP in
human cells prevented centrosome duplication, whereas
overexpression of CPAP led to aberrant centriole elongation,

supernumerary centrioles and spindle multipolarity [8–11]. A
crucial role for CPAP and centriole maturation in humans is
evidenced by its mutation in autosomal recessive primary
microcephaly (MCPH) [12–14].

The aberrant centriole elongation and accompanying
phenotypes observed on overexpression of CPAP suggest that
centriole length must be restricted to ensure proper centrosome
function and genome integrity. Recent studies indicated that CPAP
protein levels were regulated across the cell cycle; as cells exited
mitosis and entered G1, CPAP protein levels were reduced by
proteasomal degradation [11]. The timing of degradation
suggested that CPAP could be a target of the anaphase-
promoting complex (APC)–Cdh1 complex, and (consistent
with this notion) coimmunoprecipitation analysis revealed a
CPAP–Cdh1 interaction [11]. However, the question remains
how is centrosomal CPAP targeted for degradation at this specific
point in the cell cycle.

Tankyrase 1 (TNKS1) is a multifunctional poly(ADP-ribose)
polymerase (PARP) that uses NADþ as substrate to transfer ADP-
ribose polymers onto protein acceptors including itself [15,16].
TNKS1-mediated PARsylation can influence protein degradation.
PARsylation of TNKS1’s telomeric acceptor telomere-repeat-
binding factor 1 (TRF1) led to loss of TRF1 from telomeres and
subsequent ubiquitylation and proteasomal degradation [17].
TNKS1-mediated PARsylation of axin 1 and 2 (regulators of the
Wnt signalling pathway) led to their degradation through the
ubiquitin–proteasome pathway [18]. TNKS1 has a number of other
binding partners that, though diverse, share a common RXXG/
PDG (or degenerate)-binding motif [15,19,20]. Here we identify
CPAP as an RXXPDG-containing TNKS1 binding partner. We
show that TNKS1 PARsylates CPAP and regulates CPAP protein
stability and function at centrosomes across the cell cycle.

RESULTS AND DISCUSSION
TNKS1 binds to CPAP and influences its stability
Human CPAP contains a highly conserved region of glycine
repeats at its C terminus, termed the G-box, that houses a
RXXPDG tankyrase-binding motif (REYPDG) (Fig 1A). The
REYPDG domain shows 100% identity from fruitfly to
human, suggesting an important function (Fig 1B). To determine
whether CPAP interacts with TNKS1 in vivo, 293T cells were
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co-transfected with vectors expressing Flag epitope-tagged
CPAP (FlagCPAP) and/or TNKS1. Immunoprecipitation with
anti-Flag antibody showed that TNKS1 coimmunoprecipitated
with FlagCPAP (Fig 1C). To determine whether the interaction
was dependent on the TNKS1-binding motif, we generated a
C-terminal deletion of the TNKS1-binding domain called CPAP-N
(Fig 1A). Myc epitope-tagged CPAP (MycCPAP) or MycCPAP-N
was co-transfected into 293T cells with Flag epitope-tagged
TNKS1 (FlagTNKS1). As shown in Fig 1D, MycCPAP, but not
MycCPAP-N, coimmunoprecipitated with FlagTNKS1.

We noticed that the level of FlagCPAP was dramatically
reduced upon co-transfection with TNKS1 (Fig 1C, compare lanes
3 and 4). Indeed, co-transfection of increasing amounts of TNKS1
with FlagCPAP led to a dose-dependant reduction in FlagCPAP
(Fig 1E). This reduction was dependent on TNKS1’s catalytic
PARP domain; cotransfection of MycCPAP with wild-type (WT),
but not a PARP dead (PD) allele of tankyrase 1 [6], induced loss
of CPAP (Fig 1F).

