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Abstract
A novel hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-
Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and
rotational equations of motion of the nanoparticle is employed to study the thermal motion of a
nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation
adopting an arbitrary Lagrangian-Eulerian (ALE) based finite element method (FEM) is employed
in simulating the thermal motion of a particle suspended in the fluid confined in a cylindrical
vessel. The results for thermal equilibrium between the particle and the fluid are validated by
comparing the numerically predicted temperature of the nanoparticle with that obtained from the
equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the
velocity autocorrelation function (VACF) and mean squared displacement (MSD) with well-
known analytical results. For nanoparticle motion in an incompressible fluid, the fluctuating
hydrodynamics approach resolves the hydrodynamics correctly but does not impose the correct
equipartition of energy based on the nanoparticle mass because of the added mass of the displaced
fluid. In contrast, the Langevin approach with an appropriate memory is able to show the correct
equipartition of energy, but not the correct short- and long-time hydrodynamic correlations. Using
our hybrid approach presented here, we show for the first time, that we can simultaneously satisfy
the equipartition theorem and the (short- and long-time) hydrodynamic correlations. In effect, this
results in a thermostat that also simultaneously preserves the true hydrodynamic correlations. The
significance of this result is that our new algorithm provides a robust computational approach to
explore nanoparticle motion in arbitrary geometries and flow fields, while simultaneously
enabling us to study carrier adhesion mediated by biological reactions (receptor-ligand
interactions) at the vessel wall at a specified finite temperature.
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1. Introduction
The use of nanoparticles enables precise and successful delivery of drugs to target cells [1,
2]. In general, nanoparticle drug-delivery systems have been shown to enhance drug efficacy
and reduce the impact of drugs on non-target tissues, thereby minimizing unwanted side
effects. In order to more broadly integrate this technology into clinical medicine, a model-
based design and optimization of nanoparticle transport in the vasculature and adhesion to
target cells can prove effective. Towards achieving this goal, an important step is to
determine the motion of a nanoparticle subject to hydrodynamic effects in the vasculature
while simultaneously being subject to a constant temperature; this is crucial to accurately
model the biological reactions (receptor-ligand interactions) mediating the adhesion of
nanoparticle to the endothelial cell surface lining the vasculature [3–6].

A nanoparticle suspended in a fluid undergoes random motion due to the thermal
fluctuations in the fluid. In determining the translational and rotational motions of the
nanoparticle in an incompressible Newtonian fluid, there exist two methods to couple the
thermal fluctuations with the hydrodynamic interactions: the fluctuating hydrodynamics
method and the generalized Langevin dynamics method. The fluctuating hydrodynamics
method essentially consists of adding stochastic stresses (random stress) to the stress tensor
in the momentum equation of the fluid [7]. The stochastic stress tensor depends on the
temperature and the transport coefficients of the fluid medium [8, 9]. Numerical simulations
of the fluctuating hydrodynamics approach have been carried out employing the finite
volume method [9–12], lattice Boltzmann method (LBM) [13–19], finite element method
[20–22] and stochastic immersed boundary method [23]. In contrast, in the Langevin
dynamics method, the effect of thermal fluctuations are incorporated as random forces and
torques in the particle equation of motion [24–30]. The properties of these forces depend on
the grand resistance tensor. The tensor in turn depends on the fluid properties, particle shape,
and its instantaneous location such as its proximity to a wall or a boundary.

