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Abstract
Spliceosomal introns are one of the principal distinctive features of eukaryotes. Nevertheless,
different large-scale studies disagree about even the most basic features of their evolution. In order
to come up with a more reliable reconstruction of intron evolution, we developed a model that is
far more comprehensive than previous ones. This model is rich in parameters, and estimating them
accurately is infeasible by straightforward likelihood maximization. Thus, we have developed an
expectation-maximization algorithm that allows for efficient maximization. Here, we outline the
model and describe the expectation-maximization algorithm in detail. Since the method works
with intron presence–absence maps, it is expected to be instrumental for the analysis of the
evolution of other binary characters as well.
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1. Introduction
In eukaryotes, many protein-coding genes have their coding sequence broken into pieces –
the exons – separated by the non-coding spliceosomal introns. These introns are removed
from the nascent pre-mRNA and the exons are spliced together to form the intronless
mRNA by the spliceosome, a large and elaborate macromolecular complex comprising
several small RNA molecules and numerous proteins. No spliceosomal introns have ever
been found in prokaryotes, and there are no eukaryotes with a completely sequenced
genomes, not even the very basal ones, which would not possess introns (1–3) and the
accompanying splicing machinery (4).

Despite the introns being such a remarkable idiosyncrasy of eukaryotic genomes, their origin
and evolution are not thoroughly understood (5, 6). It is generally accepted that introns can
be regarded as units of evolution and that their presence/absence pattern is a result of
stochastic processes of loss and gain. However, the nature of these processes is vigorously
debated. Recent large-scale attempts to study these processes using extant eukaryotic
genomes led to incongruent conclusions.

In a study on reconstruction of intron evolution, Rogozin et al. (7) analyzed ~700 sets of
intron-bearing orthologous genes from eight eukaryotic species. The multiple alignment of
the orthologs within each set was computed, and the intron positions were projected on the
alignments to form presence/absence maps. Using Dollo parsimony to infer ancestral states,
these authors observed a diverse repertoire of behaviors. Some lineages endured extensive
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losses, while others experienced mostly gain events. Early forbearers, such as the last
common ancestor of multicellular life, were shown to be relatively intron-rich. This work
suggested that both gain and loss of introns played significant roles in shaping the modern
eukaryotic gene structure. However, as these inferences rely upon the Dollo parsimony
reconstruction, the number of gains in terminal branches (leaves of the phylogenetic tree) is
overestimated, resulting in underestimation (potentially, significant) of the number of
introns in ancient lineages.

The same data set was analyzed by Roy and Gilbert (8, 9) using a different methodology.
They adopted a simple evolutionary model, according to which different lineages are
associated with different loss and gain probabilities. Using a variation on maximum
likelihood estimation, they obtained considerably higher estimates for the number of introns
in early eukaryotes and a correspondingly lower level of gains in all lineages, i.e., a clear
dominance of loss events in the evolution of eukaryotic genes. Roy and Gilbert have
substantially simplified the mathematics involved in the estimation procedure, at the
expense of introducing into the computation considerations of parsimony, which yielded an
inference technique that is a hybrid between parsimony and maximum likelihood. This
hybrid, however, excludes from consideration different evolutionary scenarios, resulting in
inflated estimates of the number of introns in early eukaryotes (10).

The model of Roy and Gilbert is branch-specific, i.e., it assumes that the gain and loss rates
depend only on the branch, thus tacitly presuming that all genes behave identically with
respect to intron gain and loss. Exactly the inverse approach was adopted by Qiu et al. (11).
These authors developed a gene-specific model, whereby different gene families are
characterized by different rates of intron gain and loss, but for a particular gene these rates
are constant across the entire phylogenetic tree. They used a different data set combined
with a Bayesian estimation technique and concluded that almost all extant introns were
gained during the eukaryotic evolution. This suggests evolution is dominated by intron gain
events with few losses. However, the validity of a gene-specific model is disputable as it is
hard to reconcile with the accumulating evidence on large differences between lineages (12–
15).

