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Abstract
Regulation of immune responses to self and foreign antigens is critically dependent on suppressive
CD4+ T cells characterized by expression of Foxp3. The large majority of regulatory T (Treg)
cells develop in the thymus as a stable suppressive lineage. However, under the proper
physiological conditions, conventional peripheral CD4+ T lymphocytes also develop into Treg
cells, particularly in the gut mucosa and inflammatory tissue sites. This review will focus on our
current understanding of the immunological and molecular signals controlling the development of
thymic derived natural (n)Treg and peripheral converted induced (i)Treg cells. Given the
importance of Foxp3 in the development of these cells, particular attention is placed on how such
signals are integrated to induce and maintain the expression of this signature transcriptional
regulator of Treg cells.

Introduction
CD4+ Foxp3+ Treg cells are a dedicated population of cells that maintain self-tolerance and
immune homeostasis. Besides suppressing autoreactive T cells, Treg cells help regulate the
magnitude of immune responses to infectious agents and tumors. The transcriptional
regulator Foxp3 has been recognized as a lineage-specific marker of Treg cells [1, 2]. The
essential role for Foxp3 in Treg development has been shown in animal models and in
humans that express mutations in the Foxp3 gene [3–8]. In these cases Treg cells are not
produced and lethal autoimmunity ensues. Furthermore, Foxp3 must be induced for Treg
development and its expression is actively maintained in mature Treg cells for their
suppressive function [7–11].

Natural occurring Treg (nTreg) cells develop within the thymus after expression of Foxp3 at
a relatively late stage of thymopoiesis that is primarily confined to “single positive” (SP)
CD4+ T cells. nTreg cells represent a minor population of thymocytes, roughly 4% of the SP
CD4+ cells [12]. TCR, co-stimulatory, and IL-2 signals are required for thymic development
of Treg cells. After exiting the thymus, nTreg cells are shaped by basal environmental cues
and inflammatory responses that regulate their suppressive program, migration and
homeostasis [13].
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Foxp3 can also be expressed by conventional T cells in the periphery to generate
suppressive induced Treg (iTreg) cells. These cells have been implicated in maintaining
tolerance in tissues sites and to food antigens and commensal bacteria within the gut
mucosa. The overall contribution of iTreg cells to the total pool of peripheral Treg cells
under basal and inflammatory conditions remains under debate. TCR repertoire analyses of
peripheral Treg cells in lymphoid tissues have been estimated to be from 5–20% of all Treg
cells [14, 15]. However, the extent these cells might dominate the Treg pool within tissues at
the site of immune responses remains unknown.

It should be noted that the in the mouse the detection of Foxp3 is usually synonymous with a
cells being a Treg. One exception is that low levels of Foxp3 are not sufficient to direct the
Treg suppressive program, but this has only been noted under experimental settings [11, 16].
Thus, in the mouse, Foxp3 is a reliable marker for functionally suppressive Treg cells. In
man, however, Foxp3 is also readily seen by a subpopulation of T effectors cells. Thus,
detection of Foxp3 in human T cells does not rigorously identify Treg cells. Typically a
combination of markers that comprise Foxp3, CD25, CD127, and CD45RO and CD45RA
are required for more definitive identification of human Treg cells [17].

In this review, we will discuss recent advances in investigating the factors and mechanisms
involved in Treg development and lineage stability. We will focus our attention primarily on
mouse Foxp3+ Treg cells as the factors controlling their development have been relatively
well described. We will not cover other suppressive T cell populations such as IL-10
producing Tr1 cells or TGF-β-producing Th3 cells.

Thymic development of nTreg cells
The development of Treg cells occurs during a late stage of thymopoiesis as Foxp3
expression is noted primarily in SP CD4+ cells. A few Foxp3+ thymocytes are also detected
in “double positive” CD4+ CD8+ cells. However, most of these represent doublets on FACS
analysis consisting of a CD4+ CD8+ Foxp3neg and a CD4+ Foxp3+ cell [18]. The most
proximal precursor to Foxp3+ Treg cells is a CD4+ CD25+ Foxp3neg thymocyte that under
the proper conditions further matures into a Foxp3+ Treg cell that expresses suppressive
function [19, 20]. Whether other attributes of Treg cells are acquired in thymocytes that
precede these developmental steps remains to be determined, although some suggestive data
support this view (discussed below). Consistent with later commitment to the Treg lineage,
nTreg cells are preferentially found in the thymic medulla where negative selection usually
takes place [12]. Importantly, altered architecture of the thymic medulla is found in mice
expressing mutant NF-κB inducing kinase or lacking TNF-associated receptor 6 and Treg
development is impaired [21, 22]. Although most Treg development occurs within the
medulla, cortical epithelial cells support development of a few Foxp3+ thymocytes [23–25],
raising the possibility that Treg development may also be initiated for a few Treg cells in the
thymic cortex.

