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Abstract
A major challenge in the analysis of population genomics data consists of isolating signatures of
natural selection from background noise caused by random drift and gene flow. Analyses of
massive amounts of data from many related populations require high-performance algorithms to
determine the likelihood of different demographic scenarios that could have shaped the observed
neutral single nucleotide polymorphism (SNP) allele frequency spectrum. In many areas of
applied mathematics, Fourier Transforms and Spectral Methods are firmly established tools to
analyze spectra of signals and model their dynamics as solutions of certain Partial Differential
Equations (PDEs). When spectral methods are applicable, they have excellent error properties and
are the fastest possible in high dimension; see [15]. In this paper we present an explicit numerical
solution, using spectral methods, to the forward Kolmogorov equations for a Wright-Fisher
process with migration of K populations, influx of mutations, and multiple population splitting
events.

1. Introduction
Natural selection is the force that drives the fixation of advantageous phenotypic traits, and
represses the increase in frequency of deleterious ones. The growing amount of genome-
wide sequence and polymorphism data motivates the development of new tools for the study
of natural selection. Distinguishing between genuine selection and the effect of demographic
history, such as gene-flow and population bottlenecks, on genetic variation presents a major
technical challenge. A traditional population genetics approach to the problem focuses on
computing neutral allele frequency spectra to infer signatures of natural selection as
deviations from neutrality. Diffusion theory provides a set of classical techniques to predict
such frequency spectra [8, 21, 4], while the connection between diffusion and the theory of
Partial Differential Equations (PDEs) allows for borrowing well established high-
perfomance algorithms from applied mathematics.

The theory of predicting the frequency spectrum under irreversible mutation was developed
by Fisher, Wright and Kimura [6, 22, 13]. In particular Kimura [14] noted that this theory
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was applicable to many nucleotide positions and introduced the infinite sites model. The
joint frequency spectra of neutral alleles can be obtained from the coalescent model [20] or
by Monte-Carlo simulations [11]. The analysis in terms of diffusion theory is
mathematically simpler and can incorporate natural selection easily [8, 21, 4]. In this paper,
we model the demographic history of K different populations that are descended by K − 1
population splitting events from a common ancestral population. The populations evolve
with gene exchange under an infinite sites mutation model. We introduce a powerful
numerical scheme to solve the associated forward diffusion equations. After introducing a
regularized discretization of the problem, we show how spectral methods are applied to
compute theoretical Non-Equilibrium Frequency Spectra.

The introduction of spectral methods is usually attributed to [16], although they are based on
older precursors, such as finite element methods, and Ritz methods in quantum mechanics
[17]. The basic idea consists of using finite truncations of expansions by complete bases of
functions to approximate the solutions of a PDE. This truncation allows the transformation
of a diffusion PDE into a finite system of Ordinary Differential Equations (ODEs). The
motivation to use these methods relies on their excellent error properties, and their high
speed. In general, they are the preferred methods when the dimension of the domain is high
[15], and the solutions to the PDE are smooth. This is because the number of basis functions
that one needs to approximate the solutions of a PDE is much lower than the number of grid-
points that one needs in a finite difference scheme, working at the same level of accuracy
[7].

As we show in this paper, the convergence of spectral methods depends on the smoothness
of the solutions to be approximated. In many situations, solutions to diffusion equations
have good analytical properties, and spectral methods can be applied. However, the
application of these methods to the problem that interests us here requires a proper
discretization of the problem. Influx of mutations, population splitting events and boundary
conditions have to be properly regularized before one applies these methods and exploits
their high-perfomance properties.

1.1. Non-Equilibrium Frequency Spectra
The K-dimensional Allele Frequency Spectrum (AFS) summarizes the joint allele
frequencies in K populations. We distinguish between the AFS, which consists of the
unknown distribution of allele frequencies in K natural populations, and observations of the
AFS. Given DNA sequence data from multiple individuals in K populations, the resulting
observation of the AFS is a K-dimensional matrix with the allele counts (for a complete
discussion on this see [20]). Each entry of the matrix consists of the number of diallelic
polymorphisms in which the derived allele was found. In other words, each entry of the AFS
matrix is the observed number of derived alleles, ja, found in the corresponding number of
samples, na, from population a (1 ≤ a ≤ K).

