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Abstract
Like many diseases, diabetic nephropathy is defined in a histopathological context and studied
using reductionist approaches that attempt to ameliorate structural changes. Novel technologies in
mass spectrometry-based proteomics have the ability to provide a deeper understanding of the
disease beyond classical histopathology, redefine the characteristics of the disease state, and
identify novel approaches to reduce renal failure. The goal is to translate these new definitions into
improved patient outcomes through diagnostic, prognostic and therapeutic tools. Here, we review
progress made in studying the proteomics of diabetic nephropathy and provide an introduction to
the informatics tools used in the analysis of systems biology data, while pointing out statistical
issues for consideration. Novel bioinformatics methods may increase biomarker identification, and
other tools, including selective reaction monitoring, may hasten clinical validation.
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Introduction
Our knowledge of the pathogenesis and progression of chronic diabetic complications
historically has been based on functional and structural assessments of the disease. Renal
functional assessments have included glomerular filtration rate and albuminuria, with the
latter being used as a biomarker of disease progression for several decades. Many perceive
the disease from a glomerulocentric view and characterize the disease based on
histopathological findings such as glomerular enlargement with mesangial expansion,
glomerular capillary basement membrane thickening, podocyte structural changes, and
Kimmelstiel-Wilson nodules. Consequently, research into the pathophysiology, as well as
the development of therapeutics to treat diabetic complications, have focused on
ameliorating this histopathology. An important goal of this review is to provide a current

Address for corresponding author: Ronald G. Tilton, Ph.D. Department of Internal Medicine, Division of Endocrinology 8.138
Medical Research Building The University of Texas Medical Branch 301 University Blvd. Galveston, TX 77555-1060 Phone:
409-772-8738, Fax: 409-772-8709 rgtilton@utmb.edu.

Ethical standards The authors declare that all experiments over which the authors have control in this review article comply with all
current laws of the country in which these experiments were performed (USA).

Conflict of interest The authors do not have a financial relationship with the organization that sponsored the research. We have full
control of all primary data and agree to allow the journal to review these data if requested.

NIH Public Access
Author Manuscript
J Cardiovasc Transl Res. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
J Cardiovasc Transl Res. 2012 August ; 5(4): 479–490. doi:10.1007/s12265-012-9372-9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



understanding of how proteomics has contributed to a systems biology view of diabetic
nephropathy based on disease pathophysiology, not solely on the structural characteristics
that are produced by the disease process.

The Diabetes Control and Complications Trial [1] provided strong documentation of a
causal link between tight control of hyperglycemia with insulin and the rate of development
of diabetic nephropathy in type 1 diabetic patients. Despite this clinical evidence, the
mechanism of how diabetes leads to the functional and structural changes that currently
define diabetic nephropathy still remains controversial [2]. Over the last four decades,
reductionistic strategies focused on individual proteins or metabolic pathways have been
used to understand the pathophysiology of diabetic complications, and numerous
biochemical and metabolic pathways have emerged as predominant mechanisms for
glucose-induced tissue injury [3-16]. While it is recognized that there are numerous points
of crosstalk between these different mechanisms [17-19], strategies that try to integrate the
numerous biomolecules into a systems understanding of diabetic complications have not yet
been fully developed.

Identification of the entire human and rodent genomes has led to the development of web-
based databases containing the amino acid sequence of all expressed proteins derived from
the genes identified in these genome projects (Mascot, if the MS/MS spectra of peptides are
used for protein identification; ProteinProspector if the mass of the charge ratios of peptides
are used for protein identification). The field of proteomics — a description of all expressed
proteins within particular subcellular compartments, cells, tissues, organs, or model
organisms — has grown tremendously due to a convergence of these databases with
technical advances in protein fractionation, high throughput mass spectrometry, protein
identification, and web-based data resources. These advances in mass spectrometry and web
data resources now enable the expression level of thousands of proteins to be quantified
simultaneously, much like the genomic approaches that allow thousands of genes to be
quantified in one experiment. To date, descriptions of these proteomes have resulted in large
datasets of proteins identified in normal tissues, and large sets of dysregulated proteins
identified in disease states. However, it is difficult to compare proteomic studies due to a
variety of reasons, including: differences in cells and tissues evaluated, differences in
methods used for protein extraction and separation, differences in the mass spectrometers
that are used, lack of standardization of what constitutes a significantly dysregulated protein,
and uncertain application of bioinformatics.

