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The genetics of addiction—a translational perspective
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Addictions are serious and common psychiatric disorders, and are among the leading contributors to preventable death. This
selective review outlines and highlights the need for a multi-method translational approach to genetic studies of these important
conditions, including both licit (alcohol, nicotine) and illicit (cannabis, cocaine, opiates) drug addictions and the behavioral
addiction of disordered gambling. First, we review existing knowledge from twin studies that indicates both the substantial
heritability of substance-specific addictions and the genetic overlap across addiction to different substances. Next, we discuss
the limited number of candidate genes which have shown consistent replication, and the implications of emerging genomewide
association findings for the genetic architecture of addictions. Finally, we review the utility of extensions to existing methods
such as novel phenotyping, including the use of endophenotypes, biomarkers and neuroimaging outcomes; emerging methods
for identifying alternative sources of genetic variation and accompanying statistical methodologies to interpret them; the role of
gene–environment interplay; and importantly, the potential role of genetic variation in suggesting new alternatives for treatment
of addictions.
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Introduction

The term ‘addiction’ covers a broad range of maladaptive
aspects of drug use or other behaviors leading to clinically
significant impairment or distress.1 Addiction includes alcohol
use disorders, nicotine dependence, cannabis and cocaine
use disorders as well as non-substance–related behaviors.
These serious but common psychiatric disorders are among
the leading contributors to morbidity and mortality world-
wide.2,3

This review discusses: (a) classification and diagnosis of
addictions; (b) studies demonstrating the role of heritable
variation in addiction and the overlap of heritable influences
across drug classes; (c) putative candidate genes and
emerging results from genomewide association studies; and
(d) novel research methods to advance phenotyping of
addictions, including the use of endophenotypes, biomarkers
and imaging technology; (e) the role of alternative sources of
genetic variants and bioinformatics; (f) gene–environment
interplay; and (g) the emergence of pharmacogenomics.
Finally, we discuss how the application of these various
methods has begun to elucidate processes underlying
nicotine addiction and the strategies this enables for new
treatments.

Classification and diagnostic criteria

Addictions are primarily diagnosed using the Diagnostic
and Statistical Manual of Mental Disorders (DSM, currently

DSM-IV)1 according to which substance abuse and depen-
dence are distinct categories—throughout this review, we use
the term ‘addiction’ to refer to substance abuse or depen-
dence. Proposed changes to the DSM system of nomen-
clature (DSM-5, http://www.dsm5.org/Pages/Default.aspx)
may eliminate the distinction between abuse and depen-
dence, replacing it with a single category of substance use
disorder (see Box 1 for diagnostic criteria).4 Also proposed for
DSM-5 is the addition of ‘behavioral addictions’.5 A number
of candidate behavioral addictions were considered, such as
compulsive internet use (for example, gaming), sexual activity
or shopping, but the only behavioral addiction that is currently
formally codified is disordered gambling. This decision
was based, in part, on symptomatic and neurobiological
similarities between disordered gambling and substance
use disorders6 and the more developed research base for
disordered gambling than for the other behavioral addictions.

Given the enormous public health burden of addictions, the
delineation of their etiology has been of paramount impor-
tance. The next sections detail research findings outlining the
magnitude of heritable influences on addictions.

Heritable influences on addiction

Numerous family, adoption and twin studies have identified
the significant role of heritable influences on individual
differences in addiction. Results from twin studies suggest
that 33–71% of the variation in liability to nicotine depen-
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dence7–10 can be attributed to heritable influences, while
48–66% of the variation in alcohol dependence11–14 is heri-
table. Similarly, a recent meta-analysis of eight twin studies
reported heritability estimates of 51–59% for cannabis
addiction.15 Heritability estimates for cocaine use disorders
range from 42 to 79%, with the lower estimates reported for
females.16–18 Two large-scale studies have examined opioid
addiction. Kendler et al.16 reported that 23% of the variation in
opioid addiction in men was attributable to genetic factors,
whereas Tsuang et al.19 reported a considerably higher
estimate of 54% in male Vietnam Era twins. There have also
been two major twin studies of disordered gambling, with
consistent evidence for heritable (49%) variation.20,21 Across
these studies, there has been no consistent evidence for
differences in the magnitude or nature of heritable influences
on addiction in men and women. However, two important
factors have been found to contribute to variation in
heritability:

(a) Stages of addiction: Despite the typical clinical characteri-
zation of individuals as affected versus unaffected for
addiction, research has shown that liability to addiction is a
multi-stage process.7,22,23 The process of addiction begins
with early stages of initiation of use, followed by escalation
to regular and chronic use, which can become problematic
and develop into addiction. Early stages are less heritable
and more greatly influenced by familial environmental
factors, whereas later stages, such as problem use and
dependence are more strongly influenced by heritable
factors. Multiple twin studies have examined the extent
to which genetic influences on these later stages overlap
with those influencing initiation and non-problem use.24

Although a significant proportion of genetic factors
influencing problem use also influence earlier stages,
there is also support for genetic factors that are specific to
problem use and contribute to its increased heritability.

