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Cells actively position their nucleus within the cytoplasm. One
striking example is observed during skeletal myogenesis. Differ-
entiated myoblasts fuse to form a multinucleated myotube with
nuclei positioned in the centre of the syncytium by an unknown
mechanism. Here, we describe that the nucleus of a myoblast
moves rapidly after fusion towards the central myotube nuclei.
This movement is driven by microtubules and dynein/dynactin
complex, and requires Cdc42, Par6 and Par3. We found that
Par6b and dynactin accumulate at the nuclear envelope of
differentiated myoblasts and myotubes, and this accumulation is
dependent on Par6 and Par3 proteins but not on microtubules.
These results suggest a mechanism where nuclear movement after
fusion is driven by microtubules that emanate from one nucleus
that are pulled by dynein/dynactin complex anchored to the
nuclear envelope of another nucleus.
Keywords: nuclear movement; microtubules; skeletal
muscle; Par6; dynein
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INTRODUCTION
Nuclear positioning within cells is required for zygote formation,
mitosis, cell migration and multiple developmental processes.
Abnormal nuclear positioning is associated with muscle and brain
pathologies [1]. Nuclear movement events are mainly driven by
microtubules (MTs) and actin cytoskeletons [2,3].

The small GTPase Cdc42 is a major regulator of the
cytoskeleton and cell polarization, and regulates multiple nuclear

positioning events [4,5]. One Cdc42 effector, Par6, is part of a
conserved complex involved in cell polarization. Par6 forms
a complex with Par3, via the PDZ domains [6], and controls
cytoskeleton organization during spindle positioning, apical–basal
epithelia formation and neuronal polarization [7,8]. Par proteins
have been implicated in nuclear movement in Drosophila
oocyte [9]. However, a role for Par proteins in nuclear
movement in vertebrates has not been established.

An extreme example of nuclear positioning occurs in skeletal
muscle. During muscle formation, multinucleated myotubes are
generated by the fusion of differentiated myoblasts, which then
differentiate into myofibers. Myotubes are characterized by
centrally located nuclei while myofiber nuclei are positioned in
the periphery, with few nuclei specifically clustered at the
neuromuscular junction [10]. These observations suggest that
multiple nuclear movements occur during myofiber formation.
Classic time-lapse microscopy studies showed that nuclei move
within the centre of myotubes but it is not known how the
myoblast nucleus reaches the centre of the myotube after
fusion [11]. The position of nuclei in muscle fibres has been
used as a diagnostic tool for more than 40 years to identify
multiple muscle disorders [12], and it is not clear if mispositioned
nuclei lead to muscle disorders. We recently demonstrate that
improper nuclear positioning affects muscle function, suggesting
that mispositioned nuclei in muscle disorders might be involved in
the pathology [13].

The MT network is dramatically reorganized during myotube
formation. In nondifferentiated myoblasts, MTs nucleate and are
anchored to the centrosome whereas in differentiated myoblasts
and myotubes, the nuclear envelope (NE) accumulates centroso-
mal proteins, such as pericentrin, and becomes the main MT
organizing centre [14]. In multinucleated myotubes, most of the
MTs remain attached to the NE and form long parallel arrays
throughout the myotube [14–16].

Here we show that after fusion, the nucleus of the myoblast
moves towards the centre of the myotubes driven by MTs and
dynein/dynactin complex, and this process is regulated by Cdc42,
Par6 and Par3.
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RESULTS AND DISCUSSION
Microtubules drive nuclear movement after fusion
To study how the nucleus of myoblasts reach the centre of
the myotube after fusion, we used C2C12 myogenic cell line
expressing stably green fluorescent protein (GFP)-histone H1 that
can be differentiated into myotubes upon switching to differentia-
tion media (DM). We followed nuclear movement during
myotube differentiation using multipositioning time-lapse micro-
scopy (supplementary Movie S1 online). When a myoblast fused
at the distal end of a myotube (which occurred in more than 60%
of the observed events fusions), the newly fused myoblast nucleus
moved towards the centre of the myotube nuclei right after fusion
(16.7±2.3 min, n¼ 149) at a speed of 0.76mm/min (Fig 1A,C;
supplementary Movie S2 online). The same general properties
were also found using primary myoblasts from newborn mouse
muscles, and the nuclear movement after fusion speed was
0.88 mm/min (Fig 1B,C; supplementary Movie S3 online). Inter-
estingly, we observed a bigger delay between fusion and initiation
of nuclear movement in situations where the distance between the
myoblast nucleus and the nuclei in the centre of the myotube was
higher, suggesting an interplay between these nuclei (Fig 1D).