Proteomics contributes to systems biology, a process of knowledge discovery from large sets
of biological data created by omics approaches, regardless of the source. These omics
datasets that are parts of systems biology include genomics (genes), transcriptomics
(message), proteomics (proteins), and metabolomics (metabolites) that can be integrated into
higher level understandings of a disease process (Figure 1). In a systems biology-based
approach of proteomics (to which we will restrict our attention for this review), individual
protein elements (e.g., angiotensin-II or the angiotensin receptor) are subsets of higher order
cassettes of information processing (e.g., angiotensin receptor signaling). The function of the
individual elements must be integrated to describe the overall function of the cassette (e.g.
regulation of systemic arterial blood pressure by renin and angiotensin). More importantly,
individual cassettes function within the context of all activities to which cells and tissues are
responding, and higher order relationships must be integrated based on the interactions of
multiple cassettes (e.g., regulation of renal sodium excretion, regulation of inflammation).
Consequently, the overall process of developing a proteomics-focused, systems biology-
based understanding of diabetic nephropathy requires information about the expression level
of thousands of individual proteins, their function, and how their function is altered by the
diabetes-driven metabolic activities within cells and tissues. This is diametrically opposed to
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reductionistic strategies focused on an individual protein or pathway affected by diabetes. A
goal of systems biology is to integrate all of these interconnected, dysregulated proteins and
metabolites to build a model that provides novel pathophysiological perspectives based on
the functional activities of all these intrinsic proteins. This is an immense challenge, but
ultimately, will redefine diabetic nephropathy based on the pathophysiology of the disease,
not solely on the structural characteristics that are produced by the disease process.

As technology advances in the quality and quantity of protein identification, it is imperative
that parallel advances be made in the standardization and bioinformatic analysis of data. An
important goal in this review, in addition to describing new biological knowledge being
developed through proteomics, is to provide an update on novel strategies being developed
in this area. Proteomics, as a part of systems biology, requires methods for the analysis of a
multitude of proteins at once. Since a major application of proteomics is biomarker
identification, systems biology will play an important role in identifying appropriate protein
targets. While most of the diabetes-related proteomic effort has focused on biomarker
discovery and identification of new therapeutic targets, here our focus will be on reviewing
the status of literature in the use of systems approaches to proteomics. We will review some
concepts in mass spectrometry-based proteomics to provide a background to explore the
status of efforts to understand the proteome of diabetic kidney disease as well as cover
issues relating to analysis of such data.

Proteomic technologies used for studying diabetic nephropathy
Numerous reviews over the last 10 years have detailed the technical aspects of proteomics,
including advantages and disadvantages of the different mass spectrometers available for
this work, technical advances in the mass spectrometers, the inherent complexity of the
proteome due to cellular and tissue protein expression patterns that change over time and
with disease, and the extensive posttranslational modification of proteins that govern
function and that are disturbed by disease [20-22]. It is beyond the scope of this review to
provide a detailed assessment of this literature. Conceptually, proteomic research starts with
protein extraction from cells, tissues and organs, and in some cases, degradation into
peptides with concurrent isotope labeling. Then, proteins or peptides are separated using
either gel electrophoresis or liquid chromatography (LC) before being measured by mass
spectrometry. Because the majority of proteomic studies in diabetes have used gel-based
separation, this approach, with its inherent disadvantages, will be briefly described, and then
contrasted with non gel-based approaches that have been developed to overcome some of
these weaknesses.

