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Genome-wide association (GWA) studies have been extremely successful in identifying novel loci contributing effects to a
wide range of complex human traits. However, despite this success, the joint marginal effects of these loci account for only a
small proportion of the heritability of these traits. Interactions between variants in different loci are not typically modelled
in traditional GWA analysis, but may account for some of the missing heritability in humans, as they do in other model
organisms. One of the key challenges in performing gene-gene interaction studies is the computational burden of the
analysis. We propose a two-stage interaction analysis strategy to address this challenge in the context of both quantitative
traits and dichotomous phenotypes. We have performed simulations to demonstrate only a negligible loss in power of this
two-stage strategy, while minimizing the computational burden. Application of this interaction strategy to GWA studies of
T2D and obesity highlights potential novel signals of association, which warrant follow-up in larger cohorts. Genet.
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INTRODUCTION
In the search for novel loci contributing effects to

complex human traits, the success of genome-wide
association (GWA) studies has been well published
[McCarthy et al., 2008]. These studies have improved our
understanding of the genetic architecture of complex
traits, often implicating pathways that might previously
have been overlooked as promising biological candidates.
However, despite this success, much of the genetic
component of most complex traits is still, as yet,
unexplained. For example, despite meta-analysis of GWA
studies of many thousands of individuals from closely
related populations, not more than 10% of the familial
aggregation of type 2 diabetes (T2D) can be attributed to
more than 35 established disease loci [Dupuis et al., 2010;
Voight et al., 2010].

GWA studies are typically analyzed using single-locus
methods, testing for the association of the trait with each
SNP, in turn, across the genome. This approach is well
powered to detect association with common causal
variants with moderate marginal effects on the trait [The
Wellcome Trust Case Control Consortium, 2007]. However,
there is increasing evidence from model organisms that
quantitative traits may be influenced by complex interplay
between genes [Flint and MacKay, 2009], with the
consequence that the effect of genotypes at one locus is
modified, or even masked, by genotypes at other loci
[Cordell, 2009]. Within this paradigm, individual causal
variants need not exhibit strong marginal effects, but

together may contribute to the overall trait variance. If
these gene-by-gene (G�G) interactions also exist in
humans, they may thus account for some of the ‘‘missing
heritability’’ of complex traits, but will not be easily
identified through single-SNP analysis of GWA studies,
irrespective of sample size.

To date, there have been few examples of significant
evidence of G�G interaction in human GWA studies.
Recently, ‘‘compelling’’ evidence of interaction between
SNPs in HLA-C and ERAP1 has been demonstrated in a
GWAS of psoriasis, although both these loci demonstrate
strong marginal effects on the disease [The Genetic
Analysis of Psoriasis Consortium and the Wellcome Trust
Case Control Consortium 2, 2010]. The fact that very few
interactions have been observed may not preclude their
existence. Rather, this may simply reflect the reluctance of
researchers to undertake GWA interaction studies, pri-
marily because of the large number of tests that are
required. For example, in a GWA study of 500,000 SNPs, a
complete two-locus interaction scan of the genome
necessitates 500,000C2 (500,000 ‘‘choose’’ 2) or �125 billion
tests. As a result, a more stringent significance threshold is
required for G�G interactions than for marginal effects in
order to allow for the burden of additional multiple
testing. Alternative strategies have been proposed to
reduce the number of tests required by focusing, for
example, only on interactions between variants with at
least some marginal evidence of association [Evans
et al., 2006]. However, over a wide range of models of
G�G interactions, such two-stage strategies lack power
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compared to a full two-locus scan of the genome, despite the
reduced penalty for multiple testing. With such stringent
significance levels, much larger sample sizes will be required
to detect interaction effects with the same contribution to the
phenotypic variance than marginal effects identified through
single-locus analysis. Nevertheless, meta-analysis of GWA
studies across large-scale international consortia [Barrett et al.,
2009; Dupuis et al., 2010; Voight et al., 2010; Lango Allen et al.,
2010] may provide sufficient power to detect large G�G
interaction effects, provided that an appropriate statistical
testing framework is available.