The full AFS is the real distribution of joint allele frequencies at the time when the samples
were collected. If the total number of diploid individuals in the ath-population is Na ≫ na,
the natural allele frequencies x1 = i1/(2N1), x2 = i2/(2N2), … xk = iK/(2NK) (with ia the total
number of derived polymorphisms in the ath population) can be seen as points in the K-
dimensional cube [0, 1]K. Thus, given the frequencies of every diallelic polymorphism

(which we indexed by r) , the AFS can be expressed as the probability density
function
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(1.1)

Here, S is the total number of diallelic polymorphisms segregating in the K populations, and
δ( ) is the Dirac delta function.

Our goal is to determine this AFS under the infinite sites model. Any demographic scenario
in the model is defined through a population tree topology T, such as in Fig. 1, and a set of
parameters that specify the effective population sizes Ne,a, splitting times tA, and migration
rates mab at different times. Hence, 2Ne,amab is defined as the number of haploid genomes
that the population a receives from b per generation. For simplicity, we refer to the set of
parameters that specify a unique demographic scenario as Θ.

Thus, given a population tree topology and a choice of parameters, we will compute
theoretical densities of derived joint allele frequencies as functions on [0, 1]K of the type

(1.2)

with Λ a truncation parameter,  a complete basis of functions on the Hilbert space
L2 [0, 1] to be defined below, and αi1⋯iK the coefficients associated with the projection of
ϕ(x∣Θ, T) onto the basis spanned by {Ri1 (x)Ri2 (x) ⋯ RiK (x)}. These continuous densities
relate to the expectation of an observation of the AFS via standard binomial sampling
formulae

(1.3)

Using Eq. (1.3) we can compare model and data, for instance, by means of maximum
likelihood.

The major goals of this paper are twofold. First, we present the finite Markov chain and
diffusion approximation, associated with the infinite sites model used to compute neutral
allele spectra. A special emphasis is made on the boundary conditions and the influx of
mutations, because of their potential singular behavior. Second, we introduce spectral
methods and show how to transform the diffusion equations into coupled systems of
Ordinary Differential Equations (ODEs) that can be integrated numerically. In particular, we
introduce a set of techniques to handle population splitting events, mutations and boundary
interactions, that protect the numerical setup against Gibbs phenomena1. A detailed analysis
of the stability of the methods as a function of the model parameters, and the control of the
numerical error, are included at the end of the paper.

2. Finite Markov chain model
The evolutionary dynamics of diallelic SNP frequencies in a randomly-mating diploid
population can be modeled using a finite Markov chain, with discrete time t representing

1Gibbs phenomena are numerical instabilities that arise when the error between a function and its truncated polynomial approximation
is large.
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non-overlapping generations. For simplicity, we consider first one population with N diploid
individuals, and later will extend the results to more than one population.

The state of the Markov chain at time t is described by the vector fj(t), with 1 ≤ j ≤ 2N. Each
entry, fj(t), consists of the expected number of loci at which the derived state is found on j

chromosomes. Therefore,  is the expected number of polymorphic loci
segregating in the population at time t, and f2N(t) is the expected number of loci fixed for the
derived state. The model assumes that the total number of sites per individual is so large,
and the mutation rate per site so low, that whenever a mutation appears, it always does so on
a previously homoallelic site [14].

The vector fj(t), is also called the density of states. Under the assumption of free
recombination between loci and constant mutation rate, the time evolution of fj(t) under
random drift and mutation influx is described by the difference equations

(2.1)

In its simplest form, one assumes that the alleles in generation t + 1 are derived by sampling
with replacement from the alleles in generation t. Therefore, the transition coefficients in the
chain Eq. (2.1) are

(2.2)

This describes stochastic changes in the state after a discrete generation, Fig. 2. The second
term in Eq. (2.1) represents the influx of polymorphisms. Mutations are responsible for the
creation of new polymorphisms in the population. The influx of mutations depends on the
expected number of sites 2Nν, in which new mutations appear in the population each
generation2. If we assume that at each generation, every new mutation is found in just one
chromosome, then

(2.3)

for the mutation alone [4]. The term δi,j in Eq. (2.3) is the Kronecker symbol, with δ1,j = 1 if
j = 1 and δ1,j = 0 otherwise.