Gel-based methods
Two-dimensional polyacrylamide gel electrophoresis (2D-GE) followed by mass
spectrometry initially has been the most widely used proteomics technique to explore
diabetic nephropathy. This gel-based approach requires that complex mixtures of proteins be
separated by isoelectric point (pI) in the first dimension and by molecular weight in the
second dimension. Despite its widespread application in diabetic studies using tissue culture
[23,24], animal [24-27], and human [28] renal tissues, relatively few dysregulated proteins
have been identified. Down regulation of podocyte annexins III and VI were observed out of
39 proteins identified in an attempt to elucidate the podocyte proteome [23]. Using proteins
derived from whole kidney extracts of OVE26 mice, only 41 proteins were identified, with
expression of monocyte/neutrophil elastase inhibitor increased and elastase IIIB decreased,
suggesting that elastin expression is altered in diabetic kidneys [27]. Similarly, in our work,
we used 2D-GE to identify 147 nonredundant proteins dysregulated in the renal cortex of
db/db mice, and used Gene Ontology classification to map molecular functions dysregulated
by diabetes [25].
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This inability of 2D-GE to identify large numbers of proteins is due primarily to several
shortcomings of this experimental approach, including: limited loading capacity of the 2D
gels, inability of hydrophobic membrane proteins to enter the gel used for isoelectric
focusing, poor resolution of proteins at the extreme range of pI and molecular weight. The
need to individually pick, extract, digest and analyze spots on 2D gels creates a time-
consuming process not readily amenable to high throughput. Another major challenge using
2D-GE is associated with issues of quantitation and reproducibility [29-31], given the
number of replicate gels necessary to give adequate detection of differentially expressed
proteins [25]. An additional caveat is the observation that individually resolved spots may
contain multiple distinct proteins of nearly identical molecular weight and pI, thus making
protein quantification in that spot problematic. This limitation is increasingly an issue as
significant advances are made in the resolving capability of mass spectrometers. Finally,
separation by charge in the first dimension of 2D gels can result in significant charge
training, in which post-translational modifications of a single protein result in multiple spots
with slight variations in molecular weight and pI. While the intensity of individual spots
within the charge train can differ significantly between experimental groups, the total
protein amount may not differ. Recent advances, including prefractionation and sequential
extraction with improved detergents to enrich subpopulations of proteins [32], improved
dyes for spot staining, and DIGE (difference gel electrophoresis) that allows multiplexing
for higher throughput [33,34], have aided 2D-GE.

Non gel-based, shotgun methods
The aforementioned shortcomings of 2D-GE have resulted in the development of alternative
methods for protein separation prior to mass spectrometry. Since mass spectrometry
characterizes peptides and proteins based on molecular mass, stable isotope labeling of
peptides has been an ideal choice for quantification of proteins by mass spectrometry. A
variety of metabolic (isotopically enriched nutrients incorporated into proteins at specific
amino acid sites during growth), chemical, or enzymatic methods have been used for stable
isotope labeling [35]. A less expensive approach than metabolic labeling is the incorporation
of isotope-coded affinity tags (ICAT) on particular components of total peptide digests, such
as cysteine-containing proteolytic peptides [36]. An even simpler approach is the
incorporation of stable tags on N- and C-terminal sites during enzymatic proteolysis,
and 18O incorporation on the C-terminal end of cleaved peptides is one of the most
promising approaches [37]. In this method, when cleavage is performed in heavy water
(H 18

2O) with proteases such as trypsin, Glu-C, or Lys-C, two 18O atoms will be
incorporated into the C-terminal carboxylic acid of all peptides, thereby increasing the mass
of the peptide by 4 Da compared to those peptides cleaved in normal water (H 16

2O). With
this mass difference, a high-resolution mass spectrometer can distinguish the labeled and
unlabeled peptides, and because 18O labeling occurs on all the protease-digested peptides,
proteome coverage and quantitative accuracy are improved. Additionally, 18O labels in the
carboxylate group of peptides are resistant to back exchange, and under routine conditions
used for electrospray ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI), covalent bonds between oxygen atoms and carbonyl carbon in a C-terminal
carboxylate group are stable. Importantly, due to the increased 4 Da mass of the 18O-labeled
peptides, all peptide fragments from a control and experimental group can be mixed together
and run simultaneously to quantify differentially expressed proteins using LC-MS/MS [37].
Despite the slight difference in mass, the peptides elute from LC columns that separate by
charge or hydrophobicity together since their physicochemical properties remain unchanged.
These shotgun proteomics approaches have developed into powerful techniques to identify
large numbers of proteins in complex biological samples, but also suffer from a poor relative
quantification of the identified proteins due to limited sensitivity of the approach, and poor

Starkey and Tilton Page 4

J Cardiovasc Transl Res. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reproducibility of protein identification when measured repeatedly from the same or similar
complex protein samples (technical replicates; discussed below).