An additional challenge arising from the number of tests
in GWA G�G interaction studies is computational,
particularly with the large sample sizes that will be
required to detect these effects. We typically assess the
statistical evidence for interaction effects by means of
likelihood-ratio tests in a generalized linear modeling
(GLM) framework, which can accommodate both quanti-
tative and dichotomous traits. This framework is extre-
mely flexible and can allow for covariates to adjust for
potential environmental risk factors or population struc-
ture. However, maximum-likelihood solutions for these
models generally require application of numerical optimi-
zation algorithms, which are computationally demanding,
and thus infeasible for GWA studies using a single
processor. To alleviate this problem, Purcell et al. [2007]
have implemented a ‘‘fast-epistasis’’ procedure in PLINK
to allow rapid-testing of G�G interactions for dichot-
omous traits. Their approach focuses on a comparison of
odds ratios from a 2� 2 contingency table of allele counts
at a pair of SNPs between cases and controls (Table I).
They demonstrate that P-values from the ‘‘fast-epistasis’’
procedure approximate those from a GLM, and thus can
be used for screening of pairs of SNPs for detailed follow-
up with more complex interaction modeling techniques,
with minimal computation cost.

In this study, we propose a two-stage strategy for rapid
testing of G�G interactions in GWA studies of quantita-
tive traits. In the first stage, all pairs of SNPs are screened
for evidence of interaction using a computationally

efficient test akin to the ‘‘fast-epistasis’’ approach in
PLINK. In the next stage, all those pairs of SNPs achieving
a nominal significance threshold are carried forward for
more detailed modeling in the GLM framework. We
perform simulations to determine an appropriate signifi-
cance threshold for screening interactions in the rapid-
testing stage so as to minimize computation time without
substantial loss of power compared to a complete two-
locus scan of the genome in the GLM framework. Our
testing strategy has been applied to GWA G�G interac-
tion studies of T2D and obesity [The Wellcome Trust Case
Control Consortium, 2007]. Our results highlight potential
novel signals of association that would not have been
identified through traditional single-locus analysis, but
which warrant follow-up in larger cohorts.

MODEL AND METHODS

MODEL FORMULATION AND ANALYSIS
FRAMEWORK

Consider a sample of N unrelated individuals genotyped
for two SNPs. We denote the genotypes of the ith individual
at these two SNPs by Gi1 and Gi2, respectively. Genotypes are
coded as 0 for the common homozygote, 1 for the
heterozygote and 2 for the rare homozygote. Here, we
consider binary or quantitative phenotypes, denoted yi for the
ith individual. Then, under the assumption of an additive
main effect of each SNP on the phenotype, b1 and b2, and an
additive-additive interaction effect, b12, it follows that

EðyiÞ ¼ g�1½b01b1Gi11b2Gi21b12Gi1Gi2�; ð1Þ

where g is the link function in a GLM framework. Within this
framework, we can construct a likelihood ratio test of
interaction between the two SNPs, L, by comparing the
deviance of model (1) when b12 5 0, with that when b12 is
unconstrained. The precise form of the test depends on the
phenotype under investigation (Appendix), and has an
approximate w2 distribution with one degree of freedom,
with a resulting P-value denoted PGLM.

TABLE I. Representation of genotype data at two SNPs in case and control cohorts

SNP 2

SNP 1 MM Mm mm

Cases
MM gA00 gA01 gA02

Mm gA10 gA11 gA12

mm gA20 gA21 gA22

Controls
MM gU00 gU01 gU02

Mm gU10 gU11 gU12

mm gU20 gU21 gU22

SNP 2

SNP 1 M m

Cases
M nA00 ¼ 4gA0012gA0112gA101gA11 nA00 ¼ 4gA0212gA0112gA121gA11

m nA00 ¼ 4gA2012gA1012gA211gA11 nA00 ¼ 4gA2212gA1212gA211gA11

Controls
M nU00 ¼ 4gU0012gU0112gU101gU11 nU00 ¼ 4gU0212gU0112gU121gU11

m nU00 ¼ 4gU2012gU1012gU211gU11 nU00 ¼ 4gU2212gU1212gU211gU11
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The GLM framework is extremely flexible, and can be
adapted to incorporate covariates to allow for nongenetic
risk factors or population structure. However, obtaining
model parameter estimates and testing for interactions
between pairs of SNPs requires numerical algorithms that
are too computationally demanding to be applied on a
genome-wide scale.