Immunological signaling for nTreg development
TCR requirements

Engagement of the TCR is essential for nTreg development. Treg development requires
signaling through the TCR at a level greater than required for positive selection. This was
shown when MHC class II-restricted transgenic TCRs were expressed in the Rag2-deficient
background where positive selection resulted in development of conventional CD4+ SP
thymocytes, but not Treg cells [26]. Self-antigens, nevertheless, drive nTreg development
through TCR interactions but at an affinity higher than that required for positive selection.
This was strikingly shown in a TCR transgenic system where Treg development was
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preferred when the TCR and its cognate antigen, which support a high affinity interaction,
were co-expressed within the thymus. In contrast, few Treg cells developed when their TCR
encounters a mutated cognate antigen with a lower affinity [27–29]. Consistent with
increased avidity for self-antigens, enforced expression of a nTreg TCR in conventional T
cells enhanced their expansion and autoimmune potential after transfer into lymphopenic
recipients [30].

Two general models have been proposed to account for these types of findings. Model 1
suggests that nTreg cells are rescued from negative selection, perhaps by expression of
Foxp3 or other molecules. This notion is supported by the observation that nTreg frequency,
but not numbers, increased upon encountering increasing levels of cognate antigen within a
certain range while conventional CD4+ SP thymocytes underwent massive deletion [31].
Model 2 suggests that precursor cells chose to develop into Treg or T conventional cells
based on thymic cues and TCR affinity [27–29]. For Model 1, the TCR repertoire of Treg
and T conventional cells may overlap whereas for Model 2 Treg and conventional CD4+ T
cells likely express unrelated TCR repertoires.

Current data suggest that Model 1 or 2 does not individually readily explain Treg
development. Direct TCR sequencing of TCRs from Treg and conventional CD4+ SP
thymocytes do not definitively distinguish between these models. These studies reveal that
TCR repertories between these two populations are largely distinct, supporting Model 2, but
with some obvious overlap, supporting Model 1[15, 30, 32]. The TCR repertoire expressed
by activated CD4+ T cells from Foxp3-deficient mice readily shares specificities with Treg
cells in the corresponding wild-type background [33]. This observation is not consistent with
Model 1 as the overlapping TCRs in Foxp3-deficient mice are expected to be deleted
through negative selection. In addition, mice that express a transgenic TCR isolated from
nTreg cells readily support development of conventional CD4+ SP T cells rather than nTreg
cells [34, 35]. This finding indicates that nTreg TCRs are readily expressed on conventional
T cells and argues against Model 2. However, the same transgenic TCR from nTreg cells
favors the generation of nTreg cells when present at a low frequency suggesting that there is
a limited niche or resources instructing T cells to develop into Treg cells [34, 35].
Collectively, all these data are consistent with a model, which contain aspects of Models 1
and 2, where developing thymocytes must express a TCR with an affinity for self-peptide
higher than that required for positive selection, but usually lower than that leading to
negative selection. These T cells must then receive key instructive signals, which are
limiting, to adopt a Treg cell fate.

Co-stimulatory requirements
Another important signal involved in Treg development is co-stimulatory signaling through
CD28 that at least partially depends on the Lck binding motif in its cytoplasmic tail [36, 37].
CD28- and B7-deficient mice contain a substantial reduction in nTreg cells in the thymus
and peripheral immune tissues [36, 38]. One interpretation from these experiments is that
impaired CD28 co-stimulation leads to lower IL-2 that is responsible for impaired nTreg
development and homeostasis. Expression of active STAT5, a target of IL-2R signaling, in
CD28−/− mice improved thymic development of Treg cells, consistent with co-stimulation
providing IL-2 for Treg production [19]. However, elegant mixed bone marrow chimera
experiments demonstrated that thymocytes originating from CD28−/− bone marrow-derived
precursors failed to generate Treg cells even when IL-2 was available from T cells derived
from WT precursor cells [36]. This result suggests that CD28 provides an intrinsic signal for
Treg development, beyond its possible contribution to optimize IL-2 production. Indeed,
CD28−/− mice contain lower number of Treg precursors and those present are unresponsive
to IL-2, consistent with a direct role of CD28 in Treg development [37]. Thus, along with

Yuan and Malek Page 3

Hum Immunol. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



promoting IL-2 production, another role for CD28 signaling may be to improve cytokine
responsiveness of developing Treg cells.

