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Genetic Factors for Choroidal Neovascularization
Associated with High Myopia

Nicolas Leveziel,1,2,3,8 Yi Yu,3,8 Robyn Reynolds,3 Albert Tai,4 Weihua Meng,5 Violaine Caillaux,2

Patrick Calvas,5 Bernard Rosner,6 François Malecaze,5 Eric H. Souied,1,2 and

Johanna M. Seddon3,7

PURPOSE. Nonsyndromic high myopia, defined by a refractive

error greater than �6 diopters (D), is associated with an

increased risk of macular choroidal neovascularization (CNV),

a vision-threatening complication. The aim of this study was to

investigate whether genetic factors associated with age-related

macular degeneration (AMD) are related to myopic CNV.

METHODS. We conducted a case-control study, including 71 cases

with myopic CNV and 196 myopic controls without CNV, from

Creteil and Toulouse, France, and Boston, MA. Single nucleotide

polymorphisms (SNPs) from 15 genes reported to be related to

AMD were selected for association testing in this study.

RESULTS. In univariate analysis, the rs10033900 SNP located in

CFI was associated with myopic CNV (P¼ 0.0011), and a SNP

in APOE was also related (P¼ 0.041). After adjustment for age,

sex, and degree of myopia, SNPs in three genes were

significantly associated, including CFI (odds ratio [OR] 2.1,

95% confidence interval [CI] 1.3–3.37, P ¼ 0.0023), COL8A1

(OR 1.88, 95% CI 1.18–2.98, P ¼ 0.0076), and CFH (OR 1.65,

95% CI 1.02–2.66, P ¼ 0.04). After correction for multiple

testing, only CFI remained significantly related to high myopic
CNV (P ¼ 0.045).

CONCLUSIONS. We report the first genetic associations with
choroidal neovascularization (CNV) in a high myopic Caucasian
population. One SNP (rs10033900) in the CFI gene, which
encodes a protein involved in the inflammatory pathway, was
significantly associated with myopic CNV in multivariate
analysis after correction for multiple testing. This SNP is a
plausible biological marker associated with CNV outgrowth
among high myopic patients. Results generate hypotheses about
potential loci related to CNV in high myopia, and larger studies
are needed to expand on these findings. (Invest Ophthalmol Vis

Sci. 2012;53:5004–5009) DOI:10.1167/iovs.12-9538

High myopia or pathologic myopia is defined by an axial
length higher than 26 mm or by a refractive error more

than �6 diopters (D) with pathological modifications of the
posterior pole of the retina, including staphyloma, lacquer
cracks, and myopic conus. High myopia is a common vision-
threatening disease that affects 0.5% to 5.0% of the worldwide
population.1–3 Choroidal neovascularization (CNV) is the most
common cause of visual loss related to this disorder, with an
estimated prevalence of 4% to 11% among high myopic
patients, and there is a 2-fold higher risk among women in
some studies.4,5

Genetic factors have been described in nonsyndromic high
myopia through linkage analysis, genome-wide association
analysis, or candidate gene case-control studies.6–25 However,
the genetic factors influencing the risk of CNV in eyes with high
myopia have not been extensively investigated.26,27 Several
genetic factors have been strongly associated with exudative
age-related macular degeneration (AMD), another degenerative
retinal disease characterized by a neovascular process develop-
ing from the choroid beneath the neurosensory retina located
in the macular area of the retina.28–50 Therefore, we hypoth-
esized that genes associated with exudative AMD could be
considered as candidate genes for myopic CNV.

MATERIALS AND METHODS

Participants

High myopic patients with axial myopia more than�6 D and pathologic

myopic retinal degeneration were recruited from three different centers

(Créteil, Toulouse, and Boston). Cases had high myopia with CNV in one

or both eyes. The control group was defined as high myopic patients

without CNV with visual acuity of 20/32 or better in both eyes. Only

subjects of European/Caucasian ancestry were included. Demographic

data and ocular characteristics of cases and controls are shown in Table 1.