New methods in quantitative proteomics research
Although the non-gel, shotgun approaches in which proteins are enzymatically degraded to
peptides and labeled prior to analysis by mass spectrometry are rapidly becoming the gold
standard, methods to more precisely and reliably quantify proteins of interest are being
developed. Selected reaction monitoring (SRM) has been used for decades with triple
quadrupole mass spectrometers to quantitatively analyze small molecules [38,39], but is
increasingly being used to overcome the shortcomings of the shotgun label approaches
[40,41]. As with the quantification of small molecules, SRM use in proteomics takes
advantage of the triple quadrupole mass spectrometer for the quantitative analysis. In
contrast to the shotgun approaches, SRM analyses target specific, predetermined sets of
peptides that represent proteins of interest, and depend on specific SRM transitions for each
targeted peptide. Prior information is required in SRM. First, the specific proteins of interest
must be identified. Second, for each protein of interest, multiple tryptic peptides must be
identified. Suitable peptides must uniquely identify the protein and have good mass
spectrometry responses (no missed cleavages, good ionization efficiency, reproducibly
detected in the mass spectrometer, good mass to charge ratio within the mass range of the
instrument). Third, the fragment ions of these tryptic peptides must have excellent signal
intensities to discriminate these peptides from all other peptides in the complex mixture. As
discussed below, there is assistance provided by web-based databases that can improve the
identification of appropriate peptides. SRM has the potential to assist in the biomarker
validation process as an alternative to ELISA methods.

Defining the renal proteome in normal and diabetic states
Normal renal and urine proteomes

As detailed above, numerous proteomic studies have used 2D-GE and LC-MS/MS
approaches to characterize the renal proteome, including proteomes of renal cortex [42,43],
glomerular cells [44], and tubular epithelial cells [45,46]. In addition, proteomic
methodologies increasingly have focused on the identification and quantification of proteins
found in urine [47-51], primarily to identify potential biomarkers of renal disease [52].
These studies essentially have resulted in large lists of proteins that can be identified in these
tissues. The identified proteins are dependent upon protein abundance that is determined by
how the tissues are evaluated (whole or fractionated tissues; eg, glomeruli and tubules), how
proteins are extracted, what fractionation strategies are used immediately prior to submitting
the sample to a mass spectrometer, and what type of mass spectrometer is used. While
systems biology of renal diseases has been discussed [53], to date, there have been no
attempts to use bioinformatic approaches to combine these datasets into higher order
cassettes describing organ function using systems biology strategies.

Diabetic renal proteome
Construction of dysregulated proteome maps from the quantification of diabetes-induced
global changes in renal protein expression patterns has rarely been attempted. Investigators
have used the db/db mouse model of type 2 diabetes combined with 2-DE to identify large
increases in 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), a key enzyme in ketogenesis
[26], and to identify a number of anti-oxidant (peroxiredoxin 1 and 3, glutathione peroxidase
1, SOD-1) and glycation (glyoxalase 1) enzymes that were increased [54]. The OVE26
mouse model of type 1 diabetes combined with 2-DE has been used to identify 30
dysregulated proteins, with the calcium binding protein calbindin-D28k demonstrating the
largest increase [55]. In a second study using 2-DE of whole kidney extracts from the same
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animal model, these authors describe increased expression of monocyte/neutrophil elastase
inhibitor and decreased expression of elastase IIIB [27]. Using immunohistochemistry of
mouse and human renal tissue, they documented increased elastin expression in tubular
epithelium and interstitium but not in glomeruli. Other investigators, using the same OVE26
mouse model, utilized spectral counting techniques to derive a protein abundance factor, and
identified a much larger number of dysregulated proteins in purified renal tubules (476
differentially expressed proteins) [56]. This number of proteins was sufficiently large to
perform bioinformatics analyses, and dysregulated functional groups included TGF-β
signaling, tight junction maintenance, oxidative stress, and glucose metabolism. Grb2-
related adaptor protein (GRAP) was identified as a novel regulator of TGF-β signaling in
renal tubule cells. An interesting approach combined 2-DE followed by western blotting
using antibodies against advanced glycation endproducts to identify glycated proteins. Mass
spectrometry of these antibody-tagged spots identified a number of glycated proteins
involved in metabolic pathways, oxidative stress, cell signaling, and cell transport in kidneys
sampled from streptozotocin-diabetic rats [57]. While these animal studies have documented
novel proteins of interest in diabetic nephropathy, the varying results obtained, even using
the same animal model and proteomics techniques, emphasize the difficulty in comparing
proteomic studies.