Requirement for IL-2
Mice deficient in IL-2, IL-2Rα or IL-2Rβ are characterized by extensive lympho-
proliferation and die of severe lethal autoimmunity early in life [39–41]. These
abnormalities are readily accounted for by failed development and homeostasis of nTreg
cells [42–44]. This syndrome is very analogous to autoimmunity associated with Foxp3-
deficienct mice, although mice without IL-2R signaling live somewhat longer probably due
to attenuated effector responses by IL-2 non-responsive autoreactive T cells. Thus, IL-2R
signaling represents another essential signal for nTreg development.

In the absence of IL-2R signaling, mice contain a reduced number of immature thymic
nTreg cells that essentially lack expression of CD25 and express reduced levels of Foxp3
[16, 43]. Recent work supports a two-step model of thymic Treg development [19, 20]. TCR
engagement and co-stimulatory signals confer Foxp3neg Treg precursors to respond to IL-2
that matures these precursors by upregulating Foxp3 and CD25. Besides these activities, it is
commonly believed that IL-2 promotes the growth and survival of developing Treg cells.
However, when Bim-deficiency was crossed onto IL-2-deficient mice, Treg numbers were
corrected by limiting apoptosis, but autoimmunity still resulted [45]. These data support a
model where IL-2R signaling is critical for functional maturation of nTreg cells.

Although IL-2/IL-2R-deficient mice contain Foxp3lo immature Treg cells, γc-deficient mice
are devoid of Foxp3+ T cells [44, 46]. Double knockout mice that cannot support IL-2 and
IL-7 signaling recapitulate the γc phenotype, i.e. no Foxp3+ T cells [47, 48], indicating a
contribution by IL-7 in Treg development. However, the role of IL-7 remains unknown,
although it has been proposed to act much earlier than IL -2, i.e. at the “double-negative”
stage of thymic development [49]. In vitro, among γc-dependent cytokines, only IL-2, IL-7
and IL-15, transduce signals in thymic Treg cells [48] and only IL-2 and IL-15 support
maturation of CD4+CD25+Foxp3neg Treg precursor cells into Treg cells [20]. However, in
vivo, mice singly or doubly deficient in responsiveness to IL-7 and IL-15 contain a normal
proportion of mature Treg cells [47]. Furthermore, transgenic expression of IL-2Rβ in
thymocytes of IL-2Rβ and IL7Rα double knockout mice fully restore nTreg development
[47]. Thymic stromal lymphopoeitin (TSLP) is a cytokine that utilizes IL-7Rα as one
subunit of the TSLPR [50, 51]. However, TSLP did not support mouse thymic progenitors to
developing into Treg cells in vitro [48] and no defects in Treg development were noted in
TSLPR−/− mice [52], indicating that TSLP is not an essential non-redundant cytokine during
Treg development. Collectively, these findings indicate that IL-7, IL-15 and TSLP are
dispensable for mouse Treg development and firmly establish that IL-2 is the dominant γc-
dependent cytokine for nTreg development. However, it remains possible that TSLP is
active in the human thymus for Treg cells. TSLP is produced by the epithelial cells of the
Hassall’s corpuscles and has been implicated to promote the conversion of human CD4+

Foxp3− precursors to Foxp3+ Treg cells in DC dependent manner [53, 54].

Contribution by TGF-β
TGF-β has also been implicated in nTreg development, but its role remains somewhat
controversial. Similar to Foxp3- and IL-2-deficient mice, TGF-β1−/− mice also die of severe
autoimmunity, consistent with an important role for this cytokine in immune tolerance [55].
Aspects of this disease are attributed in part to defects in Treg cells [56]. Assigning a role
for TGF-β1 in nTreg development is complicated as it is an important mediator of Treg
suppression [56]. Thymic numbers of Treg cells are normal in 8–10 day old TGF-β1- and
TGF-βRII-deficienct mice [56–58]. Additionally, the development of Foxp3+ Treg cells
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from Foxp3neg precursors was unaffected by addition or blockage of TGF-β [19, 20]. These
findings raise the possibility that TGF-β is not involved in thymic Treg development.

In mice lacking TGF-βRI in T lineage cells, thymic Treg cells are significantly decreased in
3 to 5 day old neonatal mice, during the initial generation of nTreg cells. After 1 week, these
limited numbers of Treg cells rapidly proliferate primarily by IL-2, yielding a normal
compartment of thymic Treg cells [59]. In other experiments, neonatal mice with T cell-
specific deletion of TGF-βRII showed increased negative selection and decreased nTreg
development. The lower number of Treg cells was attributed to enhanced apoptosis through
increased expression of pro-apoptotic Bim, Bak and Bax and lower pro-survival Bcl2 .
Correspondingly, deletion of Bim in TGF-βRII−/− mice increased the number of nTreg cells
[60]. Collectively, these findings suggest that TGF-β provides survival signals during early
Treg development rather than to drive Treg lineage commitment.