(b) Developmental course: Due to the natural course of
addiction, studying the role of developmental stage on
addiction is challenging. Initiation of drug use typically
occurs during adolescence, whereas disorders emerge
during early adulthood. Even within these stages, there is
considerable variation in etiology, depending on whether
adolescents or adults are being studied.25,26 For instance,
for a history of any alcohol use, heritability declines rapidly
during emerging adulthood, likely due to the ubiquity of
normative alcohol consumption. By contrast, for mea-
sures of quantity/frequency of use (for example, drinks/
day),27 and the number of substances used,28,29 heritable
factors appear to have a stronger influence during
adulthood. During adolescence, shared environmental
factors contribute maximally to familial resemblance, but
with the emergence of adulthood, genetic influences are
unveiled and heritable variation explains up to 75% of
individual differences.27 For problem use, however, there
has been consistent evidence for heritable influences,
even during adolescence.30

Drug-specific genetic influences. There is significant
overlap in genetic influences on alcohol, nicotine and illicit
drug addictions, as well as across addiction and other
externalizing disorders. Particularly for illicit drugs, with the
possible exception of opioids, twin studies have found only
modest support for specific genetic factors,17,31 supporting
the possible role of common pathways (for example, via
dopaminergic neurotransmission) that connect problem
use of multiple drugs. However, for nicotine dependence,
genetic factors shared with alcohol and illicit drugs are
responsible for only 37% of heritable variation, indicating a
considerable degree of genetic specificity.32 Given their very
different pharmacologies, the reason as to why greater
genetic specificity is not observed among illicit substances in
twin designs may be attributable to several factors. Most

Box 1 Criteria for diagnosing addiction (abuse/dependence)

DSM-5 DSM-IV
Failure to fulfill major role obligations | | (abuse)
Recurring use in hazardous situations | | (abuse)
Use despite interpersonal problems | | (abuse)
Use despite recurring legal problems x | (abuse)

Tolerance | (dependence)
Withdrawal | (dependence)
Using more or longer than intended | | (dependence)
Giving up important activities to use | | (dependence)
Spending a lot of time using | | (dependence)
Use despite recurring physical/psychological problems | | (dependence)
Persistent, failed quit attempts | | (dependence)
Craving—strong urge or desire to use drug | �

Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV:
Abuse—1 or more of 4 criteria.
Dependence—3 or more of 7 criteria occurring in the same 12-month period.

DSM-5 (proposed: dsm5.org)
Substance use disorder:

Unaffected—0 or 1 of 11 criteria.
Moderately affected—2 to 3 of 11 criteria occurring in the same 12-month period.
Severely affected—4 or more of 11 criteria occurring in the same 12-month period.

Genetics of addicton
A Agrawal et al

2

Translational Psychiatry



notably, the high degree of comorbidity across addictions
may amplify genetic overlap, and second, the power required
to detect substance-specific genetic influences may be
limited.

Decades of genetic epidemiological research have docu-
mented the importance of heritable influences on addiction.
Multiple genetic variants of modest effect size contribute to
this genetic architecture. The next section identifies genes
that have been widely studied in the context of addictions.

Genes for addiction—candidate gene searches

Despite numerous studies examining putative candidate
genes for addiction-related phenotypes, the field has been
characterized by lack of replication and there are remarkably
few genes that we can say with confidence are associated
with addiction. Those genes with the strongest evidence for
association are summarized in Table 1. In addition to these,
there are a number of biologically plausible candidates for
addiction for which there is some evidence for association
(albeit without consistent replication).

Alcohol. In addition to widely studied variants in ADH1B
and ALDH2, two functional polymorphisms (rs1693482 and
rs698) in ADH1C are known to regulate alcohol metabo-
lism and have been found to have a protective influence
on alcohol consumption.33 Unlike rs1229984 in ADH1B and
rs671 in ALDH2, which are uncommon and absent respec-
tively, in non-Asian populations, the ADH1C polymorphisms
are common. In addition to metabolism genes, serotonergic
variants have also been implicated in the etiology of
alcoholism.34 However, a meta-analysis of the commonly
studied serotonin transporter gene (SLC6A4) polymorphism

found only weak association (odds ratio (OR)¼ 1.2, Po0.05)
with alcoholism.35–41

Nicotine. Variants in the chromosome 15 cluster of genes
encoding subunits of the nicotinic acetylcholine receptor,
including CHRNA5/CHRNA3/CHRNB4, are among the most
robustly replicated association signals for nicotine addiction.
In addition, variants in CHRNA4 (encoding the a4 subunit
of the neuronal nicotinic acetylcholine receptor) have also
been suggested to influence various aspects of nicotine
addiction,42–44 albeit inconsistently. A recent meta-analysis
of linkage studies identified the CHRNA4 region on 20q13.2–
q13.3 for maximum cigarettes smoked in a 24-h period.
The DRD2/ANKK1 Taq1A allele, the subject of many studies
on alcohol, has been studied in the context of nicotine
addiction—a meta-analysis found support for an association
for smoking initiation and current smoking but not for
cigarettes/day.45

Cannabis. Inconsistent associations have been reported
between variants in the cannabinoid receptor 1 gene
(CNR1), to which cannabinoids putatively bind, and the
fatty acid amide hydrolase gene (FAAH) and cannabis
dependence symptoms (see Agrawal and Lynskey46 for a
review). As with alcoholism, GABRA2 (encoding the a2
subunit of the GABA (gamma-amino-butyric acid) receptor)
has been examined for cannabis dependence but with limited
success.39,47,48

Cocaine. Several genes have been implicated in various
aspects of cocaine addiction. These include dopaminergic
single nucleotide polymorphisms (SNPs) in DRD2/ANKK149

as well as neighboring NCAM1 and TTC12, CALCYON,50

Table 1 Association results with multiple replications or genomewide significance and biological plausibility

Gene Summary

Alcohol
ALDH2 Glu504Lys (rs671) Decreased capacity to metabolize acetaldehyde to acetate leads to high concentrations of acetaldehyde,

and the ‘alcohol flush reaction’,33 which decreases alcohol use and the risk of alcohol dependence
(e.g.187–189)

ADH1B Arg48His (rs1229984) Increased rate of conversion of ethanol to acetaldehyde leads to slightly higher concentrations of
acetaldehyde, with similar deterrent effects on alcohol use and alcohol dependence risk (e.g.188–190).

GABRA2 (rs279858, rs279826,
rs279871)

Repeatedly associated with alcoholism (e.g.36) although non-replications also exist (e.g.39,191). Also
associated with impulsivity and alcohol-related endophenotypes. SNPs are not functional but a2 subunit
expression has been associated with binge drinking.138

DRD2/ANKK1
(Taq1A, rs1800497)

Recognized as a risk factor for alcoholism.192 Meta-analyses find odds ratios E1.2 (Po0.001)193 �1.4,
(Po0.00001),194 for the A1 allele. Considerable across-study heterogeneity exists.