RAPID G�G INTERACTION TESTING: BINARY
PHENOTYPES

In the context of a binary phenotype, a computationally
efficient approach for detecting G�G interactions is to
compare SNP-SNP association between cases and controls.
We begin by constructing contingency tables of alleles at
the two SNPs in each phenotype group by collapsing the
sample genotype data (Table I). A test of interaction
between the SNPs is then given by comparing allelic odds
ratios in the two groups, given by

X2 ¼
ðlncA � lncUÞ

2

VðlncAÞ1VðlncUÞ
;

and has an approximate w2 distribution with one degree of
freedom, with the resulting P-value denoted PFAST. In this
expression,

cj ¼
nj00nj11

nj01nj10
;

and

VðlncjÞ ¼
1

nj00
1

1

nj01
1

1

nj10
1

1

nj11
:

This test has been implemented in PLINK [Purcell et al.,
2007], and is invoked using the ‘‘fast-epistasis’’ command.
The test statistic, X2, has a closed form, and thus can
be applied to G�G interactions on a genome-wide scale.
However, by collapsing genotype data to a contingency
table of alleles, we are implicitly assuming Hardy-
Weinberg equilibrium at each SNP, and may inflate
type I error rates if violated. It is therefore recommen-
ded that X2 is used as a screening tool. All pairs of
SNPs passing a pre-determined significance threshold,
PFASToaFAST, are subsequently tested for interaction in
the GLM, which is robust to Hardy-Weinberg disequili-
brium. The choice of significance threshold represents
a trade off between power to detect interaction effects
and computation time: the more stringent aFAST, the
fewer pairs of SNPs are tested in the GLM, but
consequently the more likely a true interaction effect will
be overlooked.

RAPID G�G INTERACTION TESTING: QUAN-
TITATIVE PHENOTYPES

One simple approach to construct a rapid test of
interaction between pairs of SNPs in the context of a
quantitative trait is to dichotomize the phenotype, and
proceed as described above. Some study designs focus on
the ascertainment of individuals from the extremes of the
trait distribution, and thus naturally form a dichotomy.
However, when individuals are selected entirely at
random with respect to the quantitative trait, we can

define a quasi-case-control phenotype, denoted yi
� for the

ith individual, and given by

y�i ¼
0 if yi � yMED

1 if yi4yMED

�
;

where yMED is the median of the distribution.

INTERACTION TESTING BETWEEN IMPUTED
VARIANTS

The methodology described above can be easily applied
to imputed genotypes at variants not typed directly as part
of the study, but which are present on high-density
reference panels, such as those made available through
the international HapMap project [The International
HapMap Consortium, 2007]. Typically, imputation gener-
ates a distribution of possible genotype calls for the ith
individual at the jth SNP, denoted pij0, pij1 and pij2,
respectively, for the common homozygote, heterozygote
and rare homozygote [Marchini et al., 2007; Howie et al.,
2009]. In the GLM, we replace the observed genotypes, Gi1

and Gi2, at directly typed SNPs, with their expectations
under an allele-dose model, given by

EðGijÞ ¼ pij112pij2:

In the rapid G�G interaction test, we replace the
contingency table of observed genotype counts with
expected counts from the imputation distribution, assum-
ing no LD between the pair of SNPs.

ADJUSTMENT FOR COVARIATES

The GLM framework is extremely flexible and can be
adapted to incorporate covariates to allow for non-genetic
risk factors or population structure. However, it is not
possible to adjust for these covariates directly in the rapid
G�G interaction test of binary or quantitative phenotypes
outlined above, without a loss in computational efficiency.
Clearly, allowing for covariates only in the GLM in the
second stage of analysis may lead to misleading results.
We thus recommend the use of residuals after adjustment
of the phenotype for covariates in both the initial rapid
G�G interaction test and the subsequent detailed model-
ing analysis in the GLM framework.