2.1. Effective Mutation Densities
In applications of the infinite sites model, one usually finds that the census population size
and the effective population size that drives random drift in Eq. (2.2) are not the same [14].
For this reason, we distinguish between Ne, the effective population size that defines the
variance of the Wright-Fisher process in Eq. (2.2), and the census population size N that can
be used to define the allele frequencies x = i/(2N). Therefore, the smallest frequency, x = 1/
(2N), with which new mutations enter populations will be sensitive to small stochastic
fluctuations in the census population size, even if the effective population size remains

2The expected number of sites 2Nν, relates to the expected number of mutations per base 2Nu, by the total length L of the genomic
sequence under study in units of base pairs, ν = u × L. Sometimes in this paper, in an abuse of notation we do not distinguish between
ν and u, and they are seen as the same quantity expressed with different units.
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constant. This is important when we take the diffusion limit of Eq. (2.1), and the stochastic
process is described by the continuous variable x = j/(2N), rather than the integer j. If we
consider a constant census population size, the term Eq. (2.3) in the Markov chain is
substituted by

(2.4)

in the diffusion limit. However, if the census population size per generation is a stochastic
variable distributed as F(N)dN, the diffusion limit of the mutation term will be

(2.5)

We expect that μ(x) will have some general properties, independent of the particular
characteristics of F(N)dN. For instance, in many realistic scenarios μ(x) will be a function
that is nearly zero for frequencies x > x*, with x* = 1/(2Nmin) a very small characteristic
frequency associated with the inverse of the minimum census population size.

Other phenomena that might not be properly captured by the simple mutational model in
Eqs. (2.3) and (2.4), consist of organisms with partially overlapping generations, and
organisms in which mutations in gametes arise from somatic mutations. When an organism
has a mating pattern that violates the assumption of non-overlapping generations (e.g.
humans), the generation time in the model Eq. (2.2) is interpreted as an average generation
time. Hence, during a generation unit, there is time enough for some individuals to be born
with new mutations at the beginning of the generation time, and to reproduce themselves by
the end of a generation unit. This implies that after one average generation, there can exist
new identical mutations in more than one chromosome. Similarly, when the gametes of an
organism originate from somatic tissue, they inherit de novo mutations that arose in the
soma after multiple cell divisions. If the individuals of this organism can have more than one
offspring per generation, one expects to find the same new mutation, in the same site, in
more than one chromosome per generation.

Because of these different biological phenomena, we believe that the notion of effective
mutation density, μ(x), is a more general way to describe mutations in natural populations.
The effective mutation density describes the average frequency distribution of new
mutations per generation, in one population, after taking into account the effects due to
stochastic changes in census population size, non-overlapping generations and/or mutations
of somatic origin. From a numerical point of view, effective mutation densities are a useful
tool to avoid the numerical instabilities associated with polynomial expansions of non-
smooth functions (e.g. Dirac deltas) that appear in the standard approaches to mutation
influx. As we show later when we discuss the continuous limit of the infinite sites model,
different effective mutation densities can yield predictions which are identical to predictions
of models based on Eq. (2.4).

2.2. More than one population
Here, we show how to incorporate arbitrarily more populations, and migration flow between
them. Generally, for the state in the chain we consider a discrete random variable X⃗ which
takes values in the K-dimensional lattice of derived allele frequencies:
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(2.6)

with K the number of populations, and 0 ≤ ia ≤ 2Na. For simplicity, we use a single index
notation, 0 ≤ I ≤ ∏a 2Na, to label the states where the random variable X⃗ takes values. The
random variable X⃗ = I jumps to the state X⃗ = J at a discrete generation unit, with prescribed
probability P(J∣I). The density of states in this multi-population setup is fI(t), and the
difference equations that describe its dynamics are equivalent to Eq. (2.1). The transition
matrix P̂ = P(J∣I) incorporates random drift and migration events between populations. New
mutations enter each population with an effective mutation vector μ⃗

(2.7)

in the standard model, the mutation density is .