Nicotine
CHRNA5/A3/B4
(rs16969968/rs1051780)

Meta-analyses of GWAS88–90 and candidate gene91,177 data show replicated association with cigarettes/
day. Involved with receptor modification,195 sensitization and desensitization.196

Additional evidence for rs578776 as an independent signal177

CHRNB3-CHRNA6
(rs6474412)

Evidence from a large GWAS but not as widely replicated.89

CYP2A6 (rs1801272) Impairs metabolism of nicotine to cotinine.197 Associated with cotinine levels and associated at
genomewide significance with smoking in one study, with other studies yielding inconsistent results
(e.g.89).

Abbreviations: GWAS, gemonewide association study; SNP, single nucleotide polymorphism.
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dopamine beta-hydroxylase (DBH)51 and catechol-O-
methyltransferase (COMT);52 opioidergic genes such as
POMC;53 CNR1;54 orthologs of genes regulating circadian
rhythms (CLOCK, PER1, and PER2);55 tryptophan hydroxy-
lase 2 (TPH2)56 and others gleaned from linkage studies (for
example, alpha-endomannosidase (MANEA))57—a majority of
these await replication. Of particular interest, the functional
SNP in the CHRNA5/A3/B4 cluster on chromosome 15,
rs16969968, (extensively discussed in later sections and in
Table 1 with reference to nicotine dependence) has been
found to be associated with cocaine dependence in two
independent studies—paradoxically, the allelic variant of this
marker that confers risk for nicotine dependence appears to
afford protection from cocaine addiction.58,59

Opioids. The gene encoding the mu-opioid receptor
(OPRM1) to which opioids bind to produce their analgesic
and rewarding effects is the most widely studied candidate
gene for heroin and other opioid addictions.60 Functional
OPRM1 polymorphisms identified in humans include the
extensively-studied rs1799971 (A118G),61–64 but a meta-
analysis65 did not support its significant role in opioid addic-
tions. Other aspects of the opioidergic system have also
been queried. However, analyses involving prodynor-
phin (PDYN),66 proenkephalin (PENK),67 and the kappa
(OPRK1)68,69 and delta opioid receptors (OPRD1)69–71 have
not produced consistent results.

Disordered gambling. A relatively novel subject of genetic
enquiry, there have been only 10 candidate gene studies
of disordered gambling.72 Two correlated variants in the
gene encoding the dopamine receptor 1 (DRD1) have been
reported to be associated with disordered gambling—rs4532
(-48G4A or -48DdeI)73 and rs265981 (5262T4C,
-800HaeIII).74 However, a recent study by Lobo et al.75 did
not replicate this association.

Putative mechanisms of action

The candidate genes described above can be broadly
categorized into those with substance-specific influences
(for example, ALDH2 and ADH1B for alcohol) and those
that likely influence addiction liability via their relationship
with a general predisposition to externalizing behaviors,
including disinhibition, impulsivity and addiction (for example,
DRD2/ANKK1).

Drug-specific effects. Genes associated with metabolism
of psychoactive substances are anticipated to exert drug-
specific effects. For instance, the association between
variants in ADH1B (rs1229984) and ALDH2 (rs671) and
alcohol consumption can be directly attributed to the effect
of these SNPs on alcohol metabolism. rs1229984 affects
the rate of conversion of alcohol to acetaldehyde, whereas
rs671 substantially reduces conversion of this aversive
acetaldehyde to acetate.33,76 The accumulation of acetal-
dehyde is well recognized in the development of the flushing
syndrome. The alcohol flush reaction is common in Asians,
and involves facial reddening, accompanied by nausea,
dizziness and headaches; and these experiences result in

reduced alcohol intake. What is quite remarkable is that with
increasing social pressures on Japanese and Koreans to
consume alcohol, even individuals with protective ADH1B
and ALDH2 alleles continue to drink.77,78

General effects. Based on extensive twin studies, there
is clear evidence that a large proportion of genetic factors
influencing multiple drugs of addiction are shared. For
example, two independent twin studies reported that
significant proportions of genetic influence on addiction to a
variety of illicit substances could be attributed to a common
genetic vulnerability.19,31 Liability to alcohol and nicotine
(although, less so) also overlaps with this shared genetic
influence.32 These shared genetic pathways likely reflect
multiple processes. Koob and Volkow79 attribute addiction to
cycles of impulsivity and compulsivity. Initial experimentation
with drugs or escalation to chronic use at a young age
has been found to accompany other behavioral indices of
impulsivity (for example, conduct problems), and thus genes
influencing impulsivity will likely have a general effect on
multiple addictions. Multiple genes, including those in the
dopamine reward circuits, have been widely studied in this
regard.80 These reward circuits participate independently,
and interactively with glutamatergic and GABA-ergic signal-
ing, in the persistence of drug use and the development
and maintenance of addiction. However, although there is
clear evidence of central nervous system changes in these
circuits related to impulsivity, disinhibition and drug use, the
molecular mechanism of the action of gene variants in these
pathways on specific drugs of addiction requires further
consideration.

Candidate gene studies capitalize on a priori knowledge
regarding the biological underpinnings of addiction. The next
section summarizes the contributions of the more agnostic
genomewide association study (GWAS) approach to the
genetic study of addiction.