In contrast, a much larger number of studies have addressed the urinary proteome of diabetic
nephropathy [58-60]. However, most studies have been used for biomarker identification
purposes, rather than to define the renal proteome under pathophysiological (i.e. diabetic
kidney disease) conditions [61-70]. The discussion will focus on clinical studies of
biomarker identification in diabetic nephropathy and, in one example, some movement from
identification to validation of protein biomarkers.

Using proteomics for biomarker and therapeutic target discovery in
diabetes

For 30 years, microalbuminuria has been used as a biomarker for increased risk for
developing diabetic nephropathy based on the initial studies documenting that ~80 % of
patients progressed from microalbuminuria to full proteinuria in approximately a decade.
Overt proteinuria, defined as >300 mg/day of urine albumin excretion, is a major hallmark
of diabetic nephropathy [71-74]. However, more recent studies fail to show that changes in
microalbuminuria predict nephropathy progression, and there is a contentious, ongoing
debate about the predictive value of microalbuminuria, and the relative importance of using
microalbuminuria as a renal endpoint in clinical trials [75-77]. This debate centers around
three concerns, including 1) a large number of patients with microalbuminuria revert to
normal albumin excretion, 2) only a small percentage of patients with microalbuminuria
progress to proteinuria, and 3) progressive renal functional decline is already present in one
third of patients that progress into microalbuminuria [78,79]. Nevertheless, urine has
increasingly emerged as an important source for proteomic-based, biomarker evaluation.
This is based on the ease of collection and pre-analytical handling, as well as the stability of
proteins in urine. Urinary proteins are now recognized as composed of the following:
filtered and secreted plasma proteins, proteins secreted by renal tubular epithelium,
proteolytic degradation products of extracellular matrix, and proteins derived from shedded
cells along the urinary tract. Importantly, the ~70 % of urinary proteins derived from the
kidney [80,81] provide a useful biomarker source for evaluating the health status of the
kidney under normal and diseased conditions. While virtually every gel- and non gel-based
mass spectrometry approach has been utilized to assess the urinary proteome of human and
experimental animal models of diabetes, most studies have used 2D-GE and capillary
electrophoresis-mass spectrometry (CE-MS) techniques. The latter appears to be ideally
suited to the low molecular weight range of urinary proteins (<20 kDa) that are well
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represented in the normal urine proteome [82]. Numerous recent reviews, including practical
points on sample collection, protein fractionation, and mass spectrometery are available
[50,61,80,83-88], and will not be repeated here.

The possibility that tubulointerstitial inflammation could contribute to the progression of
diabetic nephropathy [89-91] and could be measured in urine by assessing pro-inflammatory
cytokines, led to a multiplex-based assessment of urine chemokines and cytokines [62]. In
this study, five inflammatory markers (IL-6, IL-8, MCP-1, interferon gamma-inducible
protein (IP-10, and macrophage inflammatory protein -1δ) were assayed in urine obtained
from the First Joslin Study of the Natural History of Microalbuminuria in Type 1 Diabetes,
that started in 1991 and was completed in 2005. 43 patients with microalbuminuria and
stable renal function were compared to 28 patients with microalbuminuria and early
progressive renal function decline, and 74 controls with no microalbuminuria and stable
renal function. All 5 markers were higher in decliners vs nondecliners, and those with more
than two were 5 times more likely to have early progressive renal decline. While there are
caveats in the experimental design that temper a conclusion of causality, the potential
importance of assessing panels of biomarkers is strengthened by this study.

Merchant et al., [92] compared patients with microalbuminuria and early renal functional
decline to patients with microalbuminuria but stable renal function for 10-12 years. They
identified three peptides that were increased, including inositol pentakisphosphate 2 kinase
(IPP2K), zona occludens 3 (ZO-3), and cadherin-like protein FAT tumor suppressor 2, and
three peptides that were decreased, including α-1(IV) and α-1(V) collagen and tenascin-X.
Once again, their results suggest that panels of proteins may provide the best prognostic
value.