Key signaling pathways in nTreg development
Proximal TCR signaling pathway

It is essential to elucidate how the aforementioned immune molecules induce signals that
contribute to Foxp3 expression, the signature transcription factor in Treg cells. Figure 1
depicts the main pathways active in nTreg and iTreg with respect to Foxp3 expression and
these are each discussed more fully below. Followed by TCR and co-stimulatory signal
transduction, several transcription factors are activated, such as NF-κB, NFAT, and AP1,
which subsequently bind to the Foxp3 promoter or enhancer regions and directly contribute
to Foxp3 expression. Not surprisingly, impaired TCR signaling affects Treg production. For
example, mutation of the C-terminal SH2-domain of Zap-70, resulted in autoimmunity
through altered thymic selection that increased self-reactive T cells and decreased nTreg
production [61, 62]. Furthermore, the absence of PLC-γ1, another mediator of TCR
signaling, markedly reduced thymic Treg and T conventional cells [63]. These findings
indicate that key intermediates of TCR signaling are involved in signal transduction for both
Treg and T conventional cells.

PI3-Akt-mTOR pathway
An important point is the extent signaling varies in Treg vs. T conventional cells. In this
regard, the PI3K/Akt pathway is differentially activated. The TCR, CD28, and IL-2 all
readily activate the PI3K pathway in conventional T cells, but this pathway is attenuated in
nTreg cells [64, 65]. For example, expression of active Akt in thymocytes did not affect the
development of conventional T cells, but impaired nTreg cells [66].Conversely, blockade of
the PI3K pathway with LY294002 or rapamycin promoted Treg cell maturation [67]. Thus,
relatively low PI3K/Akt activation is an important determinant for development into Treg
cells.

Diminished activation of the PI3K pathway appears to be important to maintain active levels
of Foxo1 and Foxo3. These transcription factors bind to the Foxp3 promoter and conserved
non-coding sequence (CNS)-2 to facilitate Foxp3 expression [68]. When the PI3K pathway
is active, Foxo1 and Foxo3 are phosphorylated, which represent inactive forms that do not
support Foxp3 transcription. Importantly, T cell-specific deletion of Foxo1 leads to
autoimmune disorders that are associated with enhanced Teff function and diminished Treg
development and function [69, 70]. More aggressive autoimmunity occurs in mice lacking
both Foxo1 and Foxo3, including a more striking reduction in Treg cells [68, 70]. The lack
of Foxo1 and Foxo3 also increases Th1 and Th17 development, suggesting that these factors
also constrain effector responses.
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NF-κB pathway and C-rel
The lack of other mediators of TCR signaling, such as PKCθ, CARMA1, Bcl10 or TAK1,
preferentially impairs Treg production [71–74]. The CARMA1/Bcl10/Malt1 (CBM)
complex is required for NF-κB activation. CARMA1-deficient mice lack Foxp3 nTreg cells
and their precursor cells [75, 76]. Expression of active STAT5 or Bcl-2 in CARMA1-
deficient thymocytes does not rescue nTreg development, implying that the main role of the
CBM complex is independent of promoting cytokine responsiveness or providing survival
signals [75]. Thus, the CMB complex appears to be required for an early step in Treg
development.

Constitutively active NF-κB rescues Treg development in TAK1- or CARMA1-deficienct
mice [77], linking activation of CARMA1 to the NF-κB pathway. However, Treg
development is not rescued in CARMA1/CYLD-double deficient mice, where the lack of
the deubiquitinase CYLD activates NF-κB through TAK1/IKK. In an analogous manner,
blockade of canonical pathway of NF-κB activation by transgenic expression of a trans-
dominant form of IκBα only partially reduces nTreg numbers [78]. Overall, these findings
imply that CARMA1 regulates Treg development only in part through NF-κB. Notably, c-
Rel directly binds to the Foxp3 promoter and CNS3, indicating a direct role of NF-κB
activation in Treg development [77, 79, 80]. Importantly, deletion of CNS3 inhibits Foxp3
expression during nTreg development, illustrating the importance of transcriptional
regulators targeted to this element [80]. Whether Rel A also directly regulates Foxp3 is
controversial [77, 79–81].

NF-AT and AP-1 pathway
TCR signaling also activates NFAT and AP1 through binding to the Foxp3 promoter [82],
implicating these molecules in Treg development. Consistent with this view, cyclosporine
A, which blocks the calcineurin pathway and NF-AT, but not MAPK inhibitors that affects
AP-1 , lowers Foxp3 expression in Treg cells [82]. Thus, NFAT may be required while
AP-1 may be dispensable for Treg production.