Recently, two maximum likelihood estimation techniques have been developed for
essentially the same branch-specific evolutionary model as the one of Roy and Gilbert.
Csuros (10) used a direct approach, while Nguyen et al. (16) developed an expectation-
maximization algorithm. Both methods encountered the same problem of estimating the
number of unobserved intronless sites. Each employed a technically different but
conceptually similar method to evaluate this number. Both techniques were applied to the
eight-species data of Rogozin et al. (7), yielding very close estimates. As expected, these
methods predict intron occupancy level of ancient lineages higher than those predicted by
Dollo parsimony and lower than those predicted by the hybrid technique of Roy and Gilbert.
Notably, these estimates are generally closer to those obtained using Dollo parsimony, and
they imply an evolutionary landscape comprising both losses and gains, with some excess of
gains.

While the Dollo parsimony (7) and the hybrid technique of Roy and Gilbert (8, 9) showed
some methodological biases, the other analyses of intron evolution (10, 11, 16) used well-
established estimation techniques. Nevertheless, these studies kept yielding widely diverging
inferences. The reason seems to be the differences in the underlying evolutionary models,
neither being sufficient to describe the complex reality of intron evolution. The branch-
specific model fails to account for important differences between genes, whereas the gene-
specific model ignores the sharp differences between lineages. Additionally, rate variability
between sites, known to be an important factor in other fields of molecular evolution (17,
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18), should be taken into account also in the evolution of gene structure. This is particularly
important for intron gain in light of the accumulating evidence in favor of the proto-splice
model, according to which new introns are preferentially inserted inside certain sequence
motifs (19–21). This means that sites could dramatically differ in their gain rate depending
on their position relative to a proto-splice site.

Here we describe a model of evolution that takes into consideration all of the above factors.
In order to efficiently estimate the model parameters by maximum likelihood, we have
developed an expectation-maximization algorithm. We also compiled a data set that is
considerably larger than previously used ones, consisting of 400 sets of orthologous genes
from 19 eukaryotic species. Applying our algorithm to this data set, we obtained high-
precision estimates, revealing a fascinating evolutionary history of gene structure, where
both losses and gains played significant roles albeit the contribution of losses was somewhat
greater. Moreover, we identified novel properties of intron evolution: (i) all eukaryotic
lineages share a common, universal, mode of intron evolution, whereby the loss and gain
processes are positively correlated. This suggests that the mechanisms of intron gain and
loss share common mechanistic components. In some lineages, additional forces come into
play, resulting either in elevated loss rate or in elevated gain rate. Lineages exhibiting an
increased loss rate are dispersed throughout the entire phylogenetic tree. In contrast, lineages
with excessive gains are much rarer, and all of them are ancient. (ii) Intron loss rates of
individual genes show no correlation with any other genomic property. By contrast, intron
gain rate of individual genes show several remarkable relationships, not always easily
explained. In brief, intron gain rate is positively correlated with expression level, negatively
correlated with sequence evolution rate, and negatively correlated with the gene length.
Moreover, genes of apparent bacterial origin have significantly lower rates of intron gain
than genes of archaeal origin. (iii) We showed that the remarkable conservation of intron
positions is, mainly (~90%), due to shared ancestry, and only in a minority of the cases
(~10%), due to parallel gain at the same location. (iv) We determined that the density of
potential intron insertion sites is about 1 site per 7 nucleotides.

2. Materials
The algorithm learns the parameters of the model by comparing the structure of orthologous
genes in extant species. To carry out this comparison, it requires two sets of input data, to be
described in this section. The first is a phylogenetic tree, defining topological relationships
between a set of eukaryotic species. The second is a collection of genes, for which one can
identify orthologs in at least a subset of the species above.