CPAP is PARsylated by TNKS1 in vitro
To determine whether TNKS1 PARsylates CPAP, we performed
in vitro PARP assays with purified recombinant proteins.
Glutathione S-transferase (GST)–CPAP-C purified from Escherichia
coli was incubated with baculovirus-derived TNKS1 and biotiny-
lated NADþ substrate. Proteins were fractionated by SDS–
polyacrylamide gel electrophoresis, transferred to nitrocellulose,
stained with amido black to visualize the proteins (Fig 1G, left
panel), and probed with anti-biotin to visualize ADP-ribosylated
proteins (Fig 1G, right panel). TNKS1 modified itself and CPAP-C.
As a control we show a similar reaction for the known acceptor
TRF1. PARsylation was dependent on TNKS1 binding, as GST–
CPAP-N was not modified by TNKS1 (Fig 1H). Modification of
CPAP-C by TNKS1 was inhibited by the general PARP inhibitors
3AB and PJ34, and by the tankyrase-specific PARP inhibitor
XAV939, confirming that the modification was the result of PARP
activity (Fig 1I). When the in vitro PARP assays were performed in
the presence of excess unlabelled NADþ substrate, biotin-
labelled TNKS1 and CPAP were both converted into slower
migrating diffuse bands, indicative of PARsylation (Fig 1J).

CPAP is ubiquitylated and PARsylated by TNKS1 in vivo
To determine whether the REYPDG motif was required for TNKS1
binding to CPAP, we generated a double-point mutation convert-
ing DG to AA (CPAP.AA) (Fig 2A). As shown in Fig 2B,
MycCPAP.WT (but not MycCPAP.AA) was coimmunoprecipitated

by FlagTNKS1. Co-transfection of TNKS1 led to loss of CPAP.WT,
but not CPAP.AA (Fig 2C), consistent with the notion that TNKS1
is responsible for the observed reduction in CPAP protein levels.
We showed in Fig 1F that the reduction in CPAP levels in vivo
depended on the PARP activity of TNKS1 and that TNKS1
PARsylated CPAP in vitro (Fig 1G,J). To determine whether CPAP
was PARsylated in vivo, MycCPAP (WT or AA) was immuno-
precipitated with anti-Myc beads and immunoblotted with
anti-PAR antibody. As shown in Fig 2D, CPAP was PARsylated
in vivo, dependent on its TNKS1-binding site. We next sought to
determine whether CPAP was ubiquitylated under the same
conditions that we observed its PARsylation and degradation.
FlagCPAP was co-transfected with haemagglutinin (HA) epitope-
tagged ubiquitin into 293T cells, immunoprecipitated with
anti-Flag beads and analysed by immunoblotting with anti-Flag
or anti-HA antibody. As shown in Fig 2E, a smear of high
molecular weight bands migrating slower than CPAP (indicated by
the arrowhead) corresponding to HA-ubiquitylated FlagCPAP was
detected. We additionally observed lower molecular weight HA-
ubiquitylated CPAP, as has been observed previously [11], that
likely corresponds to degraded CPAP. Ubiquitylated CPAP was
degraded by the proteasome as demonstrated by its stabilization
upon treatment with the proteasome inhibitor MG132 (Fig 2F).
Finally, we show that TNKS1-induced loss of CPAP was
rescued by treatment with MG132 (Fig 2G). Together, these data
indicate that TNKS1 PARsylates CPAP and promotes CPAP
degradation in vivo.

TNKS1 overexpression prevents centrosome duplication
To gain insight into the functional consequences of TNKS1-
induced loss of CPAP, we expressed FlagTNKS1 stably in HTC75
cells, a human fibrosarcoma cell line (HT1080) that contains a
tetracycline-controlled gene expression system. Immunoblot
analysis of cells grown with and without induction shows induced
expression of FlagTNKS1 and concomitant loss of CPAP (Fig 3A).
Immunofluorescence analysis showed that induced FlagTNKS1
accumulated at interphase centrosomes, as measured by costain-
ing with g-tubulin (Fig 3B) or centrin (Fig 3C). Costaining for
FlagTNKS1 and CPAP showed that they colocalized (Fig 3D,
middle panels). However, in approximately one-third of
FlagTNKS1-expressing cells CPAP was lost (Fig 3D, bottom
panels), consistent with the reduction of CPAP protein by
immunoblot (Fig 3A).