IL-2-STAT5 axis
IL-2R signaling activates a number of pathways in activated T cells, including the MAPK,
PI3K and the STAT5 pathways [83]. However, STAT5 activation is the main IL-2R-
dependent pathway active in Treg cell as the PI3K pathway is inhibited by high PTEN levels
in Treg cells [64, 65]. The importance of STAT5 in Treg cells is directly shown by
manipulating this pathway in the context of absent IL-2R signaling. Mice deficient in
STAT5 exhibit a substantial decrease of Treg cells and largely recapitulate the phenotype of
IL-2- and IL-2R-deficient mice [46, 84]. Furthermore, transgenic expression of active
STAT5b in the thymus of IL-2Rβ-deficient mice reconstituted Foxp3+ thymic Treg cells and
rescued Treg developmental defects associated with impaired IL-2R signaling [46]. At the
molecular level, STAT5 directly regulates Foxp3 expression by binding to the Foxp3
promoter and CNS2 [46, 80]. When thymic CD4+CD25+CD122+ Foxp3neg Treg precursor
cells are stimulated with IL-2, STAT5 is activated in most cells but Foxp3 is expressed in
only 50% of the cells [20]. Thus, some Treg precursors require signaling beyond IL-2,
probably through TCR and CD28, for their maturation. This likely reflects heterogeneity in
Treg precursor population.

In vivo the quantitative level of IL-2R signaling that leads to Treg maturation is set at a low
threshold. Indeed mice that express mutant IL-2Rβ with attenuated IL-2R-dependent STAT5
activation readily support Treg development, leading to a population of mature Treg cells
that exhibit substantial suppressive activity against autoreactive T cells [85]. The ability of
developing Treg cells to productively sense low IL-2 is likely important as IL-2 producing
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cells are rare in the thymus. This exquisite sensitivity of Treg precursors to minimal IL-2R
signaling ensures that key molecules of mature Treg cells, such as Foxp3, CD25, CTLA4,
and TGF-β, are readily expressed. Nevertheless, a substantial portion of the Treg gene
program remains IL-2 dependent under low IL-2R signaling including several functional
intermediates, such as IL-10 and granzyme B [85], representing a risk for autoimmunity.

De novo development of iTreg cells in vitro and in vivo
With the emergence of Foxp3 as a reliable marker of Treg cells in the mouse, substantial
data demonstrate that conventional peripheral CD4+ T cells develop into suppressive
Foxp3+ T cells. Naïve CD4+ Foxp3neg T cells readily develop into suppressive Foxp3+ iTreg
cells after culture with anti-CD3, anti-CD28, TGF-β and IL-2 [86]. Administration of
nominal antigen in a tolerogenic form to mice that contained CD4+ T cells, which expressed
the respective antigen-specific MHC class II-restricted transgenic TCR, also induces
suppressive Foxp3+ iTreg cells [87–89]. The use of TCR transgenic T cells on Rag2−/−

genetic background, which completely lack nTreg cells, ensures that iTreg cells are not
derived by contaminating nTreg cells. In addition, some naïve conventional CD4+T cells
convert into iTreg cells after transfer into lymphopenic hosts [90–92].

Compared to nTreg, which are exclusively generated in the thymus, iTreg development
seems more versatile. iTreg cells are thought to be an important population in the gut
mucosa to maintain tolerance to commensal flora and food antigens [93–95]. In several
other physiological setting, iTreg cells are also found, including transplanted tissue
allografts, within the tumor microenvironment, and chronic inflammatory sites [96–98]. In
all these cases, iTreg cells are thought to be antigen-specific and in many cases mediate
beneficial effects to limit tissue rejection, inflammation, and immune responses but
sometime are detrimental by interfering with immune responses to chronic infections or
tumors.

Factors influencing iTreg development
TCR stimulation

Many of the same stimuli that shape nTreg development also contribute to iTreg
development. Since TCRs of nTreg are stringently selected, an important question is
whether TCR stimulation differs during iTreg generation. Low antigen dose favors iTreg
conversion whereas high level of antigen activates conventional Teff cells [88, 99].
Interestingly, a low affinity peptide agonist poorly generates iTreg cells while a low dose of
a high affinity agonist peptide supports iTreg cells production. However, decreasing the
cumulative TCR stimulation of the low affinity agonist significantly increases iTreg
conversion [100]. Collectively, these findings indicate that the strength of TCR acts as a
checkpoint to control peripheral Foxp3 induction that is favored by lower occupancy of the
TCR than required for Teff development.