SOFTWARE

The methodology described above has been implemen-
ted, for both quantitative and binary phenotypes, in the
open-source IntRapid software, and is freely available
for download from the website www.well.ox.ac.uk/INTRA-
PID. The software allows specification of the significance
threshold, aFAST, for carrying forward pairs of SNPs from the
rapid interaction screening phase, and can be applied to
both directly genotyped and imputed variants.

SIMULATION STUDY

We have undertaken simulations to evaluate the power
of the proposed rapid G�G interaction test in the context
of a quantitative trait compared with that of the more
computationally intensive GLM. We consider a range of
models of two-locus interaction: additive-additive, pure
additive, dominant-dominant and recessive-recessive.
Each model is parameterized in terms of causal allele
frequency at two SNPs, denoted q1 and q2, and an
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interaction component, e. For any given model, this
component can be used to obtain population mean trait
values, gjk, for each two-locus genotype (Table II).

For each model, we generate 1,000 replicates of a sample
of 5,000 unrelated individuals. We generate the genotype of
each individual at the two SNPs, denoted Gi1 and Gi2,
according to the causal allele frequencies, assuming HWE at
both variants. The phenotype of the individual is then
generated from a Gaussian distribution with mean gGi1Gi2

and unit variance. For each replicate of phenotype-genotype
data, we perform: (i) the rapid G�G interaction test to
obtain PFAST; and (ii) the GLM interaction test to obtain
PGLM. We then consider a range of significance thresholds,
aFAST, for carrying forward pairs of SNPs from the rapid
interaction screening phase. In particular, we consider
aFAST 5 1 as our benchmark, since this corresponds to no
initial screening step (all pairs of SNPs will be carried
forward for testing in the GLM). For each significance
threshold, power is estimated by the proportion of replicates
for which PFASToaFAST and PGLM meets a nominal pair-wise
genome-wide significance threshold of 10�10.

APPLICATION TO GWA STUDIES OF T2D AND
OBESITY

The T2D component of the WTCCC [The Wellcome Trust
Case Control Consortium, 2007] consists of 1,999 cases from
the Diabetes UK Warren 2 repository, and 3,004 population
controls from the 1958 British Birth Cohort (58C) and the UK
National Blood Service (NBS). Samples were genotyped
using the Affymetrix GeneChip 500K Mapping Array Set
that incorporates 500,568 SNPs, genome-wide. The T2D
cases were also measured for body mass index (BMI) to
assess overall obesity, a phenotype that is typically adjusted
for age and sex in downstream analyses.

We utilized the same quality control (QC) filters
employed by the WTCCC to exclude samples and SNPs
from the analysis, full details of which are presented in the
description of the experiment [The Wellcome Trust Case
Control Consortium, 2007]. In brief, samples were ex-
cluded on the basis of low call rate, outlying genome-wide
heterozygosity, discrepancies in WTCCC and external
identifying information, non-European ancestry, duplica-
tion and apparent relatedness. SNPs were excluded on the
basis of low call rate, extreme deviation from HWE,
differential allele or genotype frequencies between the two
control cohorts, and manual visual inspection of genotype
calls in cluster plots. To avoid any problems of sparsity in
the two-locus genotype contingency tables (Table I), we
restricted our analysis to SNPs with MAF of at least 5%.

For each pair of autosomal SNPs passing QC filters, we
tested for: (i) interaction with T2D in WTCCC cases and
controls using the rapid approach for binary traits; and (ii)
interaction with log10BMI residuals after adjustment for
age and sex in T2D cases using the rapid approach for
quantitative traits. All pairs of SNPs achieving a screening
significance threshold of PFASTo10�4 were then tested for
interaction in the GLM.