2.1. Multiple Alignments
Suppose that we have G sets of aligned orthologous genes from S species. To represent the
gene structure, we transform these alignments into intron presence–absence maps by
substituting for each nucleotide (or amino acid) 0 or 1, depending on whether an intron is
present or absent in the respective position. We allow for missing data by using a third
symbol (*), and consequently a gene might be included in the input data even if it is missing
in part of the species. Every site in an alignment, called pattern, is a vector of length S over
the alphabet (0,1,*). Let Ω be the total number of unique patterns in the entire set of G
alignments, denoted ω1, . . . , ωΩ, and let ngp count the number of times pattern ωp is found
in the multiple alignment of gene g. Assuming that the sites evolve independently, the set
Mg = (ng1, . . . , ngΩ) fully characterizes the multiple alignment of the gth gene. Thus, all the
relevant information about the multiple alignments is captured by the list of unique patterns
ω1, . . . , ωΩ, and the list of vectors M1, . . . , MG.
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2.2. Phylogenetic Tree
Let T be a rooted bifurcating phylogenetic tree with S leaves (terminal nodes) corresponding
to the S species above. The total number of nodes in T is N = 2S – 1, and we index them by t
= 0, 1, . . . , N – 1, with the convention that zero is the root node. The state of node t is
described by the random variable qt, which can take the values 0 and 1 (and * in leaves). We
use Vt for the set of all leaves such that node t is among their ancestors. The entire collection
of leaves is, obviously, V0. The parent node of t is denoted P(t). We use the special notations

 and  for qp(t) and VP(t), respectively. Analogously, the two direct descendents of node t

are denoted L(i) and R(i), and we use the special notations , and  for qL(t), qR(t),
VL(t), and VR(t), respectively. We index branches by the node into which they are leading,
and use Δt to denote the length (in time units) of the tth branch. We assume that the tree
topology, as well as all the branch lengths Δ1, . . . , ΔN–1 are known.

3. Methods
3.1. The Probabilistic Model

A graphical model is a mathematical graph whose nodes symbolize random variables, and
whose branches describe dependence relationships between them (22). A bifurcating
phylogenetic tree, when viewed as a graphical model, depicts the probabilistic model

[1]

We use the notation πi = Pr(q0 = i) to describe the prior probability of the root, and

 to describe the transition probability for gene g along branch t. In
our model, we assume that the transition probability depends on both the gene and the
branch, and that it takes the explicit form

[2]

Here, ηg and θg are nonnegative parameters, determining the intron gain and loss rates,
respectively, of gene g. Complementarily, ξt and φt determine the intron gain and loss
coefficients of branch t, respectively, and are bound to the range 0 ≤ ξt, φt ≤ 1. The
probability of an intron present in gene g at the beginning of branch t to be retained along

the branch is , that is, it is retained only if the branch does not lose it (with
probability 1 – φt), and also the gene does not lose it (with probability ). This comes to
reflect a reality where strong forces to strip a gene off its introns will be practically
unaffected by the particular lineage, and, oppositely, strong forces to strip a lineage off its
introns will be practically unaffected by the particular gene. In the same spirit, the

probability of an intron to be gained in gene g along branch t is , that is, it is
gained only if both the branch “approves” it (with probability ξt) and the gene “approves” it
(with probability ).

In other fields of molecular evolution, it was long realized that analysis precision improves
if one allows for rate variability across sites (17, 18). Typically, such rate variability is
modeled by introducing a rate variable, r, which scales, for each site, the time units of the
phylogenetic tree, Δt ← r · Δt. This rate variable is a random variable, distributed according
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to a distribution function with nonnegative domain and unit mean, typically the unit-mean
gamma distribution. The rate variability reflects the idea that sites differ in their rate of
evolution. Specifically, there are fast-evolving sites (r > > 1), as well as slow-evolving ones
(r < < 1). In our model of intron evolution we extend this idea by assuming that the gain and
loss processes are subject to rate variability, independently of each other. Hence, a site can
have any combination of gain and loss rates. To accommodate this idea, we use two
independent rate variables, rη and rθ, that are used to scale, for each site, the gene-specific

gain rate, , and the gene-specific loss rate, . We further assume that
the distributions of these rate variables are independent of the genes, and are explicitly given
by

[3]

Here, Γ(x, λ) is the unit-mean gamma distribution of variable x with shape parameter λ,
δ(x) is the Dirac delta-function, and η is the fraction of sites that are assumed to have zero
gain rate. These latter sites, denoted invariant sites, reflect these sites that are not a proto-
splice site (19–21). Intron loss does not have an invariant counterpart, as the assumption is
that once an intron is gained, it can always be lost. Therefore, the loss rate variable is
assumed to be distributed according to a gamma distribution, which is by far the most
popular in describing rate variability (17, 18, 23).