Alkhalaf et al. [69] showed some movement from biomarker identification to eventual
validation using patients with overt nephropathy compared to age and sex-matched controls.
The putative biomarkers were previously identified in a similar study [61]. Hopefully, there
will be a clinical return on investment into these biomarker studies, but to date, shotgun
proteomics has not led to a single biomarker in clinical use.

Bioinformatics and systems biology for proteomics
As first presented in Figure 1, the idea that data and information lead to knowledge which
leads to understanding is an important concept when using systems biology (for more
information see [93]). Proteomics generate large volumes of data and, when combined with
shared information in the form of the identification and quantification of the protein, can
lead to the discovery of new knowledge and provide understanding of disease processes. In
regards to the process of adding meaning to MS data, it is beyond the scope of this article to
include a full review of analysis of MS signals for peptide and protein identification and
excellent recent reviews are available [94]. Instead, this review will focus on analysis of
protein data once appropriate information, namely the protein identification, has been
annotated to MS data. First, we will explore some of the computational issues surrounding
proteomics research. Then, an introduction to application of systems biology to proteomics
data will be covered, including the following topics: controlled vocabularies, biological
pathways, and network analysis.

Computational issues
There is a need to balance biological and technical replicates for proteomics studies.
Technical replicates increase the depth of proteome coverage by increasing the probability
that a protein with lower protein abundance (as can be measured by the spectral abundance)
is found in a particular sample. Biological replicates, on the other hand, are necessary due to
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attempts to minimize within-class subject variability and inherent noise of proteomic
studies.

Urinary proteomic inter- and intra-sample variability in biological and technical replicates,
respectively, was addressed by evaluating urinary proteomic changes in a single subject with
technical replicates, differently timed samples, and subject to subject (i.e. biologic)
variability [95]. The data suggest that the vast majority of variability comes from inter-
sample (biological) variability and not intra-sample (technical) variability. That is, the
coefficient of variation (CV) for technical replicates was found to be 0.18 and for biological
replicates as high as 0.66 between different individuals [95]. This is similar to results found
by others [96]. The large variance in biological replicates is a serious obstacle for gaining
significant knowledge and identifying biomarkers from proteomic studies. Statistical power
is often an issue for proteomic studies given the biological variance [97], and pilot studies,
in general, are often underpowered and fail to reach valid statistical conclusions largely due
to this biological variance [98].

There are two components to this problem of inherent biological variance that are logistical
and statistical. From a logistical perspective, there is limited time and funding for these
proteomic studies. One way to overcome this is the sharing of proteomic studies through
online databases, including: PRIDE, TRANCHE and PeptideAtlas. PRIDE is especially
useful for sharing data as it allows access to unprocessed data for potential meta-analysis of
multiple studies [99]. Other databases are resources to aid in peptide sequencing and protein
identification; this is important for selective reaction monitoring to provide the prior
knowledge for assay development. Indeed, these initiatives have joined together to form the
ProteomeXchange as a way to access all three databases under a single query, although it is
still in development. Also, Kolker et al. [100] recently developed an easy way to access
multiple databases that contain raw data from proteomics experiments and includes methods
for meta-analysis of data. Data standards have been created for use by the Proteomics
Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO)
[101]. This allows for improved communication in reporting data from proteomic studies
similar to the Health Level 7 (HL7) process for electronic medical records.

From a statistical perspective, it is important that results be analyzed in a meaningful way.
One method is to incorporate the use of random effects models (using the methods of
Dersimonian and Laird) to combine replicate experiments (i.e. biological replicates) [102].
Although currently used by a few researchers for this purpose [103-105], in theory the
method is extensible across multiple instrument types and labeling techniques. The mining
of data from multiple related proteomic experiments can then be analyzed using random
effects models similar to the meta-analysis of clinical trials. That is, studies may have
different sources of determinate and indeterminate error that can be accounted for through
the use of random effects as has been effectively used in evidence-based medicine to gain
knowledge through analysis of heterogeneous trials of similar purpose. The combination of
standardized data warehousing/sharing and random effects models should overcome the
statistical issues when fully implemented. Once a list of the proteomic changes associated
with diabetic kidney disease is established, bioinformatics allows for knowledge discovery
based on the data and information. We will discuss with some examples, a few of the key
resources available for bioinformatics and summarized in Table 1.