The Markov chain for a Wright-Fisher process for two independent populations is defined
by the transition matrix

(2.8)

where Bi(j; k, p) stands for the binomial distribution with index k and parameter p. Also, we
can introduce migration between populations, by sampling a constant number of alleles nab
in population a that become part of the allele pool in population b. Thus, in a model of two
populations with migration, one considers the transition matrix

(2.9)

In this model the parameter space is given by the effective population sizes Ne, 1 and Ne, 2,
and the scaled migration rates n21 and n12. This process is generalizable to an arbitrary
number of populations in a straightforward way.
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3. Diffusion approximation
Diffusion approximations to finite Markov chains have a distinguished history in population
genetics, dating back to Wright and Fisher. This approach can be used to describe the time
evolution of derived allele frequencies in several populations, with relatively large
population sizes. This approximation applies when the population sizes Na are large (if Ne >
50, the binomial distribution with index 2Ne can be accurately approximated by the
Gaussian distribution used in the diffusion limit) and migration rates are of order 1/Ne.

In the large population size limit, the state space spanned by vectors such as Eq. (2.6)
converges to the continuous space [0, 1]K. The density of states fI(t) on the state space will
converge to a continuous density ϕ(x, t) on [0, 1]K. The time evolution of ϕ(x, t) depends on
how the inifinitesimal change δX⃗,

is distributed. If the mean of the δX ⃗ distribution is M(X⃗, t) and the covariance matrix is C(X⃗,
t), the time continuous limit δt → 0+ of the process X⃗(t) is well defined. In the small, but
finite, limit of δt the stochastic process obeys the equation

(3.1)

where ε⃗ is a standard normal random variable (with zero mean and unit covariance matrix)
in ℝK, σ(X⃗, t) is a square root of the covariance matrix C(X⃗, t) = σσT(X⃗, t), and δt is a finite,
but very small, time step.

In the diffusion approximation to the discrete Markov chain, the process is described as a
time continuous stochastic process governed by Gaussian jumps of prescribed variance and
mean. These processes can be denoted using the notation of stochastic differential equations:

(3.2)

where dWb is the infinitesimal element of noise given by standard Brownian motion in K-
dimensions, and σ is the square root matrix of the covariance matrix C = σσT, [19]. The
diffusion generator associated with Eq. (3.2) is

(3.3)

Thus, if ϕ(x, t = 0) is the density of allele frequencies at time 0, the time evolution of ϕ(x, t)
will be governed by the forward Kolmogorov equation

(3.4)
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Here, ρ(x, t) is the continuous limit of μj in Eq. (2.1), that describes the net influx of
polymorphisms in the population per generation.

3.0.1. Modeling migration flow and random drift—The continuous limit of the
Markov chain defined in Eq. (2.9), in the case of K diploid populations and in the weak
migration limit, has as associated moments

(3.5)

(3.6)

with δab the Kronecker delta (δab = 1 if a = b and δab = 0 otherwise). The matrix element
mab = nab/(2Na) defines the migration rate from the bth population to the ath population.

Thus, associated with this process one has the Kolmogorov forward equations

(3.7)

Eq. (3.7) describes the time evolution of the frequency spectrum density under random drift
and migration events between populations, given an initial density and absorbing boundary
conditions (see below). The inhomogenous term ρ(x, t) models the total incoming/outgoing
flow of SNPs per generation into the K-cube which is not due to the diffusion flow, ja =
−Maϕ + ∂b(Cabϕ), at the boundary. This total flow depends on mutation events that generate
de novo SNPs: inflow from higher dimensional components of the allele density (see
below), inflow from migration events from lower dimensional components of the allele
density, and the outflow of migration events towards higher dimensional components. If
there is not a positive influx of SNPs, the density would converge to ϕ(x, t) → 0 as t → ∞.
In order to understand the probability flow between different components of the density of
alleles, we will have to study how the boundary conditions are defined precisely.