Genes for addiction—exploring the human genome

The challenge of non-replication in candidate gene studies,
the desire for identification of novel variants for addiction
and the decreasing costs and increasing efficiency of
large-scale, high-density genotyping has led to the increasing
use of GWAS to study addiction. The primary challenge
in these studies is the profound burden of multiple testing,
which requires gene variants to exceed a threshold P-value
of 5� 10�8 for statistical significance. Initial GWAS of
smoking (for example, N¼ 2000),81 alcohol dependence
(N¼ 1884–3865)82–85 (and heavy consumption, for example,
N¼ 3400–400086) and cannabis dependence (for example,
N¼ 3054)87 failed to find any statistically significant associa-
tions. Immediately recognizing the need for considerably
larger samples, multiple research groups combined
GWAS data to produce large meta-analyses. Studying
cigarettes smoked per day (an indicator of liability to nicotine
dependence), the Tobacco and Genetics Consortium
(N¼ 74,053),88 Thorgeirsson et al. (N¼ 10,995)89 and Liu
et al. (N¼ 41,150)90 simultaneously identified rs1051730,
which is highly correlated with a functional missense
polymorphism (rs16969968) in the nicotinic acetylcholine
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receptor gene cluster (CHRNA5/A3/B4) on 15q25. It is worth
noting that although the first study to identify the role of
rs16969968 on smoking behaviors was a study of nicotine
dependence,91 these large meta-analyses have focused on
cigarettes smoked per day as it is frequently assessed in a
variety of genetic studies. Whether this SNP exerts as strong
an effect on nicotine addiction as it does on smoking quantity/
frequency is being investigated. Nonetheless, even the effect
of this functional variant is modest and multiple other, as yet
unidentified variants, are likely to be associated with smoking
behavior and nicotine dependence.

Following this trend, a recent meta-analysis of alcohol
consumption (N¼ 47,500) identified a variant, rs6943555, in
autism susceptibility candidate 2 (AUTS2) gene.92 Follow-up
analyses found expression changes in AUTS2 in mice bred
for alcohol preference.92 For alcohol dependence, although
similar meta-analytic efforts are ongoing, Frank et al.83

recently identified rs1789891, which is a proxy for the
functional Arg272Gln variant in ADH1C, to be associated
with alcohol dependence at P¼ 1.27� 10�8. Given the clear
biological significance of this variant, this finding is particularly
encouraging.

Despite growing sample sizes and our ability to capture
over 2.5 million SNPs across the genome, SNPs reaching
formal significance levels in association studies typically
explain o2% of the variance in addiction-related phenotypes.
For instance, the effect associated with rs1051730 and liability
for smoking was a b of 1.03. Thus, it was first thought, as has
been suggested for other complex multifactorial traits, that
most of the heritability of addiction is ‘missing’.93,94 However,
Visscher and colleagues95 point out that the emphasis on
SNPs reaching only formal significance at 5� 10�8 overlooks
the evidence for polygenic association in the remainder of the
GWAS data. For instance, studies of smoking and substance-
related phenotypes have identified cell-adhesion genes as
contributors although no signal has attained genomewide
significance (for example, Bierut et al.81 and Johnson et al.96).
In addition, recent studies have found that sets of SNPs of
nominal significance might be used to identify genomic
regions that are over-represented across independent
GWAS97,98—here as well, cell-adhesion genes, such as
cadherins, are prominent, although only nominally significant
in the individual studies. Although it is not possible to
distinguish true signals from false positives with current
sample sizes, we can be certain that even among SNPs that
are less significantly associated, there are many SNPs that do
influence the traits under study. Using a regression approach
that simultaneously examines the contribution of all GWAS
variants, Visscher and colleagues95 have shown that 43, 17
and 54% of total phenotypic variance in height, body mass
index99 and intelligence quotient100 respectively, is due to
causal variants in linkage disequilibrium with SNPs on
commercial GWAS arrays. For height, they further showed
that adjusting for imperfect linkage disequilibrium between
typed SNPs and causal SNPs raised the estimate to 54%, and
further adjustment for the gross under-representation of rare
SNPs on commercial chips, raised the estimate to 70–80%,
close to estimates of heritability of height from conventional
twin and family studies. Such efforts are currently under way
for studies of addiction.

A second, and perhaps more perplexing outcome of GWAS
is the relative lack of findings that are biologically plausible.
This has led investigators to question the content of current
GWAS arrays which, despite their high density, can provide
inadequate coverage of certain genomic regions, owing to
fewer SNPs and absence of adequate linkage disequilibrium
required to impute such variants. The ADH1B polymorphism,
rs1229984, serves as an example: this functional variant is
neither included on commercial GWAS arrays nor reliably
imputed owing to its low allele frequency in non-Asian
populations. However, by genotyping it in multiple large
samples, Bierut et al.101 recently revealed a genomewide
significant association finding for rs1229984 with alcohol
dependence.

Both candidate gene studies and GWAS continue to
provide important clues regarding the sources of genetic
variation in addictions. However, unless a variant is functional,
considerably more research is required to understand how a
signal from one of these gene-finding methods actually affects
the liability to addiction at a biological level. Even for missense
mutations, further work is often required to quantify expres-
sion changes. Thus, genetic epidemiological studies, such
as gene association, are only the beginning. Using select
examples, the next sections illustrate the utility of novel
approaches that extend the search for the genetic basis of
addictions.

Phenotyping

The first major area of growth for research into addictions has
been the systematic transition from diagnostic classification of
affected versus unaffected to a dimensional conceptualiza-
tion, such as measures of quantity/frequency (for example,
cigarettes smoked per day), symptom counts, factor scores
extracted from multiple indices of problem use and other latent
variables representing continuously distributed quantitative
measures of addiction vulnerability. Such continuous mea-
sures are gaining popularity in genetic studies102–104 as they
are heritable and this heritability overlaps considerably with
genetic influences on addiction.103,105,106 An additional
advantage of such continuous phenotypes is that they are
not limited by heterogeneity in those who are unaffected (for
example, assigning the same unaffected value to those who
have never had a drink of alcohol, those who are light drinkers
and those who endorse 1–2 criteria for alcohol dependence
but do not receive a diagnosis) or affected but at varying levels
of severity, which can significantly reduce power for genetic
association studies. This research is also encouraged by
DSM-5, which proposes to define addiction as a multi-level
disorder (absent, mild/moderate and severe).

