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Abstract: Fluorophore excited state lifetime is a useful indicator of micro-
environment in cellular optical molecular imaging. For quantitative sensing, 
precise lifetime determination is important, yet is often difficult to 
accomplish when using the experimental conditions favored by live cells. 
Here we report the first application of temporal optimization and spatial 
denoising methods to two-photon time-correlated single photon counting 
(TCSPC) fluorescence lifetime imaging microscopy (FLIM) to improve 
lifetime precision in live-cell images. The results demonstrated a greater 
than five-fold improvement in lifetime precision. This approach minimizes 
the adverse effects of excitation light on live cells and should benefit FLIM 
applications to high content analysis and bioimage informatics. 

©2010 Optical Society of America 

OCIS codes: (100.2000) Digital image processing; (170.1530) Cell analysis; (170.2520) 
Fluorescence microscopy; (170.6920) Time-resolved imaging. 
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1. Introduction 

Fluorophore excited state lifetime is an intrinsic property of fluorophores that is sensitive to 
micro-environmental conditions such as temperature, pH, and interactions with other 
molecules. Hence, it can be employed as an optical sensor to indicate, for example, Förster 
resonance energy transfer, oxygen levels, and the conformational state of endogenous / 
exogenous fluorophores in live-cell and in vivo studies [1–5]. Importantly, fluorescence 
lifetimes are relatively insensitive to the factors affecting intensity: variation in excitation 
source intensity, detection gain setting, optical loss in the optical path or sample, variation in 
sample fluorophore concentration, photobleaching, and microscope focusing [6]. 

However, in the applications of fluorescence lifetime, the precision of lifetime 
determination can be a crucial issue. For example, precise quantification of fluorescence 
lifetime can have an impact on high content analysis and bioimage informatics. High content 
analysis of images requires automated processing of a large amount of image data, and this 
technique has been demonstrated to have biomedical applications such as the characterization 
of cell cycle therapeutics [7], the analysis of neurite branching [8], and the quantification of 
caspase activation [9]. It has been demonstrated that FLIM can be used for high content and 
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high throughput screening [10], implying that the above applications as well as research in 
proteomics, cellomics, and drug discovery can potentially be facilitated by improvements in 
FLIM precision. Another related emerging area is bioimage informatics, whose applications 
include high-throughput / high-content phenotyping and atlas building for model organisms 
[11]. Since bioimage informatics utilizes computational tools for the acquisition, visualization, 
and analysis of image data sets, it can also benefit from better quantification of fluorescence 
lifetime if fluorescence lifetime imaging is employed. 

To improve the precision of microscopic fluorescence imaging, several “denoising” (noise 
removal) techniques have been proposed for fluorescence microscopy and FLIM. Wavelet 
analysis [12] has been used for denoising images from confocal and full-field frequency-
domain FLIM [13,14]. Non-parametric regression method [15] and multiframe SURE-LET 
(Stein’s unbiased risk estimate -linear expansion of thresholds) denoising [16] have been 
reported for fluorescence microscopy image denoising. However, it has not been reported that 
denoising can be used in time-domain FLIM for improvements of lifetime determination. 

In this study, we applied novel total variation (TV) denoising models in time-domain 
FLIM for precision improvement. TV models, based on local denoising algorithms, are very 
commonly used in medical imaging systems and even non-imaging technologies, because 
they perform selective smoothing and hence are edge-preserving [17,18]. For example, a 
variety of improved TV models [17,18] and related algorithms have been used with many 
other image processing techniques and medical imaging systems such as 3D confocal 
microscopy deconvolution [19], X-ray-computed tomography [20], deconvolution-based 
correction in positron emission tomography [21], image segmentation [22], and they can be 
applied to non-imaging medical technologies such as detecting and delineating genomic 
regions with biased gene expression in cancer [23]. 

We previously tested the novel TV denoising models developed in our laboratory with 
artificial images and with images of fluorescent beads and live-cells acquired from a wide-
field time-gated FLIM system [24–26]. Tests with artificial images indicated that there was no 
lifetime bias in the fluorescence lifetime value, provided that the estimation of noise 
magnitude was accurate. Tests with fluorescent beads demonstrated that TV denoising could 
be combined with optimal gating to achieve lifetime precision improvement greater than 4-
fold, with the lifetime values basically uniform inside the beads, as expected. Tests with live-
cells indicated that the novel denoising models preserved the overall lifetime and amplitude 
values of the single-exponential decay model while improving local lifetime fitting. 