Accurate modeling of fluid flow in arbitrary geometries for realistic situations requires us to
often consider (or assume) an incompressible fluid. However, it has been extensively
discussed in the literature that the relation between fluctuation and dissipation of stresses is
impacted by the compressibility of the fluid [31–36]. Hence, for motion of nanoparticles in a
bulk fluid, following Zwanzig and Bixon [32], it is customary to account for compressibility
in the fluctuating hydrodynamics method by modifying the effective mass of the system by a
virtual mass (which accounts for the mass of the particle plus that of the displaced fluid) for
making predictions of the translational temperature; this correction takes into account the
energy carried by sound waves [22]. However, while the correction factor is fixed for a
particle diffusing far from the wall, the nature of the displaced fluid and hence the correction
factor is subject to change when hydrodynamic interaction with neighboring particles or the
wall become important (i.e. for locally dense nanoparticle suspensions or for nanoparticles
close to the wall). In contrast, in the generalized Langevin approach, a robust thermostat can
be implemented by suitably tuning the noise spectrum of the random forces and torques by
adding memory, but the coupling of the thermostat to the fluid equations of motion alters the
true hydrodynamic behavior as quantified by the nature of the velocity autocorrelation
function (VACF) and the value of the diffusion coefficient computed using mean squared
displacement (MSD) vs. time [30]. Thus, the underlying objective of this paper is to devise a
thermostat for the nanoparticle which maintains a set temperature and the correct thermal
distributions (i.e. preserve the canonical ensemble), while simultaneously preserving the
hydrodynamic effects (i.e. velocity auto-correlation and diffusion coefficient). Such an
algorithm will enable the numerical simulation of transient rolling or firm arrest of
nanoparticles on cells, where the (unsteady) hydrodynamics needs to be resolved as well as
the temperature of the particle needs to match the preset temperature of the thermostat. The
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algorithm will also accurately account for the configurational integral (of the partition
function) of the nanoparticle in the canonical ensemble so that biological reactions
mediating the rolling or arrest can be integrated in the hydrodynamic model. This feature
will enable the calculation of free energy landscapes for adhesion [4, 37, 38] and rolling
under transient flow conditions. Section 2 describes the mathematical formulation of the
problem. Numerical results and discussions along with the validations are presented in
Section 3, and the conclusions are provided in Section 4.

2. Methods
Thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium
contained in a horizontal circular vessel (see Figure 1) is considered. The fluid and particle
equations are formulated in an inertial frame of reference with the origin coinciding with the
center of the cylindrical vessel (Figure 1). The radius, R, and the length, L, of the vessel are
very large compared to the nanoparticle radius, a. Initially, a nanoparticle is introduced at
the vessel centerline and both the fluid and particle are at rest. No body force is assumed to
be applied either on the particle or in the fluid domain. Starting at time t = 0, the
nanoparticle experiences Brownian motion. The motion of the nanoparticle is determined by
the hydrodynamic forces and torques acting on the particle.

2.1. Governing equations and boundary conditions
The motion generated in the incompressible Newtonian fluid satisfies the conservation of
mass and momentum as given by

(1)

(2)

where u and ρ(f) are the velocity and density of the fluid respectively. The stress tensor σ,
for Newtonian fluid is given by

(3)

where p is the pressure, J is the identity tensor, μ is the dynamic viscosity, and S is the
random stress tensor. S is assumed to be a Gaussian with

(4)

where 〈 〉 is the ensemble average, kB is the Boltzmann constant, T is the absolute
temperature, and δ(x–x′) denotes that the components of the random stress tensor are
spatially uncorrelated (Markovian). The right hand side of equation (4) denotes the mean
and variance of the thermal fluctuations chosen to be consistent with the fluctuation-
dissipation theorem [7, 8, 39, 40]. By including this stochastic stress tensor due to the
thermal fluctuations in the governing equations, the macroscopic hydrodynamic theory is
generalized to include the mesoscopic scales ranging from tens of nanometers to a few
microns.

For a rigid particle suspended in an incompressible Newtonian fluid, the translational motion
of the particle satisfies Newton’s second law,
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(5)

and the rotational motion satisfies the Euler equation,

(6)

where m is the mass of the particle, I is its moment of inertia, and U and ω are the
translational and angular velocities of the particle, respectively. The hydrodynamic force F
and the torque T acting on the particle are given by

(7)

where X is the position of the centroid of the particle, (x – X) is a vector from the center of
the particle to a point on its surface, ∂Σp denotes the particle surface, and n̂ is the unit
normal vector on the surface of the particle pointing into the particle.