Controlled vocabularies
Controlled vocabularies provide a predefined dictionary of terms that can be used for
descriptive purpose. One common example of a controlled vocabulary is the Medical
Subject Heading (MeSH) used by the National Library of Medicine to describe scientific
literature for indexing and searching on Medline. In terms of analysis of systems biology
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data (in general, as well as proteomics data, specifically), the Gene Ontology (GO) project
(www.geneontology.org) was created to provide a controlled vocabulary to describe
biological data. Ontologies are, by definition, organized and typically hierarchical in nature
and GO is no exception. GO allows for description of biological data utilizing a controlled
vocabulary that also contains some relations between terms. In general there are parent and
child terms that are structured to have increasing levels of granularity among terms in the
more specific child terms.

The mapping of genes and gene products to GO terminology provides a qualitative
abstraction of terms to more generalized molecular functions, cellular components and
biological functions. In proteomics, it is easy to perform GO analysis using a variety of
sources available through the GO website. Identifiers such as the UniProt accession can be
directly imported and the GO terminology assigned along with the statistical probability (in
certain applications) that this list of proteins would be assigned to that GO term versus a
randomly selected list of UniProt accession numbers. For example, Figure 1 contains
information in terms of GO classification of the term “angiotensin mediated
vasoconstriction” (within the proteomics domain) involved in regulation of systemic arterial
blood pressure and was generated using AmiGO software [106]. In fact, the terms of protein
cassettes and their functional elements in the Introduction refer to GO terminology (e.g.
regulation of systemic arterial blood pressure by renin and angiotensin). The concept that
differentially expressed proteins could then be mapped to specific GO terminology allows
one to understand the overall molecular functions, cellular processes, and biological
functions of the differentially expressed proteome. Yoshida, et al. [44] documented GO
biological processes and molecular functions of the human glomerular proteome. The
primary molecular function was cytoskeletal and the primary biological process was cell
organization. This compares to the evaluation of the total mouse cortical proteome that
contains a large number of enzymes that are mitochondrial [107].

Biological Pathways
The Kyoto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/) is
another invaluable asset that contains a knowledge base of proteins in biochemical pathways
that are organized by biochemical function. Figure 2 shows the associated KEGG pathway
for angiotensin II formation and signaling [108]. Notice that as opposed to GO terminology,
KEGG demonstrates relationships among proteins that map to a pathway rather than the
interaction and hierarchy of descriptive terms. For example, Cummins, et al. used pathway
analysis to identify the importance of Grb2-related adaptor protein (GRAP) in the TGF-β
signaling in response to diabetes in OVE26 mice [56]. This knowledge was used to show the
involvement of GRAP in vitro tubular cells in response to hyperglycemia [56].

Network Analysis
The interactions between biomolecules can similarly be established from the data itself, as
opposed to mapping to existing pathways, using network analysis. IPA (Ingenuity®
Systems, www.ingenuity.com) is a commercial product that, in addition to GO and pathway
(often following KEGG for metabolic pathways but also including proprietary signaling
pathways) analyses, generates interaction networks de novo from user-submitted data. This
is opposed to GO and pathway analysis in which user-submitted data are mapped to pre-
existing terms and pathways, respectively. IPA networks are generated using a knowledge
base that is extensively curated from the literature (semi-automated). Extensive information
is available on the IPA website (www.ingenuity.com) as to the methods of network
generation and scoring. GeneGo (Thompson Reuters, www.genego.com) is an additional
commercial product for bioinformatic analysis that also includes many of the same features
as IPA.
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An open-source product, Cytoscape, (www.cytoscape.org), has been developed to serve as
an alternative for creation of networks using user data and information with plugin-based
knowledge comprised of shared protein interaction networks from other open-source web
initiatives, including GO and KEGG (among others) [109]. VisANT also provides network
visualization that can integrate both GO and KEGG pathways as an alternative to Cytoscape
[110]. In both cases, the size of the knowledge bases has the potential for substantial growth
due to the open-source environment and the use of plugins that are separate from the
visualization platform.