Next, we investigated the role of MTs in nuclear movement
by overexpression of spastin, a MT severing protein, either in
myoblasts or myotubes [17] (supplementary Fig S1a online). We
found that overexpression of spastin, but not of nonsevering
spastin mutant (E442Q-spastin), in myotubes dramatically reduces
nuclear movement after fusion of nonexpressing myoblast (Fig 1F).
We never observed fusion of spastin-expressing myoblasts.

To test the role of MTs dynamics on nuclear movement, we
used taxol (a MT-stabilizing drug) and nocodazole (a MT-
depolymerizing drug) at very low concentrations known to impair
MT dynamics [18,19] and found that fusion was inhibited
(data not shown), preventing the analysis of nuclear movement
that occurs after fusion. To overcome this problem, we added
the inhibitors right after a fusion event and before nuclear
movement had occurred. As yet, we have not been able to
predict fusion events and these occur on an average of 2.7±0.16
events per myotube in 24 h. To circumvent the low rate of
fusion per myotube, we performed multipositioning time-lapse
imaging of differentiating myotubes before and after the addition
of the inhibitor, and analysed only the fusion events that occurred
no more than 15 min before inhibitor addition. We found that
nuclear movement after fusion was inhibited in the presence of

taxol or nocodazol (Fig 1E,F; supplementary Movie S4 online).
Thus, MTs dynamics are required for nuclear movements after
myoblast fusion.

Dynein and dynactin are involved in nuclear movement
The dynein/dynactin complex drives MT-dependent organelle
movement [20,21]. We found that nuclear movement after fusion
was reduced in dynein heavy chain (DHC), dynein intermediate
chain (IC2) or dynactin p150 subunit (p150) short interfering RNA
(siRNA)-treated GFP-H1-C2 and primary cells (Fig 2A,B;
supplementary Fig S1b online, supplementary Movie S5 online)
without any effect on fusion index or MT organization
(supplementary Figs S1d and S5a,b online). Overexpression of
p50 subunit of dynactin in myotubes that inhibits dynein/dynactin
complex also reduced nuclear movement after fusion of non-
expressing myoblasts (Fig 2A; supplementary Fig S1c online,
supplementary Movie S6 online). Therefore dynein/dynactin
complex is involved in nuclear movement after fusion.

Cdc42, Par6 and Par3 regulate nuclear movement
We investigated the role of the small G-protein Cdc42 in nuclear
movement after myoblast fusion. As Cdc42 is involved in
myotubes fusion (supplementary Fig S1d online) [22], we used
primary myoblasts from Cdc42 flox mice [23]. In the absence of
Cre recombinase, Cdc42 is expressed and cells fuse, form
myotubes and nuclei move after fusion at the same speed as
wild-type myoblasts (Fig 2C–E). After infection with an adenovirus
encoding Cre recombinase after transfer to DM, Cdc42 levels are
decreased without affecting fusion index (supplementary Fig S1e,f
online) and nuclear movement after fusion is reduced when
compared with uninfected cells (Fig 2C–E; supplementary Movies
S7 and S8 online). In addition, microinjection of dominant-
negative (Cdc42N17) and constitutively active (Cdc42V12) GFP-
Cdc42 [24] in myotubes reduced nuclear movement after fusion,
although we observed very few fusion events (Cdc42N17, n¼ 3
and Cdc42V12, n¼ 4; Fig 2F), as previously described [22,23].
Overall, these results demonstrate that Cdc42 is required for
nuclear movement after fusion.

Par6 is a Cdc42 effector involved in cell polarization that
interacts with Par3 and regulates dynein-dependent MT
polarity [4,25,26]. We investigated the role of Par3 and the
three mammalian Par6 genes (a, b and g), which may have distinct
functions [27], on nuclear movement after fusion. Depletion of

Fig 1 | Nuclear movement after fusion requires MTs. (A) Frames from a time-lapse two-channel movie (phase contrast and fluorescence) of

differentiated GFP-H1-C2 myoblasts during fusion (supplementary Movie S2 online). A myoblast (red outline) fused with a myotube (green outline)

to form a new myotube (white outline; time in h:min). Note that after fusion (0:40), myoblast nucleus (arrowhead) moves towards the myotube nuclei