In this study, we further focus on lifetime precision improvements in time-correlated 
single photon counting (TCSPC) FLIM, a widely used approach, where fluorescence decay 
curves are constructed by photon emission histograms [6], as in Fig. 1. We demonstrate, for 
the first time, how temporal optimization (optimal virtual gating, see section 2.3) and spatial 
denoising methods can be used to improve the precision of lifetime determination in live-cell 
two-photon TCSPC FLIM. 

2. Methods 

2.1. Live-cell sample 

LLC-PK1 live cells expressing mEmerald-EB3 and mCherry-H2B were kindly provided by 
Dr. Michael Davidson (Florida State University). The cells were cultured in Dulbecco’s 
minimal essential medium (DMEM) supplemented with 10% fetal bovine serum in humidified 
37 °C incubator with 5% CO2. The cells were trypsinized and seeded in MetTek glass-bottom 
dishes with approximately 20% of confluence 12-24 hours before imaging. 

2.2. TCSPC FLIM 

Fluorescence lifetime images can be constructed by using raster-scanned time-correlated 
single photon counting (TCSPC) modules. With this technique, an entire exponential 
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fluorescence decay curve can be constructed by a histogram of single photon collections at 
each pixel of the image (Fig. 1), and the lifetime value can be retrieved by curve fitting, such 
as nonlinear least squares fitting, of the data points constructing the detected decay curve. 

In the two-photon TCSPC FLIM instrumentation, a Zeiss inverted LSM-510 laser 
scanning confocal system was used with two-photon excitation (ChameleonTM Vision, 
Coherent Inc.) and a Becker & Hickl TCSPC module (DCC software version 1.23 and SPCM 
software version 8.70). 

The live-cell images were acquired with the following settings. A 100 x objective was 
used. mEmerald was excited at λex = 820 nm and the fluorescence was collected at λem = 500-
550 nm. Data acquisition time was 100 seconds. The maximum total photon counts were 
about 2500. 

g

dt
time

photon counts

per pixel

(log scale)

emission histogram

photon counts summation
 

Fig. 1. Concept of virtual gating of TCSPC data. The decay curves were constructed by photon 
emission histograms, to which virtual gating could be applied by summing up the values of the 
data points within each virtual gate to form a time-gated intensity image. 

2.3. Optimal “virtual” gating 

TCSPC data can be “virtually gated” to form gated intensity images similar to those from 
time-gated FLIM. Given the values of the gate width, g, and the time interval between the 
starting points of two consecutive gates, dt (see Fig. 1), virtual gating of TCSPC data is a 
post-data-acquisition technique and is implemented by summing up the values of the data 
points within each virtual gate to form an intensity image. In this study, four virtual gates 
were used for its robustness [27], and a four-gate protocol was applied to determine the 
lifetime values by using Eq. (1) on a pixel-by-pixel basis [28–30]: 

 
2 2

, ,

( ) ( )
,

ln ( )( ln )
i i

p

i i p i i p

N t t

N t I t I
τ

−
= −

−
∑ ∑

∑ ∑ ∑
 (1) 

where τp is the lifetime of pixel p, Ii,p is the intensity of pixel p in image i, ti is the gate delay 
of image i, and N is the number of images. All sums are over i. 

The cellular morphology pattern of the conventional TCSPC lifetime map, shown in Fig. 
4(a), was used as a reference for further parameter selection in lifetime mapping after virtual 
gating. Figure 4(a) was generated with “threshold” = 5 in conventional TCSPC lifetime 
mapping, meaning that the pixels with peak photon numbers lower than 5 would not be 
analyzed. The “reject” values, below which the intensities were set to zero in the virtually-
gated images, were adjusted such that the morphology was approximately the same as in the 
reference image, Fig. 4(a). This was for better comparisons of the variations only in the 
morphology that we were interested in. Indeed, lowering the values of “reject” would change 
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the apparent morphology and the relative standard deviation (RSD, defined as the standard 
deviation divided by the mean value, used as an indicator for the uncertainty of lifetime 
determination) values by bringing a certain amount of background to foreground. Changing 
the “threshold” value in TCSPC lifetime mapping had similar effects. Therefore, it was 
reasonable to adjust “reject” accordingly to match the selected “threshold” value. 