All patients with myopic CNV underwent complete clinical

examination, including visual acuity assessment, dilated fundus exami-
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nation, and fluorescein angiography. The diagnosis of CNV was based on

fundus examination showing a macular scar or a lesion with subretinal

hemorrhages in the absence of drusen in either eye, and/or by staining

and leakage on early and late phases of fluorescein angiography. An

indocyanine green angiography (ICG) scan and an optical coherence

tomography (OCT) scan were also performed to confirm the diagnosis of

CNV in some cases. On OCT scans, CNV appeared as a hyper-reflective

lesion located beneath the neurosensory retina, usually associated with a

hyporeflective intraretinal or subretinal accumulation of fluid. On ICG,

CNV could be seen as a network in the early phase or as a

hyperfluorescent macular lesion in the late phase, sometimes spreading

from lacquer cracks or an atrophic patch that appeared hypofluorescent

on the late phase. Myopic patients without CNV underwent visual acuity

assessment and a dilated fundus examination.

Patients with clinical features of AMD, including drusen or

pigmentary changes, or other retinal diseases (i.e., diabetic retinopathy,

ocular histoplasmosis syndrome, lacquer cracks due to trauma) related

to CNV were excluded. To avoid potential spurious findings due to

population admixture, non-Caucasian subjects were also excluded.

Written informed consent was obtained for each individual

participating in this study, and all clinical investigations were conducted

according to the principles expressed in the Declaration of Helsinki.

SNP Selection

We selected a total of 30 SNPs located in 15 candidate genes or genetic

regions related to AMD based on previous reports of whole-genome

linkage studies, genome-wide association studies (GWAS), and molec-

ular and functional studies.28–51 We chose SNPs that were reported

previously or SNPs tagging each candidate gene/region of transcrip-

tion.52 Tagging SNPs with a minor allele frequency (MAF) greater than

10% and with a minimum r2 of 0.8 for the tagging region were selected

by tagger (http://www.broad.mit.edu/mpg/tagger/) based on the

HapMap data from the population of Utah residents with ancestry

from northern and western Europe (phase II, http://www.hapmap.

org).

Genotyping

Genotyping was performed in the Clinical and Translation Research

Center Core Laboratory, Tufts Clinical and Translational Science

Institute, Boston, MA, using Applied Biosystem (ABI) BioTrove Open-

Array Genotyping Platform and ABI 7900HT Sequence Detection

System (Life Technologies, Carlsbad, CA). OpenArray is a new platform

designed for medium-throughput genotyping by ABI. SNPs were

genotyped on a metal-based array of negatively charged wells in which

DNA samples were amplified with TaqMan genotyping chemistry. Per

the manufacturer instruction, the samples were loaded onto the assay

plate, followed by PCR amplification and imaging on the Open Array

NT Imager (Life Technologies). The results were analyzed with TaqMan

Genotyper Software (Life Technologies). Three SNPs failed in assay

design or genotyping assay on the OpenArray platform and these

markers were then genotyped with TaqMan SNP genotyping assay on

ABI 7900HT SDS.

Statistical Analyses

Quality control, allele frequency estimation, and tests for association

were performed for each SNP using PLINK 1.07.53 SNPs failing the

following quality control criteria were excluded from the analyses:

missingness rate more than 0.1, minor allele frequency (MAF) less than

0.01, deviant from Hardy-Weinberg equilibrium (HWE) (P < 0.001), or

with significantly different missingness in case and control groups (P <
0.001). The resultant SNP set for analysis contained a total of 29 SNPs

that complied with the above quality control criteria. Details of these

SNPs are shown in Table 2. For each SNP, the genotypes were coded as

0, 1, or 2 by copies of the minor allele based on an additive genetic

model. Univariate analysis was performed using logistic regression.

Differences in the distribution of each potential confounding factor

between cases and controls were tested using a t-test (for continuous

age, refractive error) or v2 test (for sex, site). To adjust for potential

confounding factors of age, sex, and degree of myopia, SNPs were

further tested using a multivariate logistic regression model. To adjust

for multiple testing, corrected P values were calculated by the max (T)

procedure (10,000 permutations) in PLINK.53,54 The association

between APOE haplotypes and myopic CNV were analyzed by the

haplotype-based association tests with logistic models in PLINK.