Variations in assessments. Although addiction is clinically
diagnosed using the DSM, genetic research has relied on
additional assessment strategies that can yield higher
heritability and reduce measurement heterogeneity. For
instance, nicotine dependence can be diagnosed using the
DSM but, for research purposes, quantitative indices (which
can also be used to define affecteds and unaffecteds) such
as the Heaviness of Smoking Index107 and the Fagerstrom
Test for Nicotine Dependence (FTND)108 are frequently
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used. Interestingly, the overlap between FTND and DSM-
diagnosed individuals is modest (kappaE0.3)109 and one
study found FTND-based nicotine dependence to be more
heritable than DSM-based nicotine dependence.8

Challenge studies. Typically, for genetic research,
addiction is assessed via self-report interviews and
questionnaires and via clinical interview. However,
laboratory-based measures can also be used to provide
detailed assessments of individual differences in addiction
using challenge paradigms in which acute doses of a drug
are administered to participants in a controlled setting. Using
this paradigm, Schuckit and Gold110 have developed the
level of response phenotype for oral alcohol challenges—
outcomes including positive (for example, high) and negative
(for example, nausea) subjective feelings, body sway and
various physiological and biomarker changes were used
to identify low level of response individuals who are at
increased risk for alcoholism111,112 (although, in some
studies, high level of response associates with alco-
holism113,114). These subjective responses to alcohol have
been found to be associated with variation in GABRA2115,116

(Table 1) and in SLC6A4.117

Endophenotypes. Level of response is considered by some
to be an endophenotype. Defined by Gottesman and
Gould118 as measurable indices of liability to a phenotype,
these measures have gained popularity in genomic studies
as they are heritable and assumed to be more proximal to the
biological underpinnings of the behavior being studied.119

Although they may co-segregate with disease, they are more
closely related to the causes than the consequence of
disorder.120 There have been multiple putative endopheno-
types proposed for addiction, including alcohol and drug-
related attentional bias, frequently assessed using a modified
version of the traditional Stroop task,121 and electro-
encephalogram activity (for example, beta wave patterns,
P300 amplitude).122–124 A number of these endophenotypes
have been used in candidate gene efforts—for instance,
SNPs in GABRA2 (Table 1) have been found to associate
with resting electro-encephalogram beta waves.36,125

Biomarkers. Similarly, biomarkers are intermediate pheno-
types that are related to disorder and can be a consequence
of it. For instance, liver function tests (for example, gamma-
glutamyl transferase) or carbohydrate-deficient transferrin
are commonly used to examine the impact of prolonged
alcohol use. Unlike endophenotypes, which can be used to
putatively predict likelihood of disorder, these biomarkers are
diagnostic aids that facilitate clinical management of
addictions. They are also promising targets for gene asso-
ciation studies. Using various carbohydrate-deficient
transferrin indices, and adjusting for alcohol intake, a
recent GWAS isolated the highly significant independent
effects of variants in the transferrin (TF, P¼ 5.5� 10�43), and
phosphoglucomutase 1 (PGM1, P¼ 2� 10�9) genes on
carbohydrate-deficient transferrin.126

Neuroimaging phenotypes. Neuroimaging outcomes are
promising new endophenotypes for addiction. Although

current sample sizes are modest, primarily due to costs
and burden of imaging technology, promising results have
begun to emerge. For example, although not directly
addressing functionality, Villafuerte et al.127 recently found
that in families of alcoholics, rs279826 and rs279858 in the
GABRA2 gene, previously associated with alcohol
dependence (Table 1), were associated, not only with alco-
holism and self-reported impulsivity but also with insula
cortex activation in women during anticipation of monetary
reward. The insula cortex has been implicated in cue-
induced drug craving and addiction and thus, this study
provides a potential neurobiological perspective on the link
between GABRA2 and alcoholism. Capitalizing on polygenic
variation in addiction, another recent study used a sum score
created from frequently studied variants in dopamine
pathways genes (DAT1 9-repeat, DRD4 7-repeat, DRD2
-141C Del, DRD2 Taq1A C (A2), and COMT Val(158)Met).
Although no variant was statistically significant on its own,
the sum score was associated with monetary reward-related
activation in the ventral striatum, explaining 10.9% of
variance.128

Summary. How we measure addiction is likely to have
a strong effect on the genes and genetic pathways that we
identify. A multi-pronged approach to measurement, inclu-
ding multiple self-report assessments, laboratory-based
measures and the collection of data on neurophysiological
and neuroimaging endophenotypes and examining their
correlations with each other, provide avenues for linking
genes to behavior. To this end, resources such as the PhenX
toolkit (Research Triangle Park, NC, USA),129 which provides
unrestricted access to state-of-the-art assessments for
research, are invaluable. Not only does the toolkit provide
protocols for such multi-pronged measurement but the
systematic use of identical protocols by multiple investi-
gators will ultimately result in sample sizes large enough to
detect even modest genetic effects.