RESULTS

SIMULATION STUDY

Figure 1 presents the power, at a nominal significance
threshold of PGLMo10�10, of the proposed rapid interaction

testing strategy for an additive-additive two-locus model of
association, with causal allele frequency of 20% at both
SNPs. Power is presented as a function of the additive-
additive interaction component, e (Table II), for a range of
thresholds, aFAST, for carrying forward pairs of SNPs from
the rapid testing stage. There is only a minimal loss in power
for a threshold of aFAST 5 10�4, compared to the benchmark
of aFAST 5 1 where all pairs of SNPs are tested for interaction
in the computationally intensive GLM framework. How-
ever, for more stringent thresholds, the reduction in power is
more noticeable.

Figure 2 presents the power, at a nominal significance
threshold of PGLMo10�10, of the proposed rapid
interaction testing strategy for two-locus models of
association with causal allele frequency of 50% at both

TABLE II. Two-locus association models incorporating
interaction effects utilised in simulations. All models are
parameterised in terms of the interaction component e

SNP 2

SNP 1 MM Mm mm

Additive-additive interaction
MM g00 5 e–1 g01 5�0.5 g02 5�e
Mm g10 5�0.5 g11 5 0 g12 5 0.5
mm g20 5�e g21 5 0.5 g22 5 11e
Pure additive interaction
MM g00 5 e g01 5 0 g02 5�e
Mm g10 5 0 g11 5 0 g12 5 0
mm g20 5�e g21 5 0 g22 5 e
Dominant-dominant interaction
MM g00 5 0 g01 5 0 g02 5 0
Mm g10 5 0 g11 5 e g12 5 e
mm g20 5 0 g21 5 e g22 5 e
Recessive-recessive interaction
MM g00 5 0 g01 5 0 g02 5 0
Mm g10 5 0 g11 5 0 g12 5 0
mm g20 5 0 g21 5 0 g22 5 e
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Fig. 1. Power, at a nominal significance threshold of

PGLMo10�10, of the rapid interaction testing strategy for an

additive-additive two-locus model of association, with causal
allele frequency of 20% at both SNPs. Power is presented as a

function of the additive-additive interaction component, e
(Table II), for a range of thresholds, aFAST, for carrying forward
pairs of SNPs from the rapid testing stage to the GLM analysis

framework.
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SNPs: (A) additive-additive; (B) pure additive; (C)
dominant-dominant; and (D) recessive-recessive. Power
is presented as a function of the additive-additive
interaction component, e (Table II), for a range of thresh-
olds, aFAST, for carrying forward pairs of SNPs from the
rapid testing stage. As before, there is only a minimal loss
in power for a threshold of aFAST 5 10�4, compared to the
benchmark of aFAST 5 1. The conclusions are consistent
across the range of interaction models considered, despite
the fact that our analyses assume additive effects only.

APPLICATION TO GWA STUDY OF T2D

A total of 4,862 individuals and 357,775 SNPs with MAF
45% passed QC filters. Using a rapid interaction testing
threshold of aFAST 5 10�4, a total of 6.17 million pairs of
SNPs were carried forward for consideration in the more
computationally intensive GLM framework. This analysis
took 312 hr of computing time on a dedicated processor,
compared to an expected 4,389 hr to test for interaction
between all pairs of SNPs in the GLM framework.

No pairs of SNPs met a Bonferroni correction for
multiple testing of all pairs of SNPs passing QC filters
(Po7.8� 10–13). Table III presents lead SNPs at each pair of
loci demonstrating strong evidence for interaction
(Po10�10) in the second-stage GLM, together with
P-values from the first stage rapid test. Also presented
are P-values for each SNP from a marginal single-locus test
of association from a GLM incorporating only an additive
effect. None of these SNPs show evidence of marginal
association with T2D, and thus would not have been

discovered through single-locus GWAS analysis under the
assumption of an additive effect in the log-odds ratio.