The initial conditions for the problem are

(8)

and the boundary conditions are given by

(9)

(10)

(11)

where Σ0 is the domain occupied by the fluid and ∂Σi and ∂Σo are the inlet and outlet
boundaries, respectively. It is assumed that there is no body torque acting at any point in the
fluid and the viscous stress tensor, σ, is symmetric. The fluctuation-dissipation theorem for
the random stress tensor of the fluid requires that S is symmetric as well [40, 41]. The
stochastic governing equations (1) – (6) along with the initial and boundary conditions (8) –
(11) are solved numerically. A numerical simulation at a mesoscopic scale involving a
particle in a fluid could be based on a discretization of the equations (1) – (6). However, the
discrete forms have to satisfy the fluctuation-dissipation theorem [9–11, 39, 40, 42, 43].
Español and Zúñiga [20] and Español et al. [21] have shown that a well behaved set of
discrete equations obtained in terms of the finite element shape functions based on the
Delaunay triangulation conserves mass, momentum and energy while ensuring
thermodynamic consistency. Furthermore, Español et al. [21] have cast their discrete
hydrodynamic equations in the GENERIC structure and observed that the resulting
reversible matrix does not satisfy the Jacobi identity and the degeneracy conditions of
GENERIC structure [39, 40]. But, these conditions are of the order of the cell size and
vanish in the continuum limit [21]. In effect, Español et al. [21] have shown that the finite
element discretization procedure based on Delaunay triangulation is an appropriate
procedure for discretizing the compressible fluctuating Navier-Stokes equations. In the
present study, we obtain the discrete hydrodynamic equations using finite element shape
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functions based on the Delaunay-Voronoi tetrahedrizations. The details of combined fluid-
solid weak formulation, generating random stress tensor for the tetrahedral finite element
mesh, spatial discretization, mesh movement techniques, and temporal discretization of time
derivatives are discussed in [22, 30]. These details will not be repeated here for brevity.
Briefly, the fluid domain is approximated by quadratic tetrahedral finite-elements (10 nodes
defined per tetrahedron with 10 basis functions that are second-order polynomials). The
discrete solution for the fluid velocity is approximated in terms of piecewise quadratic
functions, and is assumed to be continuous over the domain (P2 elements). The discrete
solution for the pressure is taken to be piecewise linear and continuous (P1 element). This
P1/P2 element for the pressure and velocity is consistent with the Ladyzhenskaya-Babuska-
Brezzi (LBB) or inf-sup condition and yields convergent solutions [44, 45].

The time scales involved in this study are (i) τb = m/ζ(t), the Brownian relaxation time over
which velocity correlations decay in the Langevin equation, (ii) τd = a2ζ(t)/kBT, the
Brownian diffusive time scale over which the nanoparticle diffuses over a distance equal to
its own radius, and (iii) τν = a2/ν, the hydrodynamic time scale for momentum to diffuse
over a distance equal to the radius of the nanoparticle, where ζ(t) = 6πμa is the Stokes
dissipative friction force coefficient for a sphere, a is the radius of the nanoparticle, and ν is
the kinematic viscosity of the fluid. The time step Δt for the numerical simulation has been
chosen to be smaller than all the relevant physical time scales described above. The
simulations presented in this study have been carried out for long enough durations to allow
for the temperature of the particle to equilibrate; i.e., if N is the number of simulated time
steps then N · Δt = t ≫ τν.