Optimal virtual gating parameters can be determined. The RSD of the lifetime values 
calculated by using the four-gate protocol could be analytically determined by applying error 
propagation to Eq. (1), with the assumption of Poisson noise (see Eq. (2)). The optimal gating 
parameters then occurred at the minimal RSD values. The live-cell samples described in 
section 2.1 (approximate fluorescence lifetime value around 2.7 ns) were then determined to 
have the optimal gating scheme around dt = 2 ns and g ≥ 8 ns. For non-optimal gating, dt was 
chosen to be 20% of the optimal dt for consistency with our previous study [25], where the 
this change in dt was proven to have an impact on lifetime RSD values in a time-gated FLIM 
system. In fact, dt around 0.5 ns or 1 ns is commonly used in time-gated FLIM systems to 
measure fluorescence lifetimes of several nanoseconds. Therefore, dt = 0.4 ns was used in 
regular (non-optimal) virtual gating of TCSPC. 

 

1

2

1 1 4 4 36
36 ,

exp( ) exp( 2 ) exp( 3 )20 1 exp( )
RSD

dt dt dtdt g
TC

τ

τ τ ττ τ

  
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(2) 

There are some advantages of virtual gating of TCSPC data. First, it greatly accelerates the 
lifetime retrieving steps when used with subsequent closed-form lifetime determination 
methods such as rapid lifetime determination and the four-gate protocol mentioned above. 
Although virtual gating itself with closed-form lifetime solutions might not improve the 
precision of lifetime determination, it enables image processing, such as image denoising 
(section 2.4), for each virtual gate, and this allows further improvements of lifetime imaging. 

2.4. Total variation denoising 

2.4.1. Denoising algorithms 

In this study, two novel total variation (TV) based image denoising models were used to 
improve the lifetime precision of live-cell two-photon TCSPC FLIM. They can remove 
Poisson noise and can also be easily adapted for any forms of noise introduced by imaging 
systems and image processing procedures. These forms of noise can be intensity-dependent, 
lifetime-dependent, or even spatially-dependent. Therefore, they can provide an accurate 
estimation of noise magnitude and have been demonstrated to produce no lifetime bias in their 
applications to FLIM [24–26]. The first model we used was a general variance-weighted TV 
(VWTV) model: 

 
( )2

,
( )

f u
E u dxdy dxdy

Var f
λ

Ω Ω

−
= ∇  +  ∫ ∫  (3) 

where Ω denotes the signal domain, Var(f) indicates the local variance of f, the given image 
(as a function of x and y), λ is the fidelity coefficient, the variables x and y represent the spatial 
location of the pixels, u denotes the processed image, and E denotes energy. The values of λ 
were determined by the “discrepancy rule” [31], which requires the fidelity term (the second 
term on the right hand side of Eq. (3)) evaluated with f and the final u to be the same as that 
evaluated with f and the estimated uncorrupted image [24]. Denoising was implemented 
through the minimization of energy (E), during which the processed image (u) evolved to a 
stable state that should be close to the original image without noise corruption. For the 
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specific application of denoising virtually-gated intensity images, a novel f-weighted TV 
(FWTV) model [24] based on an f-weighted fidelity term was used. In this model, the Var(f) 
term in Eq. (3) was simply replaced by f, with the assumption that the intensity values 
followed Poisson distribution due to the single photon counting behavior in TCSPC. 

2.4.2. Denoising procedures 

Two procedures were used with TV denoising. In “lifetime denoising” (Fig. 2 (a)), a lifetime 
map was first constructed, either by four-gate lifetime mapping (for virtually-gated TCSPC 
FLIM) or by TCSPC lifetime mapping (for regular TCSPC FLIM), before applying denoising 
directly on lifetime maps. Since the variance of lifetime was not proportional to the lifetime 
values, VWTV was used. The variance estimation of virtually-gated TCSPC lifetime maps, as 
a function of τ, g, dt, and total photon counts, was performed by solving analytically the error 
propagation of the four-gate lifetime mapping formula (Eq. (1), also see Eq. (2)), while the 
variance estimation of TCSPC lifetime map, as a function of τ and total photon counts, was 
performed by direct sampling of the uniform regions of lifetime maps (see Fig. 3). In 
“intensity denoising” (Fig. 2 (b)), each virtually-gated intensity image was denoised before 
four-gate lifetime mapping. In this case, TV denoising was performed with FWTV. 