In practice, the rate distributions in Eq. [3] are rendered discrete (24). We assume that the

gain rate variable can take Kη discrete values  with probabilities

 such that . Analogously, we assume that the loss rate variable can

take Kθ discrete values  with probabilities  such that . For a

particular gain rate value , we denote the actual gain rate  by . Similarly, for a

particular loss rate value , we denote the actual loss rate  by θkg.

For notational clarity, we aggregate the model parameters into a small number of sets. To
this end, let Ξt = {ξt, φt} be the set of parameters that are specific for branch t, and let Ξ =

(Ξ1, . . . , ΞN – 1) be the set of all branch-specific parameters. Similarly, let  be
the set of parameters that are specific for gene g, and let Ψ = (Ψ1 . . . ,ΨG) be the set of all
gene-specific parameters. Additionally, we denote by Λ = (ν, λη, λθ) the parameters that
determine the rate variability. When the distinction between the different sets of parameters
is irrelevant, we shall use Θ = (Ξ, Ψ, Λ) as the set of all the model's parameters. We achieve
further succinctness in notations by denoting the actual gene-specific rate values for

particular values  and  of the rate variables as .

3.2. The EM Algorithm
For each site, the S leaves form a set of observed random variables, their states being
described by the corresponding pattern ωp. The state of all the internal nodes, denoted σ,
form a set of hidden random variables, that is, random variables whose state is not observed.
In order to account for rate variability across sites, we associate with each pattern two

hidden random variables,  and , that determine the value of the rate variables in that site.
To sum up, the observed random variables are ωp, and the hidden random variables are

.

Carmel et al. Page 5

Methods Mol Biol. Author manuscript; available in PMC 2012 August 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We assume that sites within a gene, as well as the genes themselves, evolve independently.
Therefore, the total likelihood can be decomposed as

and so

[4]

According to the well-known EM paradigm (25) log L(M1, . . . , MG|Θ) is guaranteed to
increase as long as we maximize the auxiliary function

[5]

where

[6]

Using some manipulations (see Note 1), this can be written as

1If we replace the formal summing over all states of  and  in Eq. [6] by a direct sum, we get

[19]

Using our notational conventions, we can write the first term in Eq. [19] as

[20]

and the second term as

[21]

Substituting Eqs. [20] and [21] back in Eq. [19] gives the desired result.
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Denoting by  and  the first and second square brackets, respectively, this
expression becomes

[7]

and consequently

[8]

3.2.1. The E-Step—In this step we compute the function , or, equivalently, the

set of coefficients  and . We accomplish this with the aid of an inward–outward
recursion on the tree.

3.2.1.1. The Inward (γ) Recursion: Here we propose a variation on the well-known
Felsenstein's pruning algorithm (26). Let us associate with each node t (except for the root) a

vector . In words,  (t) is the probability of observing the
nodes Vt (which are a subset of the pattern ωp) for a gene g, when the gain and loss rate

variables are  and , respectively, and when the parent node of t is known to be in state i.
By definition, this function is initialized at all leaves (t ∈ V0) by

[9]

Here, and in the derivations to follow, we omit the superscript from γ. For all internal nodes
(except for the root), γ is computed using the recursion

[10]

where  is defined as γj[L(t)]γj[R(t)] (see Note 2).

The γ-recursion allows for computing the likelihood of any observed pattern ωp, given the
values of the rate variables:
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Given q0,  is independent of , and so

and

[11]

This γ-recursion can be easily modified to incorporate missing data (see Note 3).