3. Results and Discussion
A neutrally buoyant solid spherical particle of radius a = 250 nm is placed at the center of a
cylindrical tube (R = 5µm) containing a quiescent Newtonian fluid. The numerical results
are obtained from simulations of the fluid-particle system with physical parameters specified
in the caption of Figure 1. The temperature of the fluid is initially set to T = 310K. For a
given nanoparticle of radius a, and tube radius R, a ‘realization’ consists of N time steps
(approximately 10s wall clock time for each time step that is generally considered in this
study). The number of time steps depends upon equilibration of particle temperature, or
determination of VACFs and MSD. In order to ensure the uniqueness of the realizations,
different initial seeds are chosen for a Gaussian random number generator. In our
simulations, we predict (i) the translational and rotational temperatures of the nanoparticle,
where the temperature calculation is carried out until thermal equilibration is obtained for
the particle; (ii) the translational and rotational velocity distributions of the nanoparticle
motion; (iii) the translational and rotational VACFs; (iv) the translational and rotational
MSD of the particle for both ballistic and diffusive regimes. We compare the various
numerical predictions with known analytical results.

3.1. Fluctuating Hydrodynamics with Markovian noise
The equipartition theorem states that at thermal equilibrium, each component of the
nanoparticle translational and rotational velocities contribute a quadratic term to the energy
of the system. Therefore, each independent component of U and ω contributes an average
kinetic energy of kBT/2. Hence, the translational and rotational temperatures of the
nanoparticle are obtained from the average energies as

(12)
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Figure 2 shows the translational and rotational temperatures of the particle as a function of
the normalized surface mesh length (mesh length divided by particle radius) for two
different values of Δt. These are obtained from five different realizations in each coordinate
direction. Each realization consists of N = 20, 000 time steps. Thus, to evaluate the
equilibration of the particle temperature with the preset fluid temperature, we have
employed 3 × 5 × 20, 000 = 300, 000 time steps. The error bars have been plotted from
standard deviations of the temperatures obtained with 15 different realizations (5 realizations
in each direction). At a given Δt, convergence is noted as the normalized mesh size is
decreased. Furthermore, for the chosen values for Δt, the convergence in the temperature is
also noted. With regard to the converged values, the rotational temperature of the
nanoparticle agrees well with the preset temperature, while the translational temperature
converges to a value that is ~ 30% lower than the preset temperature. As mentioned in the
introduction, this is ascribed to the incompressibility assumption invoked in our model
equations. In the literature, to account for compressibility effects, the particle mass m is
augmented by an added mass m0/2, M = m+m0/2, where m0 is the mass of the displaced
fluid and M is the virtual or added mass of the particle [22, 31, 32, 35, 36]. While such a
correction has a physical basis (for the incompressible fluid, the displaced mass of the fluid
essentially translated along with the particle), it has limited predictive value for defining free
energy landscapes of reactions occurring on the nanoparticle surfaces (as motivated in the
example of nanoparticle adhesion in the introduction). Hence, as described earlier, the
primary objective of the present study is to build a robust thermostat, which preserves
equilibrium distributions of the canonical ensemble at constant temperatures and enables the
evaluation of free energy landscapes of nanoparticle adhesion subject to hydrodynamic
interactions (such as in a flow field) with surfaces in future applications. Therefore, in the
subsequent section, we describe a thermostat for an incompressible fluid which is consistent
with the Generalized Langevin Equation, and which preserves both the correct temperature
as well as the hydrodynamic correlations (VACF and Diffusion coefficient).

3.2. Fluctuating hydrodynamics with non-Markovian particle equation
As in the previous section, we begin with the equations of motion for the fluid
corresponding to the fluctuating hydrodynamics with Markovian noise. In order to maintain
the particle temperature at the preset temperature of the fluid, we implement a non-
Markovian processes. The time correlated noise is introduced into the equations of motion
of the nanoparticle in a manner similar to the generalized Langevin equation (GLE)

(13)

for the Brownian particle, where ζ(t) (t) is the frictional force memory kernel. Here, the
random force Θ(t) is zero-centered and stationary Gaussian that obeys the fluctuation-
dissipation theorem [46, 47]

(14)