The strongest signal of interaction with T2D was
detected between a pair of proximal SNPs in the ZFAT
gene. The SNPs are only weakly correlated with each other
(r2 5 0.062 and D05 1.000 in CEU 1000 Genomes Project
pilot data), and this interaction could represent a haplo-
type effect where the risk alleles have a synergistic effect
when in cis, for example. The ZFAT gene encodes a protein
that likely functions as a transcriptional regulator involved
in apoptosis, but has not been previously implicated in
T2D or other metabolic traits. The second strongest signal
of interaction with T2D was detected between a pair of
SNPs in the OBSC gene and flanking the CLU gene,
respectively. These genes have not been previously
implicated in T2D. However, both genes are involved in
carbohydrate and lipid metabolic process and in apopto-
sis, and thus might be reasonable candidates for interac-
tion within related functional pathways.

APPLICATION TO GWA STUDY OF OBESITY

A total of 1,903 T2D cases and 375,159 SNPs with
MAF45% passed QC filters. We considered residuals of
log10BMI, after adjustment for age and sex, as our
phenotype. Using a rapid interaction testing threshold of
aFAST 5 10�4, a total of 7.14 million pairs of SNPs were
carried forward for consideration in the more computa-
tionally intensive GLM framework. This analysis took
127 hr of computing time on a dedicated processor,
compared to an expected 4,826 hr to test for the interaction
between all pairs of SNPs in the GLM framework.
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Fig. 2. Power, at a nominal significance threshold of PGLMo10�10, of the rapid interaction testing strategy for two-locus models of

association with causal allele frequency of 50% at both SNPs: (A) additive-additive; (B) pure additive; (C) dominant-dominant; and (D)

recessive-recessive. Power is presented as a function of the additive-additive interaction component, e (Table II), for a range of
thresholds, aFAST, for carrying forward pairs of SNPs from the rapid testing stage to the GLM analysis framework.
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No pairs of SNPs met a Bonferroni correction for
multiple testing of all pairs of SNPs passing QC filters
(Po7.1�10�13). Table IV presents lead SNPs at each pair
of loci demonstrating strong evidence for interaction
(Po10�10) in the second-stage GLM, together with
P-values from the first-stage rapid test. Also presented
are P-values for each SNP from a marginal single-locus test
of association from a GLM incorporating only an additive
main effect. None of these SNPs show evidence of
marginal association with BMI (adjusted for age and
sex), and thus would not have been discovered through
single-locus GWAS analysis under the assumption of an
additive effect in the log-odds ratio. The loci implicated in
the four strongest signals of pair-wise interaction have not
been previously implicated in obesity or other metabolic
traits.

DISCUSSION

Interactions between variants may contribute to the
missing heritability of complex traits. However, such
interactions have not typically been studied in GWA
analyses because of a fear of a lack of power due to the
large number of statistical tests, and the burden of
computation. Emily et al. [2009] identified four potential
interactions in GWA studies of Crohn’s disease, bipolar
disease, hypertension and rheumatoid arthritis [The Well-
come Trust Case Control Consortium, 2007], although
these signals have yet to be followed-up in independent
replication cohorts. More recently, investigation of inter-
action effects between pairs of SNPs within established
loci for psoriasis identified the first G�G interactions
with ‘‘compelling’’ evidence of association through GWA
studies [The Genetic Analysis Of Psoriasis Consortium
and The Wellcome Trust Case Control Consortium 2, 2010].

In this study, we have developed a novel GWA G�G
interaction testing scheme, applicable to both binary
phenotypes and quantitative traits. We employ a two-
stage strategy, implemented in the IntRapid software. In
the first stage, all pairs of SNPs are tested in a
computationally efficient ‘‘rapid’’ interaction test. For a
binary phenotype, our rapid interaction test is equivalent
to the ‘‘fast-epistasis’’ approach utilized in PLINK for case-
control association analysis [Purcell et al., 2007]. For a
quantitative trait, we simply dichotomize the phenotype at
the median, creating ‘‘pseudo-cases’’ and ‘‘pseudo-con-
trols’’, which can then be analyzed in the same way. In the
second stage, all pairs of SNPs meeting a pre-determined
significance threshold are carried forward for detailed
analyses in a more computationally demanding GLM
framework.

