Skip to main content
. 2012 Aug 2;8(8):e1002609. doi: 10.1371/journal.pcbi.1002609

Figure 3. Extinction on biophysical fitness landscape.

Figure 3

All finite populations eventually go extinct. The mean number of generations until extinction (τ) increases with population capacity (N) and decreases with mutation rate (U). A: τ versus N at various fixed m; notice the double logscale. Curves for U<2.5 or so have an inflection point, signaling a qualitative transition from extinction to survival as N increases. Solid curves correspond to δ = 0, while dashed curves correspond to δ/W* = 0.1. B: Coefficient of variation in time until extinction (CVτ) for the same parameters as panel A. CVτ increases towards one in the survival phase and decreases toward zero in the extinction phase, as N increases. Curves “peel off” toward CVτ = 1 at the critical population capacity (Ncrit), shown approximately with dashed lines. When Inline graphic, both simulation results and general arguments (see main text) show that curves do not peel off, i.e. Ncrit does not exist. C: Heuristic cartoon “phase diagram” summarizing the behavior from panels A,B. In panels A,B τ values are reported only in cases where extinction occurred within 105 generations in each replicate. See main text and fig.S5 for a quantitative sense of how Ncrit depends on Ucrit. See Methods for averaging procedures. Γ = 20 throughout this paper.