In the case of internal noise, the memory kernel ζ(t) (t) is related to the correlation function
of the noise via the second fluctuation-dissipation theorem [48],

(15)
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In particular, if Θ(t) is both Gaussian and Markovian, then Doob’s theorem [49] states that
Θ(t) is necessarily an Ornstein-Uhlenbeck process [50], with an exponential correlation
function given by

(16)

where ζ(t) (= 6πμa) is constant friction coefficient, γ(|t − t′|) is the dissipative memory
kernel, τ is the characteristic memory time, μ is the dynamic viscosity of the fluid and a is
the radius of the nanoparticle. In the limit of the characteristic memory time, τ → 0,

(17)

which corresponds to a white noise, non-retarded friction and standard Brownian motion
[51].

In the present formulation, the time correlated noise is added into the particle equations of
motion (5) and (6) similar to the GLE (13) resulting in

(18)

(19)

where the random force ξ and torque η are given by

(20)

(21)

for the Ornstein-Uhlenbeck process. The time integral in equations (18) and (19) excludes
the frictional force and torque at the time instant t since it has already been accounted for in
the hydrodynamic force and torque terms, respectively. The characteristic memory time for
translational, τ1 = n1 · Δt, and rotational, τ2 = n2 · Δt, motions of the nanoparticle add
certain amounts of memory from the previous history of fluctuations to the system. Here, n1
and n2 correspond to the number of time steps required to adequately represent the memory
effects. These are variable quantities and are determined on the basis of satisfying the
equipartition theorem. The amount of memory required by translational and rotational
motions of the nanoparticle in order to satisfy the equipartition theorem are different. Hence
τ1 = τ2 is not a necessary condition for the temperature of the particle to attain the preset
temperature of the fluid. The methodology to compute these parameters is shown later in the
paper. Equations (20) and (21) are the random force and torque acting on the nanoparticle at
time t′ (a previous time instant). Since the random stress S(x, t) is Gaussian, ξ(t′) and η(t′)
are also Gaussian with variance equivalent to the strength of the white noise in the Langevin
equation. In the limit of the characteristic memory times τ1, τ2 → 0 (i.e. in the absence of
memory), equations (18) and (19) reduce to the equations (5) and (6), respectively, which
correspond to the Markovian fluctuating hydrodynamics.
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Now, the combined fluid-particle momentum equation is given by

(22)

which is solved numerically using ALE based FEM. The numerical results are obtained after
adding memory (depending on choices of τ1 and τ2) from the previous history of
fluctuations to the particle equations of motion during the simulation. These results are
validated by comparison with analytical results where available, in the following sections.

We recall that before the addition of the memory from Ornstein-Uhlenbeck noise to the
particle equations of motion, only the rotational temperature of the nanoparticle attained the
preset temperature (Figure 2). If we introduce the Ornstein-Uhlenbeck thermostat only for
the evaluation of the translational motion of the particle, it is now noted that the rotational
temperature of the nanoparticle does not attain the preset temperature of the fluid (data not
shown). On this basis, the Ornstein-Uhlenbeck thermostat is now considered both in the
translational and rotational motions of the particle with two distinct characteristic memory
times τ1 and τ2, non-dimensionalized with the simulation time scale τν.

3.2.1. Maxwell-Boltzmann distribution—At thermal equilibrium in the canonical
ensemble, the probability density function of the velocity of the fluctuating nanoparticle
follows the Boltzmann distribution. The equilibrium statistics of the three components of U
and ω along the three coordinate directions are independent of each other. In Figure 3, the
numerically simulated components of U (Figure 3(a)) and ω (Figure 3(b)) (represented by
three different symbols) of the nanoparticle with radius a = 250 nm are compared with the
analytical Maxwell-Boltzmann distribution with a zero mean and variance kBT/m and kBT/I,
respectively. The characteristic memory times τ1/τν = 0.096 and τ2/τν = 0.08. It is observed
that each degree of freedom individually follows a Gaussian distribution. These distributions
agree within 6% error (see dotted line in Figure 3) with that of the analytical Maxwell-
Boltzmann distribution, implying an adherence to the equipartition theorem within statistical
error, (see below).