We have undertaken simulations to evaluate the power
of the proposed two-stage rapid G�G interaction test in
the context of a quantitative trait compared with that of the
more computationally intensive GLM. Over a range of
models of two-locus interaction, our results suggest that
there is only a minimal loss in power compared to testing
all pairs of SNPs in the GLM by carrying forward only
those pairs meeting a significance threshold of
PFASTo10�4 in the rapid testing stage. In this way, the
number of regressions performed in the computationally
intensive GLM framework is minimized, substantially
reducing computation time, but at only minimal cost in
terms of reduced power.

We have applied IntRapid to GWA studies of T2D and
obesity [The Wellcome Trust Case Control Consortium,
2007] using a rapid-interaction testing significance thresh-
old of PFASTo10�4. The rapid testing strategy reduced
computation time by an order of magnitude compared
with a full two-locus scan of the genome in a GLM
framework. The rapid-interaction testing stage can also
easily be parallelized, further reducing computation if a
cluster of processors is available for analysis. Although our
analysis did not reveal genome-wide significant evidence
of interaction (at a Bonferroni corrected threshold), our
results highlighted two pairs of loci with strong evidence
of interaction (Po10�10) with T2D and four pairs of loci
with strong evidence of interaction with BMI (adjusted for
age and sex). Our T2D analysis highlighted an interaction
between a pair of weakly correlated SNPs in the ZFAT
gene, and an interaction between SNPs in genes involved
in metabolic process and apoptosis. The biological
relevance of the loci identified in the obesity interaction
analysis is not so obvious. Further investigation of the
potential interactions between pathways in which all these
genes act is necessary. Although interesting, caution is
advised to avoid over-interpretation of these results,
particularly given the relatively small sample size of the
GWA study for detecting interaction effects. Follow-up of
these results in independent replication cohorts is now
required to confirm their relevance to T2D and obesity.

The coming months promise an exciting period of
research and development into methodology for the
detection of G�G interactions and their application to
GWA studies. With ever increasing sample sizes, made
possible through meta-analysis of GWA studies across
large-scale international consortia, we are perhaps now in
a position, for the first time, to detect strong interaction
effects for many complex traits, even with the enormous
burden of multiple testing. Furthermore, with the avail-
ability of computationally efficient software, such as
IntRapid, we expect that GWA G�G interaction studies
will be a natural addition to traditional single-locus
analysis, with the potential to discover many novel loci
contributing effects to complex human traits.
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APPENDIX

Within the generalized linear modeling framework, we
can construct a likelihood ratio test of interaction between
the two SNPs, L, by comparing the deviance of model (1)
when b12 5 0, with that when b12 is unconstrained. The
precise form of the test depends on the phenotype under
investigation, and has an approximate w2 distribution with
one degree of freedom.

BINARY PHENOTYPE

In the context of a binary phenotype, the deviance is
given by

L ¼ 2 ln fðyjG; x; b0; b1; b2; b12Þ

� 2 ln fðyjG; x; b0; b1; b2; b12 ¼ 0Þ:

In this expression, the log-likelihood

ln fðyjG; x; b0; b1;b2; b12Þ ¼
XN

i¼1

yiZi�
XN

i¼1

ln ð11 exp ½Zi�Þ

is maximized over all unconstrained parameters, where

Zi ¼ b01b1Gi11b2Gi21b12Gi1Gi2:

QUANTITATIVE PHENOTYPE

In the context of a quantitative phenotype, the deviance
is given by

L ¼ 2 ln fðyjG; x; b0; b1;b2; b12;sEÞ

� 2 ln fðyjG; x; b0; b1;b2; b12 ¼ 0;sEÞ:

In this expression, the log-likelihood

ln fðyjG; x;b0; b1; b2;b12;sEÞ ¼ �N ln sE �
XN

i¼1

ðyi � miÞ
2

2s2
E

;

is maximized over all unconstrained parameters, where

mi ¼ b01b1Gi11b2Gi21b12Gi1Gi2:
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