3.1. Boundary Conditions
Understanding the boundary conditions in this problem is one of the most challenging tasks.
In Kimura's famous solution to the problem of pure random drift in one population, [12], he
required the solutions to the diffusion equation to be finite at the boundaries x = 0 and x = 1.
This boundary condition is absorbing. The points x = 0 and x = 1 describe states where
SNPs reach the fixation of their ancestral or derived states.

If we consider K populations, the natural generalization of Kimura's boundary conditions
can be derived by studying the possible stochastic histories of single diallelic SNPs
segregating in the K populations. A SNP which is initially polymorphic in all the K
populations can reach the fixation of its derived or ancestral state in one population while
still being polymorphic in the remaining K − 1 populations. More generally, a SNP can be
polymorphic in K − α populations, while its state can be fixated in the remaining α
populations. A convenient way of visualizing this is to look at the geometry of the K-cube of
allele frequencies, and the different subdimensional components of its boundary (see
examples Fig. 3 and Fig. 4 for the 2-cube and 3-cube). A K-cube's boundary can be
decomposed as a set of cubes of lower dimensionality, from (K − 1)-cubes up to 0-cubes or
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points. The number of boundary components of codimension α, i.e. the number of (K − α)-
cubes, contained in the boundary of the K-cube is

(3.8)

The most important set of boundary components are the (K − 1)-cubes, because any other
boundary component can be expressed as the intersection of a finite number of (K − 1)-
cubes at the boundary. We identify each 2K codimension-one boundary component by the
population where the SNPs are not polymorphic, and by the state that is fixated in this
population (Derived or Ancestral). For example, the component (i, A) is defined as the set of
points in the K-cube that obeys the equation xi = 0, and the component (i, D) is defined by
the equation xi = 1. Therefore, any codimension α boundary component can be expressed as
the intersection

(3.9)

with iα ≠ iβ when α ≠ β, δS,D = 1 for the derived state S = D, and δS,D = 0 for the ancestral
state S = A.

To each boundary component of codimension α we associate a (K − α)-dimensional density
of derived allele frequencies that are polymorphic only on the corresponding K − α
populations, while are fixated in the other α populations. In this way, ϕ(0) denotes the bulk

probability density,  (with the state Si being either ancestral Si = A or derived Si =
D) are the 2K codimension-one densities, {ϕ(i,Si;j,Sj)}i≠j the codimension 2 densities, etc.
This decomposition is illustrated in the case of 2 and 3 populations in Fig. 4 and Fig. 3.

In this notation, we write the density of derived alleles segregating on K populations as the
generalized probability function

(3.10)

with δ(·) the Dirac delta-function. The points (1, A) ∩ (2, A) ∩ ⋯ (K, A) and (1, D) ∩ (2, D)
∩ ⋯ (K, D) are the universal fixation boundaries, and they do not contribute to the total
density of alleles in Eq. (3.10). It is useful to write the probability density ϕ(x, t) using such
decomposition, because despite being a singular generalized function, each boundary
component ϕ(i,S1;j,S2,…) (x, t) will be, most of the time, a regular analytic function.

The dynamics of the boundary components ϕ(i1,S1;i2,S2,…) (x, t) are governed by diffusion
equations, with an inhomogenous term, of the type
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(3.11)

with ρ(i1,S1;i2,S2,…)(x, t) the net incoming/outgoing flow into the boundary component (i1,
S1) ∩ (i2, S2) ∩ …. The ρ term can be interpreted as an interaction term between different
boundary components.

More precisely, ρ(i1,S1;i2,S2;…)(x, t) consists of four terms

(3.12)

ρmut(x, t) is the influx of spontaneous mutations (only present in codimension K − 1),
ρdrift(x, t) consists of the boundary inflow from codimension α − 1 components that have
(i1, S1) ∩ (i2, S2) ∩ … ∩ (iα, Sα) as a boundary component, ρinm(x, t) represents the
incoming flow due to migration events from lower dimensional boundary components, and
ρoutm(x, t) is the outflow due to migration events from (i1, S1) ∩ (i2, S2) ∩ … (iα, Sα)
towards higher dimensional components that have (i1, S1) ∩ (i2, S2) ∩ … (iα, Sα) as a
boundary component.