Previous studies showed that short interfering RNA-mediated
CPAP depletion prevented centriole duplication in cycling human

Fig 1 | CPAP interacts with tankyrase 1 and is PARsylated in vitro. (A) Schematic representation of CPAP. The glycine-rich (G-box) is indicated.

(B) Alignment of the tankyrase-binding REYPDG motif. Identical amino acids are in black. (C) Tankyrase 1 (TNKS1) binds to CPAP. Immunoblot

analysis of proteins immunoprecipitated (IP) with anti-Flag beads from 293T cells transfected with FlagCPAP and/or TNKS1. (D) Tankyrase 1 binding

to CPAP depends on the C-terminal domain of CPAP. Immunoblot analysis of proteins immunoprecipitated with anti-Flag beads from 293T cells

transfected with Flag epitope-tagged TNKS1 (FlagTNKS1) and Myc epitope-tagged CPAP (MycCPAP) or MycCPAP-N. (E) Tankyrase 1 overexpression

leads to loss of CPAP. Immunoblot analysis of extracts from 293T cells co-transfected with FlagCPAP and increasing amounts of TNKS1.

(F) Tankyrase 1-induced loss of CPAP depends on tankyrase 1 poly(ADP-ribose) polymerase (PARP) catalytic activity. Immunoblot analysis of extracts

from 293T cells co-transfected with MycCPAP and TNKS1 or TNKS1.PD (PARP-dead). Protein levels relative to a-tubulin and normalized to MycCPAP

are indicated. (G–J) CPAP is PARsylated by tankyrase 1 in vitro. PARP assays containing recombinant tankyrase 1, 25 mM biotinylated NADþ , and the

indicated recombinant proteins were analysed by immunblotting with anti-biotin. (G) CPAP-C is modified by tankyrase 1. (H) CPAP-N is not modified

by tankyrase 1. (I) Tankyrase 1 modification of CPAP-C is inhibited by PARP inhibitors 3AB, PJ34, or XAV939. (J) PARsylation of CPAP-C by

tankyrase 1 is demonstrated by addition of unlabelled NADþ (100mM). GST, Glutathione S-transferase; TRF1, telomere-repeat-binding factor 1.
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cells. We hypothesized that as TNKS1 overexpression leads to loss
of CPAP, it should mimic the effect of CPAP depletion by short
interfering RNA. Normal centriole duplication can be readily
scored as two centrioles at each spindle pole in a mitotic cell.
Whereas, cells depleted of CPAP show single centrioles at each
pole. We stained cells with the centrosome marker CP110 and
scored mitotic cells containing a single centriole at each spindle
pole. As shown in Fig 3E,F, induction of FlagTNKS1 led to a

dramatic increase in cells containing unduplicated centrioles.
Similar results were obtained using centrin as a marker (Fig 3G,H).

TNKS1 depletion impacts centrosome function
To determine whether endogenous CPAP levels are influence by
TNKS1, we analysed stable TNKS1 knockdown HTC75 cell lines
generated by infection with lentiviruses expressing TNKS1 or
green fluorescent protein (GFP) short hairpin RNA (shRNA). As
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shown in Fig 4A, immunoblot analysis of line TNKS1–13 showed
depletion of TNKS1 and concomitant increase in CPAP protein
(compared with the GFP control line), indicating that TNKS1 is
required to maintain WT levels of CPAP. To determine whether
the increased CPAP protein levels influenced CPAP function
at centrosomes, we considered phenotypes induced by CPAP

overexpression. Previous studies showed that overexpression of
CPAP in human cells led to abnormally elongated centrioles,
supernumerary procentrioles and multipolar spindles. First we
analysed cells for centriolar elongation. Costaining of TNKS1–13
cells with CPAP and a-tubulin revealed long threads containing
CPAP (Fig 4B). Moreover, these CPAP containing long threads
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costained with acetylated tubulin (Fig 4C), a hallmark of
stable microtubules and a characteristic of CPAP-induced
centriolar elongations. We detected these threads in TNKS1-
depleted cells, but not in GFP control (Fig 4D,E). Similar
results were obtained using centrin as a marker (Fig 4F,G,H).
Previous studies showed that CPAP overexpression led to super-
numerary centrosomes and as a result, multipolar spindles.
Consistent with this, we observed centrosome amplification
(measured as greater than four centrioles per interphase cell;
Fig 4I,J) and multipolar spindles (Fig 4K,L) in three different TNKS1
shRNA lines (TNKS1–11, 12 and 13). We note that the multi-
polarity could also be due to other aspects of TNKS1 function at
spindle poles. Together these data indicate that in the absence of
TNKS1, CPAP levels are overexpressed sufficiently to impair
normal centrosome function.