Intensity 

denoising

Lifetime 

denoisingLifetime map

Virtually-

gated

intensity 

images

VWTV 

denoising

FWTV 

denoising

Denoised

lifetime map

Denoised

intensity 

images

Denoised

lifetime map

(a)

(b)

Four-gate 

lifetime

mapping
Virtually-

gated

intensity 

images

time

photon 

counts
per 
pixel

time

photon 

counts
per 
pixel

Or

TCSPC 

lifetime

mapping

Four-gate 

lifetime

mapping

 

Fig. 2. The precision of lifetime determination in TCSPC FLIM was improved by either (a) 
lifetime denoising, where the estimated variance of lifetime values was used in VWTV for 
denoising of lifetime maps, or (b) intensity denoising, where FWTV was used for denoising of 
each intensity image before four-gate lifetime mapping. 
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Fig. 3. The Var(f) image (values in ns2) used in VWTV denoising (Eq. (3)) of the lifetime map 
of the live-cell sample (section 2.1) after TCSPC lifetime mapping (see Fig. 2 (a)). The 
variance was first assumed to be dependent on local τ and total photon counts (TC) values, and 
the variance value of each pixel was then determined to be 227.677 × τ2 / (256 × TC0.72) from 
the regression analysis of three uniform regions sampled: 256 was the number of bins used in 
the histogram of single photon collections in TCSPC; the exponent of 0.72 was chosen to make 
the average predicted proportional constant 227.677 stay within the minimum error of 0.03% 
among all the predictions from the three uniform regions. 

3. Results and discussion 

3.1. Overall lifetime precision improvement 

Figure 4 demonstrates that, for TCSPC FLIM, both virtual gating and our novel TV denoising 
techniques can remove uncertainties in lifetime maps (the major non-uniformity in the 
lifetime map should arise from noise, since the fluorescence lifetime should be nearly uniform 
with the fluorophores in similar environments; even if there was any intrinsic lifetime 
distribution, it would be preserved due to the edge-preserving property of the TV denoising 
techniques). Overall, the precision was improved by greater than five-fold (RSD from 18.8% 
to 3.7%, Fig. 4(a) and (f)) in the lifetime map. The remaining RSD of 3.7% could be 
attributed to the intrinsic lifetime distribution instead of noise. The improvement from the 
intensity denoising (1% in this case, from Fig. 4(b) to (g) and from Fig. 4(c) to (h)) was 
independent of that from optimal virtual gating (2.1% in this case, from Fig. 4(b) to (c)). 

The overall precision improvement depends on several factors. Based on our previous 
studies with a time-gated FLIM system [24], optimal gating can reduce the RSD by a certain 
ratio (for example, reduction by 2/3 from 54% to 18%), which is independent of the geometry 
of objects in the image and the total photon counts (TC). On the other hand, denoising 
depends more on the starting RSD (starting with an already low RSD may cause negligible 
denoising effects) and also the geometry (see sections 3.3 and 3.4 below), but the reduction in 
the percentage of RSD is usually in the range of 1% to 10%, which also depends on the 
denoising procedures used (section 3.4). In theory, noise-related RSD is inversely 
proportional to the square root of TC. Therefore, for TC ≥ 104, although optimal gating is 
always recommended, the noise-related RSD could become 5% or less after optimal gating, 
and denoising may not be needed in this case. However, for TC ≤ 104 to as low as around 100, 
the combined approach of optimal gating and denoising is recommended and has been 
demonstrated to reduce the RSD multifold [24,25]. These principles obtained from time-gated 
FLIM should also apply to TCSPC FLIM, since TCSPC data have Poisson-distributed noise, 
and virtually gated TCSPC FLIM data are of the same form as time-gated FLIM data. 
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Fig. 4. The lifetime maps of live LLC-PK1 cells expressing mEmerald-EB3 and mCherry-H2B, 
with only mEmerald being imaged: (a) undenoised and (d) lifetime-denoised, with TCSPC 
lifetime mapping (curve-fitting of the original TCSPC data); (b) undenoised, (e) lifetime-
denoised, and (g) intensity-denoised, with four-gate lifetime mapping after non-optimal virtual 
gating (dt = 0.4 ns; g = 8 ns); (c) undenoised, (f) lifetime-denoised, and (h) intensity-denoised, 
with four-gate lifetime mapping after optimal virtual gating (dt = 2 ns; g = 8 ns). Intensity 
denoising was not applicable to the original, non-gated, TCSPC data for improving lifetime 
precision. The labeled RSD values were obtained from all pixels with lifetime values greater 
than 2 ns to remove the variations from the background values. For better comparisons, “reject” 
(see section 2.3) was set to 100 for non-optimal virtual gating and was set to 15 for optimal 
virtual gating. Scale bar: 5 µm. 