All network analyses rely on knowledge bases that contain protein-protein interactions
(PPI). There are three major sources of the protein interactions: scientific literature (typically
using reductionist strategies as IPA contains), high throughput experiments (e.g. yeast two
hybrid screens) and computational prediction [111]. Each PPI discovery method is fraught
with type I and type II errors, generating false positives and negatives, respectively. For
example, a criticism of the IPA knowledge base is the potential for literature bias (i.e. the
most studied proteins are most likely to have known interactions). Predictions based upon
high throughput experiments suffer from high false positive rates due to spurious interaction
that is not an in vivo interaction but a product of the experiment. Computational prediction
provides only indirect evidence of interactions. In the realm of proteomics, utilizing mass
spectrometry for large scale identification of protein interaction networks is becoming more
common [112].

Once established, network representations provide an understanding of both interconnecting
molecules and allows the establishment of signaling ‘hubs’ that show potential points of
regulation. The flexibility of networks is that it can differentiate different biomolecules and
provide bridging between ‘omics technologies. For example, we recently published a
proteomics study that provided a comparison of db/db mice to their C57 db/m counterparts
[113]. This led to the generation of a network that contained a metabolite, all-trans retinoic
acid, as a potential hub. Therefore, we undertook a targeted metabolomics study on the
status of renal retinoid concentration in this model of type 2 diabetes. Similarly, using the
plasma of type 1 diabetic patients, Overgaard, et al. used IPA network analysis to
demonstrate interactions among apolipoproteins [114]. This highlights the process of
gaining understanding and insight into a disorder through the knowledge discovery process
on a proteomics dataset.

Conclusions
Systems biology provides a platform for the discovery of biological knowledge from large
amounts of data and information. Although significant progress has been made towards
ensuring the quality of data obtained by mass spectrometry-based proteomics, there still
remains a lot of work to provide meaningful results that can be translated to improved
patient outcomes. The identification of biomarkers is currently the primary purpose of most
proteomics experiments in diabetic nephropathy. However, there is a need to shift to systems
biology for a more comprehensive view of the disease and gain understanding of the
pathophysiological processes. The tools presented here are a way to start thinking of the
disease in a more complete, integrated manner instead of relying on histopathological
characteristics to define disease processes. Proteomics has immense potential to improve
patient outcomes by translating the large amounts of data and information obtained by MS
into knowledge of diagnostic, prognostic and therapeutic biomarkers as well as provide
understanding of the pathophysiology of diabetic kidney disease.
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Figure 1.
Data, information, and knowledge in systems biology. Clinical data is in a systems view of
human disease that is incorporated with the additional data and information from other
“omics” experiments. Mass spectrometry data from proteomics experiments is given
meaning (often with the application of previous knowledge) to form information that is
accumulated in systems biology to discover knowledge that can provide understanding for
clinical care decisions. The information takes the form of Gene Ontology analysis in this
illustration but may include other bioinformatic tools.
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Figure 2.
KEGG pathway of the renin-angiotensin system. The generation of angiotensin II by
angiotensin converting enzyme (ACE) and signaling through the AGTR1 and AGTR2 are
depicted as well as the metabolite, angiotensin 1-7, that activates mas. It demonstrates
metabolic pathways containing intermediaries and associated enzymes.
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Tool Web-based
Resource

Advantages Limitations Examples of Use

 Gene
Ontology
(GO)

www.geneontology.org • Plentiful easy to
use web
resources

• Well-
documented
acceptance by
scientific
community

• No
standardization as
to level of
granularity of
data presented

• Plastic gene
assignments and
terms

• Normal urinary
proteome [51]

• Glomerular proteome
[44]

• Total Renal Proteome
[107]

 Pathway
Analysis

www.genome.jp/kegg/ • Static pathways
(relative to
other tools)

• Easy to
conceptualize

• Fails to account
for inter-pathway
interaction

• TGFβ signaling in
diabetic nephropathy
[56]

 Network
Analysis

www.ingenuity.com
www.genego.com
www.cytoscape.org

• Identifies inter-
pathway
interactions

• Not dependent
on predefined
abstractions of
biological
processes

• Allows
integration of
numerous
biomolecules in
systems biology

• Difficult to
quantify
comparisons
between
experiments

• Networks depend
on knowledge
base of
interactions (that
is, there is not a
standard
knowledge base)

• Some
disagreement as
to interpretation
of findings

• Metabolomeproteome
interactions involving
retinoic acid in diabetic
nephropathy [111]

• Plasma apolipoproteins
in clinical diabetic
nephropathy [112]
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