3.2.1.2. The Outward (α) Recursion: Once the γ-recursion is computed, we can use it to
compute a second, complementary, recursion. To this end, let us associate with each node t

(except for the root node) a matrix . It is beneficial to
define for each node t (except for the root node) a vector

. Upon the computation of α, β is readily

2We expand

[22]

The first term is simply the definition of . Given qt,  is independent on , thus the second term is just

. By similar arguments the third term is just . By substituting those results in Eq.
[22], we recover the recursion formula, Eq. [10].
3One of the appealing features of this recursion is that it allows to treat missing data fairly easily. Only a single option has to be added
to the initialization phase Eq. [9],
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computed too. Again, omitting the superscripts, α can be initialized from its definition on
the two direct descendants of the root,

[12]

Here, D(0) stands for any one of the direct descendants of the root, and D(0) is its sibling.
For any other internal node, α is computed using the outward-recursion

[13]

(see Note 4).

Finally, for each leaf that is not a descendant of the root,

4To prove this recursion, let us start with the definition of α,

[23]

Let us make the decomposition V0 = Vt + V̄t, with V̄t being the set of all leaves such that node t is not among their ancestors. But,

given , the state of node t is independent on V̄t, and therefore Eq. [23] becomes

[24]

From Bayes formula,

[25]

But given qt, Vt is independent of P(t) and therefore

[26]

Combining Eqs. [25] and [26] in Eq. [24], we get

which is just another form of writing Eq. [13].
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[14]

Again, this recursion can be straightforwardly modified when missing data are present (see
Note 5).

These inward–outward recursions are the phylogenetic equivalent of the backward–forward
recursions known from hidden Markov models, and other versions of it have already been
developed (27, 28). The version that we developed here can be shown to be the realization
of the junction tree algorithm (29) on rooted bifurcating trees (see Note 6).

3.2.1.3. Computing the Coefficients wgpkk′: Here we show that the γ-recursion is
sufficient to compute the coefficients wgpkk′. From the definition,

. Using the Bayes formula Pr(x, y|z) = Pr(x, y, z)/Σx,y
Pr(x, y, z), we can rewrite it as

But  is just the current estimate of the probability of the gain rate

variable to have the value , namely . Similarly,  is just .
Therefore, the expression for the coefficients  is reduced to

5When missing data are present, two simple modifications are required. First, we have to add to the initialization phase Eq. [12] an
option

Second, we have to add to the finalization phase Eq. [14] an option

6The junction tree algorithm is a scheme to compute marginal probabilities of maximal cliques on graphs by means of belief
propagation on a modified junction tree. Indeed, the matrix α computes marginal probabilities of pairs (t, P(t)), but such pairs are
nothing but maximal cliques on rooted bifurcating trees.
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[15]

The function  is the likelihood of observing pattern ωp for gain and loss rate

variables  and , respectively. This is readily computed upon completion of the γ-
recursion, using Eq. [11].

3.2.1.4. Computing the Coefficients Q gpkk': Here we show that these coefficients require
the α, β-recursion. By definition,

The probability  is just the likelihood of a particular realization of the tree,
thus from Eq. [1]

[16]

Here, δ(a, b) is the Kronecker delta function, which is 1 for a = b and 0 otherwise. Denote

the expectation over  by Eσ. Applying it to Eq. [16], we get

But , and similarly .

Hence,  is given by

[17]

3.2.2. The M-Step—Substituting Eq. [17] in Eq. [8], we obtain an explicit form of the
function whose maximization guarantees stepping up-hill in the likelihood landscape,
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[18]

Actually, any increase in  is sufficient to guarantee an increase in the likelihood,
suggesting that a precise maximization of  is not very important. Therefore, we speed
computations by performing low-tolerance maximization with respect to each of the
parameters individually. Except for the parameters λη and λθ, it is easy to differentiate 
twice with respect to any parameter. This lends itself into using simple zero-finding
algorithms; we chose the Newton-Raphson algorithm (30). Maximizing  with respect to
the shape parameters λη and λθ is more involved, as  depends on these parameters only
through the discrete approximation of the rate variability distributions, Eq. [3] (see Note 7).
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