3.2. Lifetime precision improvement by virtual gating 

After virtual gating was applied to the raw data, clearly and surprisingly, the virtual gating 
alone could greatly improve the precision. Even the non-optimal virtual gating could achieve 
a great deal of improvement (RSD = 9.0%, Fig. 4(b)), while the optimal virtual gating led to 

#124471 - $15.00 USD Received 19 Feb 2010; revised 3 Apr 2010; accepted 6 Apr 2010; published 9 Apr 2010
(C) 2010 OSA 12 April 2010 / Vol. 18,  No. 8 / OPTICS EXPRESS  8695



even greater improvement (RSD = 6.9%, Fig. 4(c)). Although this kind of improvement would 
be expected with time-gated FLIM based on our previous studies [24,25], the degree of (and 
whether there is) precision improvement with virtual gating in TCSPC FLIM may depend on 
total photon counts and will need further investigations. 

3.3. Lifetime precision improvement by total variation denoising 

Before virtual gating was applied, there were no gated intensity images for denoising and 
subsequent four-gate lifetime construction. Therefore, only lifetime denoising was applied and 
this resulted in an RSD reduction from 18.8% to 8.9% (Fig. 4(a) and (d)). 

For either non-optimally or optimally virtually-gated intensity maps, both lifetime 
denoising and intensity denoising can be applied to achieve even better precision. With a 
lower RSD to start with after optimal virtual gating, the denoising predictably achieved better 
precision (RSD = 3.7% and 5.9%, Fig. 4(f) and (h), for lifetime denoising and intensity 
denoising, respectively) compared to the non-optimal virtual gating (RSD = 4.3% and 8.0%, 
Fig. 4(e) and (g) for lifetime denoising and intensity denoising, respectively). 

3.4. Lifetime denoising versus intensity denoising 

For the live-cell images shown in Fig. 4, lifetime denoising had greater influence on the 
precision of lifetime determination than intensity denoising. Merely lifetime denoising on the 
original curve-fit lifetime map could produce much more than two-fold precision 
improvement. This may be attributed to the geometry of the features in the images, since our 
previous studies demonstrated that lifetime denoising appeared to be worse for removing the 
irregularities in the geometry of objects arising from noise but better for smoothing off-edge, 
internal pixels for pattern revealing. In the live-cell images (Fig. 4), the irregularities in the 
geometry arose mostly from the cellular structures but not from noise. Therefore, we presume 
that the irregular edges, which lifetime denoising preserved, did not cause imprecision after 
lifetime denoising, and in this case lifetime denoising could improve the precision better. 
Alternatively, the better performance of lifetime denoising could also be attributed to the 
medium total photon counts (≤ 2500), in the sense that higher total photon counts also 
removed noisy edges in lifetime maps. The full characterization of the differences in the 
performances of lifetime denoising and intensity denoising requires further investigations. 

4. Conclusion 

In this study, we applied optimal virtual gating and total variation image denoising to live-cell 
two-photon TCSPC FLIM images to remove the uncertainties and improve the precision of 
lifetime determination by greater than five-fold (relative standard deviation, or RSD, from 
18.8% to 3.7%; see Fig. 4(a) and (f)) in the lifetime maps. This approach is in principle 
applicable to single-photon TCSPC FLIM and time-gated FLIM, and allows low-light live-
cell imaging with high precision and minimizes the adverse effects of excitation light on live 
cells. Therefore, our techniques can help avoid unnecessary high-intensity excitation of 
biological samples, possible sample damage / photobleaching, and unwanted detection of 
sample movement with long acquisition time. Improvements in FLIM precision can also 
influence other applications of fluorescence lifetime imaging, such as high content analysis 
and bioimage informatics. 
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