TNKS1 induces loss of CPAP in G1
Previous studies showed that CPAP was degraded in G1 phase of
the cell cycle, likely mediated by the APC–Cdh1 E3 ligase [11].
We thus asked if CPAP was specifically stabilized in this stage of
the cell cycle in the absence of TNKS1. TNKS1 or GFP shRNA
cells were synchronized by a double thymidine block, released,
and collected every 2 h. The cell-cycle stage was analysed by
fluorescence-activated cell sorting, and the protein content at
each stage by immunoblotting (Fig 5A). As shown previously, in
GFP shRNA control cells CPAP was degraded at 12 h (early G1)
(Fig 5A, left panel). However, in TNKS1-depleted cells CPAP was
stabilized at 12 h (Fig 5A, right panel). This stabilization was not
due to a defect in the E3 ligase, as cyclin B1 (the target of the APC–
Cdc20 and APC–Cdh1) and Cdc20 (the target of the APC–Cdh1)
were degraded normally at 12 h in the absence of TNKS1.

Immunofluorescence analysis of synchronized cells detected
TNKS1 at interphase centrosomes at 12 h in GFP shRNA control
cells (Fig 5B, upper panels). The specificity of the signal was
confirmed by the absence of TNKS1 at centrosomes in the TNKS1
shRNA cells (Fig 5B, lower panels). Immunofluorescence analysis
across the cell cycle showed that TNKS1 was detected at
interphase centrosomes at 12 h in 16% compared with 1%–2% of
cells at all other stages of the cell cycle (Fig 5C). Together, these data
indicate that TNKS1 localizes to centrosomes in G1, coinciding
precisely with the cell cycle–regulated timing of CPAP degradation.

CONCLUSION
The results described here identify CPAP, a protein crucial for
centrosome function, as a new acceptor of PARsylation by TNKS1.
Our studies suggest that TNKS1 localizes to centrosomes

promoting degradation of CPAP in early G1, thereby preventing
over-elongation of centrioles and ensuring proper centrosome
function. At least two other centrosomal proteins Cep76 [22] and
Cep170 [23] contain RXXPDG TNKS1 binding sites and a number
of other centrosomal proteins contain degenerate motifs, raising
the possibility that TNKS could regulate stability of additional
centrosomal proteins. Previous studies have demonstrated
localization of other PARPs (PARP1 [24] and PARP3 [25]) to
interphase centrosomes and PARP1 was found to be required for
maintenance of proper centrosome number [26]. Hence,
PARsylation (through multiple PARPs and targets) may have a
general role in centrosome function.

METHODS
PARP assays. Samples containing recombinant baculovirus-
derived TNKS1 (0.2mg), 25mM biotinylated NADþ (Trevigen),
and recombinant E. coli–derived GST–CPAP-C or GST–CPAP-N
(2 mg) or baculovirus-derived TRF1 (2 mg) were performed as
described previously [16]. See supplementary Methods online
for further detail.
Immunoprecipitation. Cell lysates generated in TNE buffer
(10 mM Tris (pH 7.8), 1% Nonidet P-40, 0.15 M NaCl, 1 mM
EDTA) were immunoprecipitated with anti-Flag or anti-myc
agarose bead conjugates (Sigma), fractionated on SDS–
polyacrylamide gel electrophoresis gels, and processed for
immunoblotting (supplementary Methods online).
Stable cell lines. TNKS1 shRNA cell lines (11, 12, and 13) and the
GFP shRNA line were generated by lentiviral infection of HTC75
cells as previously described [27]. F7 is a HTC75 cell line
containing an inducible allele of FlagTNKS1. F7 cells were grown
in parallel under uninduced (with doxycyclin) and induced
(without doxycyclin) conditions for 16 h (supplementary
Methods online).
Indirect immunofluorescence. For analysis of elongated centrioles
cells were cold-treated for 1h at 4 1C, pre-extracted with Triton X-100
(0.5%) in PBS for 1 min, and then fixed in methanol at � 20 1C for
10 min. For all other immunofluorescence analysis, cells were fixed
in methanol at � 20 1C for 10 min (supplementary Methods online).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Fig 4 | Tankyrase 1 depletion leads to an increase in CPAP protein and impacts centrosome function. (A) Immunoblot analysis of HTC75 stable cell