We can write in a more precise way each term in ρ(i1,S1;i2,S2,…)(x, t), as follows:

• ρmut:

(3.13)

with δα,K−1 = 1 if α = K − 1, δα,K − 1 = 0 if α ≠ K − 1, and μ(xa) is the mutation
density (in the classical theory, μ(xa) = δ(xa − 1/(2Ne,a))).

• ρdrift: Assuming that the first derivatives of ϕ(x, t) are finite at the boundary,

(3.14)

where the sum over jα is over all components of codimension α − 1 that have (i1,
S1) ∩ (i2, S2) ∩ … (iα, Sα) as a boundary component. δSjα,A is 1 when Sjα = A and
0 when Sjα = D; similarly δSjα,D is one when Sjα = D and zero when Sjα = A. The
sum over a and b is over all populations that are not j1, j2, … jα.

• ρinm: Here, and throughout, cα is a shorthand for the boundary component (i1, S1;

i2, S2; …; iα, Sα).  represents the total incoming flow due to migration
events of SNPs that are contained in densities of SNPs located at boundary
components of cα. If d(cα) is the set of boundary components of cα with fixed
codimension d (α < d ≤ K),
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then  can be written as the sum of contributions from all boundary
components in d, for all codimensions d = α + 1, α + 2, …, K, and for all possible
migration events from elements q in d(cα) to cα:

(3.15)

Here, Γ(q → cα) is the set of all possible migrations events from SNPs in ϕ(q) to
ϕ(cα), p(e) denotes the probability of occurence of the migration event e, and

 denotes the expected frequency, in the ith-population, of a SNP that enters
cα after the event e. We provide below a more precise description of Eq. (3.15),
such as a description of the event space Γ(q → cα), the corresponding probabilities
of occurence and expected frequencies.

• ρoutm: Denotes the outflow of SNPs due to migration events to higher dimensional

boundary components. In other words,  measures the rate of loss of SNPs in
ϕ(cα), because of migration flow towards boundary components of codimension d <
α, that have cα as a boundary component. Let I∂q,cα be a discrete function that
returns 1 when cα is a boundary component of q, and zero when it is not. Thus,

(3.16)

To compute Eq. (3.15) and Eq. (3.16), the use of approximations is unavoidable. In
principle, one could use the transition probabilities of the finite Markov chain to estimate the
probabilities of different migration events and their expected allele frequencies. However,
there is a simpler approximation, which is consistent with the weak migration limit in which
the diffusion equation is derived.

This approximation follows from the observation that at the boundary xa = δS,D, the strength
of random drift along the population a vanishes (xa(1 − xa) = 0), and hence, the infinitesimal
change in xa obeys a deterministic equation:

(3.17)

Eq. (3.17) implies that a migration event from several populations b, to a target population a,
can push the frequency xa of a SNP out of the boundary where it was initially fixated (xa =
δS,D).

Therefore, given a K-cube, a boundary component cα (of codimension α), and a boundary
component q (of codimension β > α) of cα, we say that there will exist migration flow from
q to cα, if and only if

(3.18)
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(3.19)

where  denote the allele frequencies of SNPs which are fixated at the boundary

components cα and q,  are the populations at cα whose allele frequencies are
polymorphic, and the frequencies xb are defined at the boundary component q (which means
that xb is polymorphic as long as b > β, and is δSb,D otherwise). It is important to realize that
xb can be 0 or 1 at q, and a migration event to cα can still bring alleles of the opposite state
that is fixated in the target population.

In this approximation, Γ(q → cα) consists of a single element, and p(e) can be zero or one.
If Eq. (3.18) and Eq. (3.19) are satisfied, the migration event in Γ(q → cα) has probability
p(e) = 1, and the expected frequencies are

(3.20)

If Eq. (3.18) and Eq. (3.19) are not satisfied, p(e) = 0, and we say that there is not migration
flow from q to cα.