Weak TCR signaling favors iTreg conversion through low activation of PI3K/mTOR [66,
67]. Furthermore, the development of Th1, Th2 and Th17 effector cells is not preferred by
low mTOR signaling because responsiveness to inflammatory cytokines required for
activation of key STATs is impaired [101]. Reciprocally, in the absence of the E3 ligase
Cbl-b, PI3K/Akt activation increases and iTreg production decreases largely through an
increased level of phosphorylated Foxo proteins [102]. Thus, low TCR-dependent signaling
that favors iTreg cells utilizes a mechanism similar to that discussed above for nTreg
development.
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Co-stimulatory signaling
For iTreg development CD28 functions solely to promote IL-2 production [103]. Moreover,
strong CD28 ligation is detrimental for iTreg development [104, 105]. Correspondingly,
iTreg conversion increases when naïve T cells express CD28 containing a mutation in the
Lck binding motif on its cytoplasmic tail, lowering CD28-dependent signals [106]. Blockade
of CTLA4, which facilitates co-stimulatory signaling, impairs iTreg production [107].
Overall, these data suggest that TCR and co-stimulatory signaling that support iTreg and
Teff development are considerably different and Treg cells are favored by lower signal
transduction through these molecules.

TGF-β signaling
TGF-β signaling is essential for iTreg production in vitro and in vivo [88, 89, 108, 109].
TGF-β also supports iTreg production under conditions of high TCR signaling that normally
favors Teff cells [100]. TGF-β signaling promotes NFAT and Smad3 binding to Foxp3
CNS1 enhancer, leading to histone acetylation and Foxp3 transcription [110]. TGF-β
antagonizes the activity of Dnmt1 to facilitate Foxp3 induction in conventional CD4+ T cells
[111]. Furthermore, deletion of CNS1 impairs iTreg but not nTreg development [80]. Thus,
TGF-β-dependent signaling is directly linked to induction of Foxp3 in iTreg cells. However,
blockade of Smad2 and Smad3 only partially inhibits TGF-β-induced Foxp3 induction
[112], suggesting that iTreg cells may also depend upon TGF-β-dependent activation of the
ERK and JNK/ MAPK pathways.

Under some circumstances peripheral conventional T cells converts into Foxp3+ iTreg cells
in cultures under conditions supporting IL-2R, but not TGF-βR signaling. Peripheral CD4+

CD25+ CD62int CD69+ Foxp3neg T cells preferentially develop into iTreg cells by IL-2
[113]. This phenotype is identical to nTreg precursors and such peripheral T cells may be
poised to convert into Foxp3+ Treg cells by an instructive IL-2 signal. Thus, a similar
mechanism might operate to generate nTreg cells and some iTreg cells. In a related manner,
the TCR repertoire iTreg cells obtained after conventional T cells were transferred into
lymphopenic recipients overlapped to a greater degree than expected with nTreg cells [14].
Such a result may also represent development of a cell poised to acquire Foxp3. Thus, some
iTreg cells may originate from thymic CD4+CD25+Foxp3neg precursors cells that exit the
thymus and acquire Foxp3 expression and suppressive function in periphery after
encountering self-antigens and IL-2 in an apparent TGF-β independent fashion. The extent
the majority of iTreg cells are derived from such IL-2-poised cells remains to be determined.

IL-2-STAT5 axis
IL-2 is essential for peripheral conversion of conventional CD4+ T cells to Foxp3+ iTreg
cells in vitro [86, 114]. The culture of conventional T cells with TGF-β without IL-2 does
not yield iTreg cells. This function of IL-2 is non-redundant and cannot be substituted by
other γc-dependent cytokines [86, 114]. Analogous to nTreg cells, the development of iTreg
also depends on STAT5 activation after IL-2R signaling [85]. An important unresolved
question is the extent IL-2R signaling is essential for iTreg development in vivo.

Role of retinoic acid (RA) and commensal bacteria
Besides the above immunological signals, iTreg development is influence by other
physiological mediators. All-trans RA, a vitamin A metabolite, is highly expressed in the gut
mucosa and enhances iTreg conversion in synergy with TGF-β [92, 105, 115, 116]. RA
endows iTreg cells with a gut homing phenotype and supports iTreg generation even under
strong co-stimulation [105]. CD103+ DCs, which are mainly found in the MLN and lamina
propria of small intestine, enhance the conversion of naïve T cells to Foxp3+ iTreg cells
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through their production of TGF-β and RA [92, 116]. In peripheral lymphoid tissues, CD8+

CD205+ DCs favor iTreg development by producing TGF-β [117]. Lamina propria DCs
enhance iTreg production and limit Teff differentiation in part through activation of Wnt/β-
catenin pathway, which promotes enzymes required for vitamin A metabolism and inhibits
expression of pro-inflammatory cytokines [118]. Thus, micro-environmental cues within the
gut mucosa facilitate iTreg generation even under inflammatory conditions.