Advances in genomics

Until recently, candidate gene studies and GWAS focused on
common variation. However, three additional sources of
genomic variation have the potential to further explain
heritability in addiction. First, copy number variants—large
segments of DNA that are deleted or duplicated producing
considerable structural instability—need to be explored for
addictions. Recent research has shown associations between
rare copy number variants (mostly deletions) and several
psychiatric disorders, including schizophrenia, autism and
Parkinson disease (see Stankiewicz and Lupski130 for a
review). Second, as discussed above, rare variants are
inadequately captured on commercial GWAS arrays. Deeper
sequencing of the human genome presents the opportunity
to identify such rare SNPs (o1% minor allele frequency).
Although this is being facilitated by the 1000 Genomes
Project,131 the identification of disease-specific rare variants
requires next-generation sequencing in samples ascertained
for addiction. Finally, epigenetic modifications are implicated
as contributors to and consequence of chronic substance use.
Animal research shows that repeated drug use alters gene
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expression profiles in the brain reward system, through
epigenetic mechanisms such as histone acetylation and
methylation change (see Renthal and Nestler,132 Maze and
Nestler133 and Wong et al.134 for reviews) and there is no
doubt that epigenetic variation is an integral component of
the biology of addiction. Although epigenomic methodologies
(for example, whole genome methylation) grow increasingly
accessible, the primary challenge remains tissue-specificity:
epigenetic signatures in peripheral tissues (for example,
leukocytes) may not correlate with those in the central
nervous system. This has led to increasing investment in the
NIH Roadmap Epigenomics Project,135 which aims to develop
databases of human epigenomic maps (epigenome atlas) in a
variety of healthy and tumor tissue and eventually, to provide a
degree of cross-tissue correspondence in epigenomic pro-
files. Even in the absence of direct epigenomic typing, resources
such as the Encyclopedia of DNA Elements136 allow flexible
annotation of the functional landscape of the human genome,
such as regions of potential epigenomic modification.

Summary. Despite some current disenchantment with
studies of common variants, there is much work that is
needed to understand the precise mechanisms by which
candidate genes and their common SNPs influence
addiction. Animal studies of gene manipulation afford oppor-
tunities to investigate this—for example, both Xenopus
oocytes137 and rodents138 have been used to investigate
the role of GABRA2 in alcohol intake (Table 1). An alternative
method involves the use of annotation algorithms to identify
the potential correspondence between variants and gene
activity and to further enmesh these variants in biological
pathways. These approaches are briefly reviewed next.

Advanced biostatistics and bioinformatics

All of the above phenotypic and genotypic approaches rely
heavily on biostatistical advances and innovation in statistical
methods. Biostatistics and computational biology have
rapidly become the foundation of post-GWAS interpretation
of results. Relying primarily on existing curated databases,
these methods attempt to model the inherent and often
non-linear complexity in biological processes. For instance,
gene-based association studies (for example, PLINK set–
based test,139 VEGAS,140 GRAIL141 and GATES142) combine
information from several SNPs within each gene, identifying
genes that show more signals of association than expected
by chance. Pathway analysis also examines the combined
effects of multiple genetic variants (that could be of small
effect). By means of exploratory pathway analysis, it is
possible to test whether associated genetic variants are more
prevalent in any known biological pathway (see for example,
IPA (Ingenuity Pathway Analysis; Ingenuity Systems, www.
ingenuity.com)), or any known functional gene group.143 In a
recent study, Reimers et al.144 performed a pathway analysis
using SNPs within 48 addiction candidate genes in alcohol-
dependent cases and controls. They tested seven gene sets
(pathways), including various neurotransmitter systems. In
line with previous findings, their results showed that four of the
neurotransmitter pathways (corticotropin-releasing hormone,
GABA, glutamate and norepinephrine) significantly contrib-

uted to alcohol-dependence risk. A number of these methods
rely on the Gene Ontology project—a large bioinformatics
project that combines the representation of genes and gene
products across species as well as across different data-
bases.145

Summary. There is a considerable need for computational
approaches to generate and interpret results from genetic
studies for addiction. Although several groups have
attempted to model the complex pathways underlying
addictions, there has been little consistency across studies,
which is likely due to the inherent lack of replication for the
individual genetic findings. One possible reason for this lack
of consistency across studies, at individual SNP and pathway
levels, might be the moderating role of environment.

Gene–environment interplay

Moderation of genetics by environment. Genetic studies
typically assume homogeneity of effect size. However, for
addiction, the relevance of genetic influences may depend on
environmental contexts. This has resulted in recognition of
the importance of gene–environment interplay (including
both gene–environment (GE) correlation and gene–environ-
ment (G�E) interaction) in the etiology of addictions. GE
correlation146 refers to genetic predispositions that influence
the likelihood of being exposed to a certain environment
(for example, heritable influences have been found to
influence affiliations with delinquent or substance-using
peers). Gene–environment interaction (G�E)147 refers to
moderation of genetic predisposition as a consequence of
environmental exposure—for example, studies of adolescent
Finnish twins indicated that in less stable neighborhoods,
there was greater evidence of genetic influence on alcohol
use.148,149 Conversely, in more supervised and restricted
environments, there was less opportunity to express genetic
predispositions to alcohol use and greater influence of
environmental effects. Additionally, both low levels of
parental monitoring150 and increasing affiliations with
substance-using peers151,152 have been found to augment
the importance of genetic influences on drug use.

Studies examining potential interactions between mea-
sured genes and environment153,154 are also becoming
more common. For example, Dick et al.155,156 reported that
the association of GABRA2 and CHRM2 variants with
externalizing trajectories diminished with high levels of
parental monitoring. In addition to environment exacer-
bating genetic vulnerability, there is also evidence for the
stress-buffering effects of genotype. Nelson et al.157 found
that the effect of childhood sexual abuse on alcoholism was
buffered in those carrying the H2 haplotype of the gene
encoding the corticotrophin-releasing factor (CRHR1).

The role of environment after accounting for genetics.
Although the previous section presents the notion of
environmental moderation of genetic vulnerability, whether
environmental and other risk factors (for example, comorbid
psychiatric problems) continue to exert an influence on
addiction after overlapping genetic risk factors are partialled
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out is of utmost interest to the prevention and treatment
community. Twins, particularly MZ pairs discordant for envi-
ronmental exposure, provide a fascinating demonstration of
the constant interplay between genetic background and
environmental exposures. For instance, examining pairs of
twins discordant for exposure to childhood sexual abuse,
Nelson et al.158 reported that the twin who had experienced
abuse was considerably more likely to also report a lifetime
history of addiction, even when compared with their gene-
tically identical but unexposed co-twin. Interestingly, these
genetically identical twin pairs can even have differing
epigenetic profiles, with within-pair differences becoming
more pronounced with increasing age.159 The informative-
ness of discordant MZ pairs applies to every research
methodology described above and is only just being
harnessed in genetic studies of addiction.