3.2.2. Equipartition theorem—Figure 4 shows the temperature of the nanoparticle as a
function of the non-dimensionalized characteristic memory times τ1/τν (Figure 4(a)) and τ2/
τν (Figure 4(b)). It is observed that both the translational and rotational temperatures of the
particle attain the preset temperature (310 K) for a range of values for τ1, τ2 (Figure 4(a) and
(b)): in particular, the equipartition is satisfied within statistical error for 0.08 ≤ τ1/τν ≤ 0.12
and 0.048 ≤ τ2/τν ≤ 0.088, which defines the plateau region in the (τ1/τν) (τ2/τν) plane. The
parameter space of τ1, τ2 which defines the plateau region in Figure 4 signifies that our
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hybrid approach of Markovian description of the fluid defined by the fluctuating
hydrodynamics method along with the non-Markovian description of the nanoparticle
satisfies the equipartition theorem when the appropriate value for the memory is considered.

Figure 5 shows the translational and rotational temperature of the particle obtained by using
the fluctuating hydrodynamics approach along with the non-Markovian noise description in
the particle equations of motion as a function of the normalized surface mesh length (mesh
length divided by particle radius). Two different values of Δt are considered. At any given
Δt, convergence in the temperature is noted for different mesh size. For this calculation, τ1/
τν = 0.096 and τ2/τν = 0.08 (see Figure 4). Convergence of the translational and rotational
temperature at smaller mesh size is evident for the non-Markovian noise (Figure 5); in
contrast, the two temperatures converge to different values for the Markovian noise (Figure
2).

3.2.3. Hydrodynamic correlations—A nanoparticle experiencing Brownian motion in a
fluid is influenced by the hydrodynamic interactions. The fluid around the particle is
dragged in the direction of motion of the particle. On the other hand, the motion of the
particle is resisted by viscous forces arising due to its motion relative to the surrounding
fluid. The momentum of the fluid surrounding the particle at any instant is related to its
recent history. The friction coefficient is time dependent and is no longer given by the
constant (steady flow) Stokes value.

Hauge and Martin-Löf [8] have analytically shown that the decay of the translational and
rotational VACFs at long time obeys a power-law:

(23)

(24)

As for the short time behavior, the VACF is expected to adhere to the Langevin (white-
noise) limit [31]: for translation VACF~ exp (−ζ(t)t/m), and for rotation VACF~ exp (−ζ(r)t/
I), where ζ(r) = 8πμa3.

Figure 6 shows the VACF of the translational and rotational motions of the nanoparticle (a =
250 nm) in a quiescent fluid medium in a circular vessel as obtained from our numerical
simulations. For determining the VACF of the nanoparticle, 45 realizations have been
employed with total computation of 45 × 100, 000 = 4, 500, 000 time steps. For this
calculation, characteristic memory times τ1/τν = 0.096 and τ2/τν = 0.08 (see Figure 4). For
the parameters considered in this study, our numerical simulations predict that the
translational VACF follows an exponential decay in the range for t ≤ 0.186τν and an
algebraic tail for t ≥ 0.959τν. Similarly, the rotational VACF follows an exponential decay,
for t ≤ 0.099τν and an algebraic tail for t ≥ 0.349τν. Furthermore, the algebraic decay of the
translational and rotational VACFs have power-law behavior characterized by ~ t−3/2 and ~
t−5/2, respectively. Hence, our computed numerical results based on the hybrid non-
Markovian fluctuating hydrodynamics approach are in good agreement with the predictions
for short and long times (equations 23 and 24), respectively.