The molecular mechanism by which RA promotes Foxp3 expression has not yet been well
characterized. RA readily promotes iTreg generation by antigen-experienced T cells.
Memory cells synthesizing IL-4, IL-21, and IFNγ are more resistant to iTreg conversion.
RA acts to relieve this inhibition, which facilitates iTreg production [119]. Much of this
effect was shown to be indirectly related to the in vivo environment where iTreg conversion
takes place. However, GATA-3 has been reported to be a transcriptional repressor of Foxp3
expression by directly binding its promoter [120]. Therefore, it is tempting to speculate that
some the effect by which RA promotes iTreg cells might also be due to reducing GATA-3-
dependent repression of Foxp3. However, regulation of Foxp3 by GATA-3 is likely
complex as GATA-3 has recently been reported to also be a positive regulator of Foxp3
transcription by binding to CNS2 [121].

The gut is a favored site for iTreg development , suggesting that gut microbiota may
contribute to iTreg generation. Indeed, oral tolerance is readily induced by feeding OVA in
specific-pathogen free (SPF), but not germ free-mice, which is accompanied by increased
numbers of Treg cells in gut-associated lymphoid tissue (GALT) in SPF mice [122]. This
result suggests that gut microbiota contributes to immune tolerance in this tissue. However,
the influence on both nTreg and iTreg cells by the gut flora is complex and positively or
negatively impacts Treg cells depending upon its composition. For example, treatment of
mice with the gut-specific antibiotic vancomycin increases the frequency of Treg cells in the
small intestine of the lamina propria while Th17 cells decreases [123, 124]. Oral inoculation
of neonatal mice with Clostridium species increases Foxp3+ Treg cells in colonic lamina
propria [125]. Polysaccharide A produced by Bacteroides fragilis promotes peripheral iTreg
conversion in GALT in a TLR2-dependent manner [126]. On the other hand, gut flora DNA
signaling through TLR9 on DCs leads to increased inflammatory cytokines and limits iTreg
conversion [127]. These latter experiments directly show that iTreg conversion is impacted
by gut microbiota. Collectively, commensal bacteria link the innate and adaptive immune
response within the gut and are essential to regulate the balance between tolerance and
immunity, exhibiting both a positive and negative influence on nTreg and iTreg cells.

The inter-relationship between iTreg and Th17 lineages
There is a clear inter-relationship between the development of Th17 and iTreg cells. Both
cell types share TGF-β for their production. TGF-β, acting along with IL-6 or other
inflammatory mediators, supports Th17 cells [128–130]. However, TGF-β in the presence of
IL-2 or RA favors iTreg cells and opposes Th17 development [92, 115, 116, 131]. The
mechanism underlying this phenomenon has been associated with IL-2-dependent STAT5
signaling in limiting Th17 differentiation [131]. The cell fate choice, therefore, between
iTreg and Th17 development is driven by environmental cues.

At the molecular level, the cell fate choice between Th17 and iTreg cells is in part
determined by the levels of several transcriptional regulators. For example, Foxp3 has been
shown to interfere with the activity of RORγt and RORα, key transcriptional regulators for
Th17 development [132, 133, 134]. However, RORγt and RORα does not affect the activity
Foxp3, rather STAT3 down-regulates Foxp3 [132]. In fact the ratio of STAT5:STAT3
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determines whether a cell adopts an iTreg or a Th17 cell fate, the former which is supported
by IL-2 and the latter by IL-6 and IL-21 [135].

TGF-β also reciprocally controls the differentiation of iTreg and Th17 through the DNA
binding inhibitor, Id3, through a two-step process. First, TGF-β-induces Id3 that inhibits
binding of GATA-3, a repressor of Foxp3 transcription, to the Foxp3 promoter. Second, this
in turn facilitates binding of E2A to regulatory elements in Foxp3 to promote Foxp3
transcription. In the absence of Id3, therefore, naïve T cells preferentially differentiate into
Th17 cells [136].