(arrow). (B) Frames from a time-lapse movie of differentiated primary myoblasts during fusion (supplementary Movie S3 online). A myoblast (red

outline) fused with a myotube (green outline) to form a new myotubes (white outline). Note that after fusion (00:40) myoblast nucleus (arrowhead)

moves towards the myotube nuclei (arrow). (C) Speed of the nuclei after fusion of myoblasts into myotubes on differentiated GFP-H1-C2 and primary

myoblasts. (D) Plot representing the distance between the myoblast nucleus and the nuclei in the centre of the myotube (distance between nuclei,

y axis) and the time delay between fusion and initiation of myoblast nuclear movement (delay before nuclear movement, x axis). (E) Frames from a

time-lapse two-channel movie of differentiated GFP-H1-C2 myoblasts during fusion of a myoblast (red outline) with a myotube (green outline) after

addition of 100 nM taxol (supplementary Movie S4 online). Fusion occurred between 00:15 and 00:30, and taxol was added at 00:45. Note that myoblast

nucleus (arrowhead) did not move towards the myotube nuclei (arrow). (F) Speed of the nuclei after fusion of differentiated GFP-H1-C2 cells in

nontreated, non-transfected myotubes (Ctr), myotubes expressing the indicated spastin constructs as in supplementary Fig S1a online, or myotubes

treated with 75 nM nocodazole (Ndz) or 100 nM taxol as in (E). Scale bar in (A,B,E), 20mm. P-value in (C,D,F); **Po0.01, ***Po0.005. Red line

indicates the median. MTs, microtubules.
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Par6b, Par6g and Par3 with siRNA induced a significant reduction
of nuclear movement after fusion, whereas Par6a siRNA did not
have effect, in both GFP-H1-C2 and primary cells (Fig 3A–C;
supplementary Fig S3a online, supplementary Movie S9 online).
Efficiency and specificity of siRNA depletion were evaluated
by western blot and reverse transcriptase PCR (supplementary
Fig S2a,e–j online). No changes in fusion index were observed
after siRNA transfection, with the exception of Par6g siRNA where
the fusion index was 60% of the control (supplementary Fig S1d
online). MT organization was not affected under these conditions
(supplementary Fig S5a,b online). Moreover, microinjection of
myotubes with a dominant-negative construct of Par3 that disrupts
Par3–Par6 interaction [26] also reduced nuclear movement after
fusion (Fig 3B; supplementary Fig S3b online, supplementary

Movie S10 online). Together, our results show that Par6 and Par3
control nuclear movement after fusion.

Par6b and dynactin accumulate at the NE
To understand how Par6 and dynein/dynactin complex are
involved in nuclear movement after fusion, we determined their
intracellular localization and found that Par6b, p50 and p150
accumulated at the NE of myotubes and differentiated myoblasts
nuclei (which accumulate pericentrin at the NE; Figs 4A–E
and 5E). In nondifferentiated myoblasts, Par6b was not at the
NE whereas p50 and p150 were found at the centrosome
(Fig 4C–E). These accumulations were significantly reduced in
Par6b and p150 siRNA-treated cells (Fig 5A,C).
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Fig 5 | Par proteins regulate Par6 and dynactin localization at the NE of differentiated myoblasts and myotubes. (A) Quantification of nuclei with Par6b
at the NE in differentiated myoblasts and myotubes transfected with the indicated siRNAs, relative to non-siRNA control. At least 1,700 nuclei were

counted corresponding to three independent experiments. (B) Representative epi-fluorescence images showing Par6b, pericentrin and DNA (DAPI)

staining in control, Par6g and DHC siRNA. (C) Quantification of nuclei with p150 at the NE in differentiated myoblasts and myotubes transfected

with the indicated siRNAs, relative to non-siRNA control. At least 1,600 nuclei were counted corresponding to three independent experiments.

(D) Representative epi-fluorescence images showing p150, pericentrin and DNA (DAPI) staining in control, Par6b and DHC siRNA. (E) Quantification

of nuclei with Par6b and p150 at the NE of differentiated myoblasts and myotubes in cells untreated (Ctr) or treated with 5 mm nocodazole during 2 h

before fixation (Ndz). At least 800 nuclei were counted corresponding to three independent experiments. (F) Proposed model for nuclear movement

after fusion. Before fusion, both MTs from differentiated myoblast (orange) and myotube (green) nuclei are anchored by their minus ends to the

nuclei with Par6b and dynein/dynactin at the NE (brown). After fusion, MTs emanating from the myoblast nucleus contact the nuclei of the myotube
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(orange arrow). In addition, or in alternative, MTs emanating from the myotube nuclei might also contact the myoblast nuclei (orange; right inset)