lines expressing green fluorescent protein (GFP) or Tankyrase 1 (TNKS1)–13 short hairpin RNA (shRNA). (B–H) Depletion of tankyrase 1 leads to

centriolar elongation. (B,C,F) Immunofluorescence analysis of shRNA cell lines cold treated for 1 h at 4 1C, pre-extracted with Triton X-100 (0.5%) for

1 min, fixed in methanol, and stained with antibodies to (B,C) CPAP (green) and (B) a-tubulin (red) or (C) acetylated tubulin (red) or (F) centrin

(red). DAPI (4,6-diamidino-2-phenylindole) staining is in blue and merge is yellow. (D,G) Graphical representation of the frequency of cells with

elongated centrioles from (D) two experiments, where n¼ 100 cells each, or (G) from three experiments, where n¼ 100 cells each; data represent the

mean±s.d. (E,H) Graphical representation of the lengths of centrioles±s.e.m. Labelled with (E) acetylated tubulin (n¼ 20 centrioles) or with centrin

(n¼ 40 centrioles). Depletion of tankyrase 1 leads to (I,J) centriole amplification and to (K and L) multipolarity. (I,K) Immunofluorescence analysis of

GFP and TNKS1–11 shRNA cell lines fixed in methanol and stained with antibodies to centrin (green) and a-tubulin (red). DAPI staining is in blue

and merge is yellow. (J,L) Graphical representation of the frequency of cells with (J) greater than 4 centrioles or (L) with multipolar spindles. Data

represent the mean±s.d. from three experiments using TNKS1–11, –12, and –13, where n¼ 100 cells each. Scale bar, 5mm.
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Fig 5 | Tankyrase 1 is required for degradation of CPAP in G1 phase of the cell cycle. (A) Immunoblot analysis of staged cell cycle extracts from

green fluorescent protein (GFP; left panel) or Tankyrase 1 (TNKS1)–11 (right panel) stable HTC75 short hairpin RNA (shRNA) cell lines. Cells were

synchronized by a double thymidine block and released for 0 h (G1/S), 2 h (early S), 4 h (mid S), 6 h (late S), 8 h (G2), 10 h (M), 12 h (early G1), and

14 h (mid G1). Fluorescence-activated cell sorting analysis is indicated below. Protein levels relative to a-tubulin and normalized to the 0 h time point,

are indicated beneath the blots. (B) Tankyrase 1 is detected at interphase centrosomes at 12 h (early G1) in control GFP (top panels) but not TNKS1

(bottom panels) shRNA cell lines. Immunofluorescence analysis of cells at 12 h fixed with methanol and stained with anti-TNKS1 763 (green) or

anti-centrin (red) antibodies. DAPI (4,6-diamidino-2-phenylindole) staining is in blue and merge is yellow. (C) Tankyrase 1 localizes to centrosomes

exclusively in G1. Immunofluorescence analysis of GFP shRNA cells at 0, 4, 8, 12, and 16 h fixed with methanol and stained with anti-TNKS1 763

(green) or anti-centrin (red) antibodies. DAPI staining is in blue and merge is yellow. The frequency of cells where tankyrase 1 localizes to the

interphase centrosome is indicated at the bottom (n¼ 100 cells). Scale bar, 5mm.
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