3.2.4. Nanoparticle diffusion—Figure 7 shows the numerically obtained translational
and rotational MSDs (measures of diffusion) of a neutrally buoyant nanoparticle (a = 250
nm) in a quiescent fluid medium, initially placed at the center of the vessel (R = 5 µm), for
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both short and long times. It is observed that in the regime where the particle’s motion is
dominated by its own inertia (ballistic limit), 0.162τν ≤ t ≤ 0.437τν (for translation), and
0.128τν ≤ t ≤ 0.195τν (for rotation), the translational and rotational motions of the particle
follow (3kBT/m)t2 and (3kBT/I)t2, respectively. In the diffusive regime, t ≫ τb, and when t
≥ 25.12τν (for translation) and t ≥ 27.54τν (for rotation), the translational and rotational

MSDs increase linearly in time to follow , respectively, where

 are the translational and rotational self-diffusion
coefficients. The results for the MSD illustrate that the short and long time behavior for
translation and rotation (and hence the diffusion coefficients for translation and rotation) are
captured correctly by our thermostat. Recently, Huang et al. [36] have experimentally
investigated the Brownian motion of a single particle in a liquid and provided results for the
translational MSDs in both the ballistic and the diffusive regimes corresponding to thermal
equilibration. Our numerical predictions of ballistic and diffusive motion of a particle in a
fluid are in good agreement with Huang et al. [36].

4. Conclusions
A FEM approach is employed to simulate the translational and rotational Brownian motion
of a nanoparticle in an incompressible Newtonian stationary fluid medium using a novel
hybrid scheme. This scheme combines Markovian fluctuating hydrodynamics for the fluid
along with non-Markovian Ornstein-Uhlenbeck noise in the equations of motion of the
nanoparticle. In particular, the thermal fluctuations are modeled as random stress tensors in
the fluid equation. The recent history of the particle’s motion is considered in terms of the
Ornstein-Uhlenbeck noise in the particle momentum equations. At thermal equilibrium, the
numerical predictions of our simulations are validated with well known analytical results.
Our results show that the hybrid approach can serve as a reliable thermostat while
simultaneously capturing the correct hydrodynamic correlations. In particular,

1. The calculated temperature of the nanoparticle (a = 250 nm) satisfies the
equipartition theorem in the ranges 0.08 ≤ τ1/τν ≤ 0.12 and 0.048 ≤ τ2/τν ≤ 0.088.
The thermal equilibrium between the nanoparticle and the fluid is obtained in the
small plateau region in the (τ1/τν) (τ2/τν) plane.

2. In the short time, the VACF of the nanoparticle shows the correct exponential
decay. Over long times, the decay of the VACF show algebraic tails for the
translational (t−3/2) and the rotational (t−5/2) motions of the nanoparticle, with
correct scaling behavior.

A comparison of the equilibrium and dynamic behaviors of the current hybrid approach with
the fluctuating hydrodynamics approach and the generalized Langevin approach are
provided in Tables 1 and 2.

Tables 1 and 2 illustrate the significance of the hybrid thermostat in resolving the correct
hydrodynamic interactions as well as the probability distributions in the canonical ensemble.
Future applications of this approach will focus on flow fields and wall effects as well as free
energy landscapes of adhesion of nanoparticles to cell surfaces. Other important extensions
of our hybrid approach to model athermal fluctuations such as nanoparticle collisions with
particulates of the blood plasma [3] will also be pursued in future studies.
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Figure 1.
Schematic representation of a nanoparticle in a cylindrical vessel (tube) (not to scale).
Radius of the tube: R = 5 µm; Length of the tube: L = 10 µm; Radius of the nanoparticle: a =
250 nm; Viscosity of the fluid: μ = 10−3kg/ms; Density of the fluid and the nanoparticle: ρ(f)