via dynein/dynactin resulting in the movement of the myoblast nucleus on the MTs. P-value in (A), (C) and (E); *Po0.05, **Po0.01. Errors bars are
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We then investigated how Par6b and p150 are recruited to the
NE. Par6b NE accumulation was reduced by Par6g and Par3
siRNA to the same extent as Par6b siRNA, whereas depletion of
DHC or p150 had a lower effect (Fig 5A,B). Moreover, p150 NE
accumulation was reduced by Par6b, Par6g and Par3 siRNA to the
same levels of p150 siRNA, whereas DHC siRNA had a lower
effect (Fig 5C,D). Finally, we found that depolymerization of MTs
did not disrupt the NE accumulation of Par6b and p150 (Fig 5E;
supplementary Fig S4a–c online), thus MTs are not required for the
localization of Par6b and p150 at the NE. These results suggest
that Par6b, Par6g and Par3 proteins are involved in the
recruitment of dynein/dynactin complex to the NE, a new function
for Par proteins and an alternative mechanism for the recruitment
of dynein/dynactin complex to the NE [2,28–30]. Surprisingly, we
also found that Par6b requires Par6g for its proper localization to
the NE. This indicates that there exists an as yet unappreciated
cross dependence between Par6 proteins, and strongly suggests
that these proteins may have different roles.

Overall, our results support a mechanism for nuclear movement
after fusion where MTs emanating from the newly fused myoblast
nucleus grow and reach the myotube nuclei in the centre of the
myotube. Then, dynein/dynactin complex at the NE of myotube
nuclei pulls on these MTs resulting in the movement of the
myoblast nucleus from the periphery towards the centre of
the myotube (Fig 5F). In alternative, dynein/dynactin complex at
the NE of the newly fused myoblast nucleus can interact and move
on MTs emanating from the myotube nuclei at the centre of the
myotube (Fig 5F), as observed during zygote formation [3]. Our
results do not discriminate between these two possibilities and
both these mechanisms can simultaneously drive nuclear
movement. The nuclear positioning events and mechanisms that
we described are probably involved in muscle regeneration and
misregulated in muscle pathologies. Future studies addressing this
possibility will be important for understanding the processes of
tissue regeneration and muscle pathologies.

METHODS
Myotube differentiation and fusion index. GFP-H1-C2 cells were
plated on 0.1% gelatin-coated dishes or acid-washed coverslips
for 1–2 days before differentiation. Primary myoblasts were plated
on Matrigel (BD Biosciences)-coated dishes in 20% FBS IMDM
supplemented with gentamycin at 0.05 mg/ml for 4 days before
differentiation. Differentiation was induced by switching to DM
(DMEM for C2C12 cells or IMDM for primary cells, with 1% horse
serum). Fusion index was calculated as the percentage of nuclei
inside myotubes with more than three nuclei relative to the total
number of nuclei, and normalized relative to control conditions.
Microscopy. Epi-fluorescence images were acquired using a
Nikon Ti microscope equipped with a CoolSNAP HQ2 camera
(Roper Scientific), an XY-motorized stage (Nikon), using a � 40
1.0 NA PL APO oil or a � 100 1.4 NA PL APO oil objectives,
driven by Metamorph (Molecular Devices). Multipositioning
images were stitched with Metamorph (Molecular Devices). Life
imaging was performed using an incubator to maintain cultures at
37 1C and 5% CO2 (Okolab) and � 10 0.3 NA PL Fluo dry or � 4
objectives. Confocal images were acquired using Leica SPE
confocal microscope with a � 63 1.3 NA Apo objective.
Quantification of nuclear movement after fusion speed. Nuclear
speed after fusion was measured in 60-h time-lapse movies

acquired 2 days after switching to DM. Fusion events between
myoblast and myotubes were identified by observation of time-
lapse sequences. The position of the nucleus of the myoblast was
manually determined for each frame after fusion using Metamorph
(Molecular Devices), until the nucleus reached the cluster or up to
4 h after fusion. Nuclear movements were only measured
in situations where the fusion event occurred more than 30 mm
away from the myotube nuclei (distal end fusion). Nuclear
movement speeds between consecutive frames were then
calculated and averaged using Excel (Microsoft). Gaussian
distribution of averaged speeds of each nuclei was tested using
the D’Agostino and Pearson omnibus normality test for each
conditions (GraphPad software); it appeared that the distribution
was not Gaussian so the statistical significance between
conditions was measured using the Mann–Whitney test for
non-Gaussian distributions.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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