Summary. Recently, there have been several published
critiques of the genotype–environment interplay methdo-
logy160,161 and it is likely that some of the limitations noted
by these investigators apply to studies of addiction. However,
addiction is the most obvious example of a process that is
subject to gene–environment interplay—even individuals with
a family history of addiction may circumvent their genetic
vulnerability by limiting drug exposure. There is now even
emerging evidence that the efficacy of behavioral treatments
may interact with genotype to predict outcomes, such as
disruptive childhood behaviors,162 and the next section briefly
reviews genotypic modification of drug therapies. Thus,
although it is important to recognize the importance of the
statistical caveats to modeling gene–environment interplay, it
is necessary to continue conducting such studies on addiction.

Pharmacogenomics

The extent to which drug therapy, such as acamprosate and
naltrexone for alcohol dependence and nicotine replacement
therapy and other medications (for example, bupropion and
varenicline) for nicotine dependence, may be more successful
in individuals with certain genetic profiles is of considerable
interest.163 These drugs target receptors encoded by genes
of interest—for instance, baclofen (for alcohol) acts as an
agonist at pre-synaptic GABA-B receptors, while varencline
(for nicotine) is a partial agonist of the a4b2 nicotinic
receptors. Although these drugs have shown promise in
increasing rates of abstinence, typically only a minority of
treated individuals discontinue drug use. For example, 12
months post-treatment, typically only 1 in 10 smokers treated
with pharmacotherapies remain abstinent.164 Although such
findings suggest that pharmacotherapy may be a promising
avenue for treatment development, given the typically low rate
of success for existing approaches to treating addictions,
individual differences in the apparent effectiveness of these
drug treatments has led to increasing interest in pharmaco-
genetics, the study of genetic variation underlying individual
differences in both drug metabolism and response to the
effects of drugs.165 Despite some non-replications, three
independent studies have reported that carriers of the A118G
polymorphism (rs1799971) in OPRM1 respond more posi-
tively to naltrexone treatment for alcohol dependence.166–168

Another promising treatment for alcoholism, ondansetron, a
5-HT3 (5-hydroxytryptamine (serotonergic) receptor 3) anta-
gonist has been found to be a particularly useful treatment in
early-onset (Type II) alcoholics, while the selective serotonin
reuptake inhibitor (SSRI) sertraline has been found to be more
efficacious in later-onset (Type I) alcoholics.169,170

Summary. Whether treatment effects vary by genotype is
an important area of further study. Growth in this area relies
heavily on discoveries of common and rare variants and
a continued effort to outline their biological function.

Genetics of addiction and related illness

Thus far, we have discussed genetic influences underlying
addictions. However, some of these genes are responsible for
the links between addictive behaviors and other forms of
illness, particular cancer. For instance, rs1229984 in ADH1B
and rs671 in ALDH2 have been implicated in the etiology of
esophageal cancer.171 By modifying acetaldehyde accumula-
tion and clearance, the enzymatic consequences of these
variants result in increased exposure to ethanol and acetal-
dehyde, an effect that is exacerbated in individuals who drink
alcohol despite carrying these protective variants.172,173

Likewise, rs16969968 (and other variants) in the chromosome
15 gene cluster that is now widely recognized as a risk factor
for nicotine addiction has also been found to confer risk
for lung cancer,174–176 peripheral artery disease175 and
chronic obstructive pulmonary disease.177 Whether this
missense mutation has an independent effect on these
diseases or whether its effect is mediated by its modulation
of exposure to smoking continues to be explored.178 Finally,
there appears to be an emergence of disordered gambling
in patients receiving dopamine replacement therapy for
Parkinson’s disease—there is some evidence that dopami-
nergic stimulation interacts with variants in dopamine genes
(for example, DAT, DRD3 and DRD4) to induce reward-
seeking behaviors, particularly pathological gambling, but
these genetic connections are speculative.179

Summary. Addictions, serious illnesses themselves, are
linked with other diseases that may be consequences,
and in rare instances, a potential cause, of the addictive
behavior. Interplay between the addictive behavior and
genetic predisposition (for example, increased risk of eso-
phageal cancer in those who carry one copy of rs671 in
ALDH2 and also continue to drink alcohol) is likely
responsible for a majority of these relationships.

Can animal models inform human genetic studies of
addiction?

Throughout this review, where possible, experimental mani-
pulation in animals is used to highlight progress made in
understanding the functional significance of genetic systems.
There is also a long and distinguished tradition of animal
models for addiction. A detailed discussion of these methods
is beyond the scope of this review. Both rats and mice, for
instance, can be selectively bred for alcohol preference (for
example, alcohol-preferring,180 alko-alcohol181) and these
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animals can be trained to approximate aspects of addiction,
such as binge drinking (for example, using the drinking-in-the-
dark paradigm).182 Mutagenesis has been used to produce
fruit flies (Drosophila melanogaster) that vary on their alcohol
consumption and response to alcohol (for example, cheap-
date, tipsy).183 For addiction research, the issue of consi-
lience, or the relative similarities and differences between
human behavior and animal phenotypes devised to study
these behaviors, continues to be a challenge. Highlighting the
need to reconcile these differences, Crabbe,184 for instance,
notes that while rodents, even those with high alcohol

preference, self-limit their alcohol ingestion and rarely induce
intoxication, loss of control over alcohol intake is the
cornerstone of alcoholism producing conceptual discrepan-
cies across rodent and human behaviors.