= ρ(p) = 103kg/m3.
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Figure 2.
Translational and rotational temperatures of the particle as a function of the normalized
surface mesh length (mesh length divided by particle radius) for two different values of the
computational time Δt. The preset temperature is 310K.
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Figure 3.
Equilibrium probability density of the (a) translational and (b) rotational velocities of the
nanoparticle (a = 250 nm) using fluctuating hydrodynamics with the Ornstein-Uhlenbeck
noise in the particle equations to account for memory. The non-dimensionalized
characteristic memory time τ1/τν = 0.096 and τ2/τν = 0.08.
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Figure 4.
Translational and rotational temperatures of the Brownian particle (a = 250 nm) as a
function non-dimensionalized characteristic memory times using fluctuating hydrodynamics
with the Ornstein-Uhlenbeck noise in the particle equations to account for memory. The
preset temperature is 310K.
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Figure 5.
Translational and rotational temperatures of the particle as a function of the normalized
surface mesh length (mesh length divided by particle radius) for two different values of the
computational time Δt using fluctuating hydrodynamics with the Ornstein-Uhlenbeck noise
in the particle equations to account for memory. The preset temperature is 310K, and the
non-dimensionalized characteristic memory times τ1/τν = 0.096 and τ2/τν = 0.08.
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Figure 6.
(a) Translational and (b) rotational VACFs of the Brownian particle (a = 250 nm) in a fluid
medium through a circular vessel using fluctuating hydrodynamics with the Ornstein-
Uhlenbeck noise in the particle equations to account for memory. The non-dimensionalized
characteristic memory times τ1/τν = 0.096 and τ2/τν = 0.08. The error bars have been
plotted from standard deviations of the decay at particular time instants obtained with 45
different realizations.
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Figure 7.
The MSD of a neutrally buoyant Brownian particle (a = 250 nm) in a stationary fluid
medium using fluctuating hydrodynamics with the Ornstein-Uhlenbeck noise in the particle
equations to account for memory. The non-dimensionalized characteristic memory times τ1/
τν = 0.096 and τ2/τν = 0.08. The results are obtained from 45 realizations, each realization
computed up to 100,000 time steps.
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Table 1

A summary of comparison of equilibrium properties between the hybrid (current), fluctuating hydrodynamics,
and generalized Langevin approaches. Abbreviations, MBD: Maxwell-Boltzmann distribution.

Method Equipartition Remarks

Hybrid Satisfies MBD and equipartition
theorem

Δt < τb for stability; thermostat works in a plateau region in the
(τ1/τν), (τ2/τν) plane

Fluctuating hydrodynamics [22] Satisfies MBD and equipartition
theorem only with an added
(virtual) mass correction

Δt < τb for stability; compressibility effects are accounted by
adding the virtual mass with the particle mass

Generalized Langevin dynamics [30] Satisfies MBD and equipartition
theorem

Δt < τb for stability; τ > τν for thermostat to work and satisfies
equipartition theorem in a small plateau region where τ ≳ τν

Mol Phys. Author manuscript; available in PMC 2013 February 08.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Uma et al. Page 21

Table 2

A summary of comparison of dynamic properties between the hybrid (current), fluctuating hydrodynamics,
and generalized Langevin approaches. Abbreviations, MBD: Maxwell-Boltzmann distribution.

Method VACF Diffusion

Hybrid Follows (i) an exponential decay at short times; (ii) an
algebraic decay over long times (translational: t−3/2 &
rotational: t−5/2)

Obey Stokes-Einstein (translation) and
Stokes-Einstein-Debye (rotation)
relations

Fluctuating hydrodynamics [22] Follows (i) an exponential decay at short times; (ii) an
algebraic decay over long times (translational: t−3/2 &
rotational: t−5/2)

Obey Stokes-Einstein (translation) and
Stokes-Einstein-Debye (rotation)
relations

Generalized Langevin dynamics [30] Follows (i) a stretched exponential decay at short times; (ii)
an algebraic decay over long times (translational: t−3/2 &
rotational: t−5/2)

Obey Stokes-Einstein (translation) and
Stokes-Einstein-Debye (rotation)
relations, with scaling factors
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