RESULTS

As shown in Table 1, cases included 71 patients with high
myopia in both eyes with a refractive error greater than�6 D in
both eyes and CNV in one or both eyes. Controls consisted of
196 individuals with high myopia not complicated by CNV.
Cases tended to be older than controls: mean 6 SD age at
diagnosis for cases was 53.9 6 14.9 years for cases, and 40.9 6
13.9 years for controls (P¼ 3.2 3 10�9). Sex distributions were
balanced between cases and controls (P ¼ 0.65). Cases had a
higher degree of myopia than controls (P¼ 1.4 3 10�4 for OD
and P¼ 1.3 3 10�4 for OS). On average, there was a difference
of 3D between cases and controls.

Table 2 shows the allele frequencies, odds ratios (OR) and P

values for the candidate SNPs and associations with high
myopic CNV. In univariate logistic regression analyses, two of
the SNPs were significantly associated with high myopic CNV:
rs10033900 in the CFI gene (P ¼ 0.0011, OR ¼ 1.95 [95%
confidence interval (CI) 1.31–2.92]) and rs769455 in the APOE

gene (P ¼ 0.041, OR ¼ 5.44 [95% CI 1.07–27.56]). Only CFI

rs10033900 remained significantly associated with myopic
CNV after correction for multiple testing (P ¼ 0.021) in the
univariate model.

In the multivariate model, with adjustment for age, sex, and
degree of myopia, the T allele of rs10033900 in the CFI gene

TABLE 1. Characteristics of High Myopic Patients with CNV (Cases) and High Myopic Patients without CNV (Controls)

Variable Cases (n ¼ 71) Controls (n ¼ 196) P

Age at diagnosis, y 53.9 6 14.9 (13 to 85) 40.9 6 13.9 (19 to 88) 3.2 3 10�9

Sex, % female (n) 73.2% (52) 69.4% (136) 0.65

Refractive error, diopters

OD �12.1 6 5.3 (�6 to �27) �9.2 6 3.0 (�6 to �22) 1.4 3 10�4

OS �11.9 6 5.0 (�6 to �23) �9.2 6 3.2 (�6 to �21) 1.3 3 10�4

Site

France 62 (87%) 182 (91%) 0.24

United States 9 (13%) 14 (7%)

Values denote means 6 SDs and ranges or percentages.
P values for age and refractive error are calculated by two-tailed t-test.
P values for sex and site are calculated by v2 test.
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was significant (P ¼ 0.0023, OR ¼ 2.1 [95% CI 1.3–3.37]) and
remained significant after correction for multiple testing (P ¼
0.045). Two other SNPs, rs669676 in COL8A1 (P¼ 0.0076, OR
¼ 1.88 [95% CI 1.18–2.98]) and rs1061170 in CFH (P ¼ 0.04,
OR ¼ 1.65 [95% CI 1.02–2.66]) were associated with myopic
CNV in the multivariate analysis but were not significant after
correction for multiple testing. Rs769455 in APOE was
significant in the uncorrected univariate analysis, but was no
longer significant (P ¼ 0.066) after adjustment for the
covariates. The APOE haplotypes (E2, E3, E4) were not
significantly associated with myopic CNV in either univariate
or multivariate analysis (see Supplementary Material and
Supplementary Table S1, http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.12-9538/-/DCSupplemental).

DISCUSSION

Despite some similarities between AMD and myopic CNV,
including macular CNV, subretinal location of the CNV
outgrowth, and some degree of atrophy, no genetic variants
have been previously reported to be associated with myopic
CNV among Caucasians. In this study, we evaluated several
AMD genetic variants that could also be involved in myopic
CNV development. Following a candidate gene approach, this
case-control study identified one SNP in the CFI gene
significantly associated with myopic CNV even after adjusting
for confounding factors and multiple testing. Other SNPs that
showed suggestive evidence for association are worthy of
further exploration as well.