Genetic studies of nicotine addiction

Genetic studies of addiction are at a watershed—we have
clearly identified some genetic contributors to addiction and
we continue to explore the role of others using multiple
methods and considering the pivotal role of environmental

Table 2 Multi-method progress made in studying the genetic underpinnings of nicotine addiction

Stage of enquiry* Method Example

Phenotyping Nicotine addiction is a multistage process, with exposure, initiation, regular smoking, heavy
smoking, nicotine dependence and persistence.198

Nicotine dependence can be measured using various psychometrically valid assessments
(e.g. DSM-IV, FTND, HSI).199

Aspects of nicotine dependence (e.g. FTND—time to first cigarette, DSM-IV withdrawal)
contribute to the dependence syndrome while also having features unique to them.200,201

Studies of related
individuals

Family Studies
Twin Studies

1.77 increased hazards of habitual smoking in relatives of smokers.202

Cigarette smoking is heritable.203 Genetic factors influence smoking initiation (75%), quantity
smoked (57%), nicotine dependence (60%), persistence (40–50%) and nicotine withdrawal
(40%).
There is significant overlap of genetic influences between smoking initiation and nicotine
dependence as well as persistence.7

Dependence measures using HSI/FTND are more heritable than DSM-IV.8

19% of genetic influences on DSM-IV withdrawal do not overlap with other aspects of
smoking.204

Gene finding Linkage Several linkage studies of smoking behaviors. A recent meta-analysis implicates
17q24.3–q25.3 with regions on 17q24.3–q25.3, 20p12.1–q13.12, 20q13.12–q13.32 and
22q12.3–q13.32 significant or suggestive for maximum cigarettes smoked in a 24-h period.205

Candidate genes The nicotinic acetylcholine receptor subunit genes, including CHRNA5/A3/B4 (chr 15),
CHRNA4 (chr 20), CHRNB2 (chr 1), as well as CYP2A6 (chr 19), OPRM1 (chr 6) and
DRD2/ANKK1 (chr 11) have been actively studied.

GWAS Most widely replicated GWAS signal, first identified via candidate gene analysis,91 is a
missense mutation, rs16969968 (D398N, or proxy, rs1051730) in the CHRNA5/A3/B4 cluster.
Subsequent meta-analysis identified it at Po10�70.88–90

Gene–environment
interplay

Latent genetic/twin Heritable influences on adolescent smoking increase with decreasing parental monitoring.150

Heritable influences on onset and daily smoking decrease with increasing state-level taxation,
control and policy stringency.206

Measured genetic/SNP Those with high-risk genotype of rs16969968 are less sensitive to peer influences207 although
the effect of the risk variant is most pronounced in those exposed to low parental monitoring.208

Age at onset of smoking behaviors interacts with rs16969968 to predict continued smoking,
although studies diverge on whether the variant exerts greater influence in early or late onset
smokers.209,210

Biological relevance Bioinformatics Pathway analyses reveal that genes in glutamatergic, tyrosine kinase signaling, transporter,
cell adhesion and opioidergic systems influence smoking.211

Biological function
via experiments

Mice homozygous for absence of a5 subunit (�/�) show reduced sensitivity to a variety of
physiological outcomes associated with nicotine or its agonists.212 Increased nicotine intake in
a5 knock-out mice, which is rescued by re-expressing a5 in the medial habenula.213

Epibatidine response is nearly twice as high for cells transfected with wild-type (D398) relative
to the N398 variant but there were no differences in receptor expression.195 Greater short-term
desensitization of N398-containing receptors has been noted but only when coupled with
a4b2 subunits.196

Neuroimaging rs16969968 associated with reduced functional connectivity between dorsal anterior cingulate
cortex ventral striatum and extended amygdala. Those with low risk variant show increased
response to smoking cues in the brain regions linked to memory and habitual behaviors.214

Treatment Pharmacogenomics Minor allele carriers of CHRNB2 variants experience greater nausea and dizziness upon use
of varencline.215

High (42 mg) nicotine dose more efficacious in highly dependent smokers with a low
quit-success genotype score based on 12,508 SNPs216

Abbreviations; DSM, Diagnostic and Statistical Manual of Mental Disorders; FTND, Fagerstrom Test for Nicotine Dependence; GWAS, genomewide association
study; HSI, Heaviness of Smoking Index; SNP, single nucleotide polymorphism.
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variation. The research described so far is made possible by
growing collaboration and intellectual sharing across investi-
gators from varying disciplines—such collaboration is critical
now as technological advances allow us to study addic-
tion from multiple integrated perspectives. To highlight
the enormous potential of using multiple translational
methods, Table 2 summarizes the application of a number
of approaches outlined above to the study of nicotine
addiction.

Addiction, genetics and public health

Why study the genetics of addiction? Critics argue that it has
modest benefit from a public health standpoint (e.g., ref. 185).
They posit that (a) genetic variants, when and if they are
discovered, have small effect sizes; (b) comparable environ-
mental factors are easier to delineate and have stronger
influence; and arguably (c) are more amenable to modifica-
tion. These criticisms, by taking a short-sighted view, often
obfuscate the true goal of genetic research—to provide
improved therapeutic alternatives for individuals who, despite
rigorous environmental modification (for example, increased
taxation, reduced availability and even treatment) remain
addicted to drugs. It is worth reiterating that the goal of genetic
research into addiction is no different from that for Type 2
diabetes or cardiovascular disease and that addictions are
also among the top contributors to preventable death world-
wide. Perhaps this argues for an even more concentrated
effort to understand the etiology of addiction.

In his commentary on genomic studies of complex traits,
Hirschhorn186 notes that ‘The difficulty in translation is not
unique to genetic discoveries: nearly a century and three
Nobel Prizes separate the determination of the chemical
composition of cholesterol from the development of statins.
Each discovery of a biologically relevant locus is a potential
first step in a translational journey, and some journeys will be
shorter than others.’ Genetic factors are partly responsible for,
not only, the comorbidity across addictions but also between
addictions and other mental illness (for example, autism
and bipolar disorder). The growth of these existing findings
from genetic epidemiological studies into promising leads for
treatment is necessary and with time, sustained funding and
translational collaborations, this goal of a clear impact of
genetic research on public health can and will be achieved.
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