The stability of Treg cells
Another import issue is whether nTreg and iTreg cell represent stable lineages vs. the
capacity to be reprogrammed into Teff cells. This has implications concerning the basis by
which the immune system is regulated and is an important consideration in the application
of adoptive Treg therapy to suppress unwanted immune responses. There is an emerging
picture that some Treg cells lose Foxp3 expression and de-differentiates into other Teff
lineages. For example, upon transfer of nTreg cells from the Peyer’s patch into lymphopenic
recipients, Foxp3 was lost and these cells acquired T-helper activity to promote IgA
production [137]. A small population within the CD25− Treg subset is plastic whereas the
CD25+ subset stably maintains Foxp3 expression [138, 139], suggesting IL-2R signaling
may function to sustain Foxp3 expression. The culture of nTreg with mAbs to CD3 and
CD28, in the presence of TGF-β and IL-6, leads to the loss of Foxp3 and expression of
IL-17 [132, 140]. Similarly, in the presence of TGF-β, inflammatory signals mediated by
IL-6, IL-1 and IL-23 activate the Th17 transcriptional program in iTreg cells [132].

A fundamental point is the stability of Treg lineage cells in vivo in lympho-replete mice.
Several recent reports investigated this issue by developing sophisticated reporter mice that
trace the stability of Foxp3+ Treg cells [139, 141]. Both studies showed that the large
majority (>80%) of Treg cells are stable. However, the degree of ex-Treg cells varied
between the two reports. Ex-Treg cells represented nearly 20% of cells that were at one time
in the Treg lineage cell and increased under inflammatory conditions. These ex-Treg cells
expressed an activated/memory phenotype with Teff function [139]. In the other report, ex-
Treg cells were rare (<5%) and were not more prevalent in mice that were challenged with
Listeria to induce an inflammatory response, irradiated to induce lymphopenia, or stimulated
to develop autoimmunity [141]. The reasons for these differences in ex-Treg levels might
reflect differences in the approaches used to develop the mice for fate mapping and/or
because of differences in the timing in which ex-Treg cells were examined.

After thymic development, Runx/Cbf-β binding to CNS2 of Foxp3 is required to maintain
stable expression of Foxp3 and functional activity of mature peripheral nTreg cells [142].
The binding of Runx/Cbf-β to the Foxp3 promoter and CNS2 leads to an active chromatin
state rather than directly inducing gene expression [142]. Deletion of CNS2 does not abolish
thymic development of Treg cells in neonatal mice, but eventually leads to diminished
numbers of peripheral Foxp3+ Treg cells [80].

Demethylation of CpG at CNS2 has been linked to the heritable expression of Foxp3 in Treg
cells [143, 144]. In vitro derived iTreg cells, which are somewhat unstable, and ex-Treg
cells showed increased CpG methylation of CNS2, consistent with Foxp3 transcriptional
inactivity [139, 143]. Interestingly, in vivo generated iTreg cells, which stably express
Foxp3, exhibit demeythylated CpG [144]. Foxp3 appears to stabilize its own expression by
binding to CNS2 through a Runx/Cbf-β complex [80]. Collectively, these finding indicate
that transcriptional regulation mediated by factors associated with CNS2 are required to
maintain Foxp3 expression after development into Treg cells.
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Concluding Remarks
A rather detailed view is emerging concerning how immunological signals are integrated
within the cell to promote the expression of Foxp3 that leads to development of nTreg and
iTreg cells. However, a number of key questions remain. For nTreg cells, one important
issue is that there is only a rudimentary understanding of Foxp3-independent events that
promote developing thymocytes into the Treg lineage. Although expression of Foxp3 is
essential for Treg development, some thymocytes, destined to become Treg cells, exhibit
traits of Treg cells without expression of Foxp3 [145, 146]. Key questions are: what are
molecular determinants beyond Foxp3 that contribute to the nTreg lineage; what is the
earliest Treg precursor cell; and how do TCR selection events influence this process?
Although substantial data support iTreg cells as one option after T cells respond and adapt
during peripheral immune responses, questions remain concerning the extent that iTreg cells
are represented within the entire pool of CD4+ Foxp3+ T cells and their overall stability.
Definition of markers distinctively present or absent in iTreg cells, such as their apparent
lack of Helios [147], should aid in resolving these points.
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Fig. 1.
Molecular pathways for Treg development and stability. Both nTreg and iTreg cells require
TCR activation and cytokines for their development. TCR engagement initiates signaling
when nTreg precursor cells recognize self-peptides in the thymus or peripheral CD4+ T are
activated by foreign antigens, respectively. IL-2R signaling depends on IL-2 secreted by
thymocytes undergoing selection or by activated T cells in the periphery. TGF-β provides
survival signals for nTreg cells but in conjunction with RA drives iTreg development. Foxp3
transcription depends on DNA binding factors to the promoter and to 3 CNSs. CNS1 is
responsible for iTreg induction. CNS2 regulates the heritable expression of Foxp3 and
contributes to the stability of the Treg cells. CNS3 is essential for nTreg development.
Shown are TCR and cytokine-dependent signaling pathways and transcription factors that
are activated to directly regulate Foxp3 transcription.
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