The T allele of rs10033900, which is located 2781 bp
upstream of the 30 untranslated region of the complement
factor I gene (CFI), has been associated with increased risk of
exudative AMD in Caucasians.44,47 Both complement factors I
and H are complement regulatory proteins. CFH encodes
factor H, the most important alternative pathway discrimina-
tor that binds C3b and prevents the formation of C3
convertase and acts as a cofactor of factor I to cleave C3b
in iC3b.49 CFI is expressed by hepatocytes, macrophages,
lymphocytes, endothelial cells, and fibroblasts and encodes
factor I, a regulator protein of the three complement
pathways.50 By cleaving of C3b and C4b, factor I reduces
the formation of the C3 and C5 convertase enzymes.50 Other

genes in the complement cascade pathway are associated with
exudative AMD, including CFH, C2, CFB, and C3.34–36,39–43

Interestingly, CFH (rs1061170, P ¼ 0.04) and CFI (rs10033900,
P ¼ 0.0023) appeared to be related to myopic CNV in this
study after adjustment for age, sex, and degree of myopia, and
CFI remained significant after adjustment for multiple testing.
The possible difference in effect of CFI compared with CFH on
myopic CNV risk may be related to the fact that factor I is
involved in the classic, lectin and alternative pathways, while
factor H is only involved in the regulation of the alternative
pathway.55 It is interesting to note that the gene on
chromosome 10, ARMS2/HTRA1, was not related to myopic
CNV in this study even though this gene is more strongly
associated with CNV compared with geographic atrophy in
AMD47,56 and also more strongly associated with all AMD
subtypes when compared with the CFH at-risk common
variant.57 It is also noteworthy that the SNPs in the VEGF
gene were not related to myopic CNV, given that VEGF

rs4711751 is related to advanced dry and exudative AMD.47

The intronic SNP rs669676 in the COL8A1 gene was
associated with myopic CNV after adjustment for age, sex, and
degree of myopia (P ¼ 0.0076). This gene encodes one of the
two alpha chains of type VIII collagen, a major component of
basement membranes of Bruch’s membrane and choroidal
stroma.58 The intronic SNP rs13095226 in this gene is
associated with advanced AMD in our previous studies.45,47

The SNP rs669676 of COL8A1 might lead to direct or indirect
structural alterations of the Bruch’s membrane as frequently
observed during high myopia (Fig.), which is a risk factor for
myopic CNV.59

The association between the E4 APOE haplotype and a
reduced risk of AMD has been described in two independent
case-control studies,32,33 and supported by other studies or in
meta-analyses.60–62 The lipid component of soft drusen
observed in AMD and the genotypic correlations between
APOE and macular pigment63 could possibly support the
hypothesis of a genetic association between this gene and CNV
due to high myopia or AMD. However, associations between
AMD and APOE are not consistent48 and the APOE gene is
known to be linked to human longevity.64 In a murine model,
apoE4 mice showed a more severe AMD-like pathological
phenotype and also developed marked CNV, a hallmark of

FIGURE. High myopic patient (�12 D) with CNV in the right eye. (A) Fluorescein angiography showing CNV (white arrow). (B) Indocyanine green
angiography showing the CNV in the early phase (white arrow). (C) Indocyanine green angiography showing a lacquer crack in the late phase
(white arrow).
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exudative AMD.65 In this study, although we did not find
significant evidence supporting the association between E2,
E3, and E4 APOE haplotypes and myopic CNV (see Supple-
mentary Material and Supplementary Table S1, http://www.
iovs .org/ lookup/suppl/doi :10.1167/ iovs .12 -9538/ - /
DCSupplemental), we found suggestive evidence of association
between myopic CNV and another SNP (rs769455), which is a
rare variant of the APOE gene previously implicated with type
III hyperlipoproteinemia.51 This was not significant after
correction for multiple testing, however. Additional studies
are required to replicate this result and elucidate the roles of
this gene in myopic CNV etiology.

A limitation of this study is the relatively small sample size,
especially for cases with myopic CNV; however, the study is
strengthened by at least two factors. First, all participants came
from a similar ethnic background, which reduced the chances
of heterogeneity in different populations. Second, both the
cases and controls were high myopic patients with high
myopic genetic profile, which enhanced the ability to detect
susceptible loci for myopic CNV. In contrast, comparing
myopic CNV patients with nonmyopic controls may be
confounded by the genetic and environmental factors influ-
encing the risk of myopia.

To our knowledge, this study is the first to explore specific
genetic effects influencing risk of CNV in high myopic patients
compared with controls who are also highly myopic. This
study suggests that the inflammatory pathway may be
associated with myopic CNV, a vision-threatening complication
of high myopia, through CFI. Larger studies are needed to
analyze this gene and other candidate loci for this important
vision-threatening complication of high myopia.
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