3.2. Effective Mutation Densities
Given a constant spontaneous mutation rate in the species under study, of u “base
substitutions per site and per generation,” and expected number of sites ν = L × u where
new mutations appear in the population each generation, the total number of de novo mutant
sites that appear in the population a, every generation, is 2Ne,aν. We can model this constant
influx of mutations by adding a Dirac delta term

(3.21)

to the K diffusion equations that govern the ancestral components of codimension K − 1
ϕ(i1A)∩(i2A)∩⋯(iK−1A)(x, t). However, as we discussed above, more generally we work with
an effective mutation density

(3.22)

As a particular example of an effective mutation density, we consider a stochastic census
population size, which is a random variable distributed as

(3.23)

This distribution avoids extremely small populations by an exponential tail, while large
population sizes are distributed as ∼ N−2, as shown in Fig. 5. In this model, we keep
constant the effective population size Ne that defines the variance of random drift in Eq.
(3.6). Thus, the mutation density will be
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(3.24)

We can integrate Eq. (3.24) exactly, by making the change of variables y = 1/2M, dM =
−dy/2y2:

(3.25)

3.3. Population splitting events
So far we have studied how the allele frequency density changes as a function of time while
the number of populations K remains constant. When two populations split, the diffusion
jumps to dimension K + 1, and the corresponding density will obey the time evolution
defined by Eq. (3.7) for K + 1 populations, with different population sizes and migration
parameters. The initial density ϕK+1(x, xK+1, t) in the K + 1 diffusion problem is determined
from the density ϕK(x, t), before the populations split. Therefore, if population K + 1 was
formed by Nf,a migrant founders from the ath population, then

(3.26)

This formula is derived by considering the binomial sampling of 2Nf,a chromosomes from
population a, and using the Gaussian approximation for the binomial distribution with 2Nf,a
degrees of freedom and parameter xa. In the limit Nf,a → ∞, Eq. (3.26) simplifies to

(3.27)

with δ(x) the Dirac delta. Additionally, if the new population is formed by migrants from
two populations merging, with a proportion f from population i and 1 − f from population b,
then

(3.28)

In the diffusion framework, one can also deal with populations that go extinct or become
completely isolated. More precisely, if we remove the ath population, the initial density in
the K − 1 dimensional problem will be

(3.29)

with x̃ denoting the vector x̃ = (x1, x2, …, xa−1, xa+1, … xK).

4. Solution to the diffusion equations using spectral methods
The idea behind spectral methods consists of borrowing analytical methods from the theory
of Hilbert spaces to transform a partial differential equation, such as Eq. (3.7), into an
ordinary differential equation that can be integrated numerically using, for instance, a
Runge-Kutta method.
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In general, the problems in which we are interested are mixed initial-boundary value
problems of the form

(4.1)

(4.2)

(4.3)

where D = [0, 1]K is the frequency spectrum domain with boundary ∂D, LFP(x, t) is a linear
differential operator also known as the Fokker-Planck operator, ρ(x, t) is a function, and
B(x) is the linear boundary operator that defines the boundary condition. In this paper, we
are interested in the particular set of PDEs defined in Eq. (3.7), although we sometimes keep
the notation of Eq. (4.1) as a shorthand.

We assume that ϕ(x, t) is for all t an element of a Hilbert space ℋ of square integrable
functions, and associated L2-product 〈 , 〉L2. Furthermore, we assume that all functions in
ℋ satisfy the boundary conditions imposed by Eq. (4.2). In spectral methods we consider a

complete orthogonal basis of functions for ℋ, that we denote by , which obeys

(4.4)

with hi a function of i that depends on the particular choice of basis functions. One then
approximates ϕ(x, t) as the truncated expansion

(4.5)

Similarly, one approximates the PDE in Eq. (4.1) by projecting it onto the finite dimensional

basis , as

(4.6)

By ℋΛ we denote the finite dimensional space spanned by , and by Λ the
corresponding projector ℋ → ℋΛ. If

we can re-write the ODE in Eq. (4.6) using just modal variables as
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(4.7)

One can solve Eq. (4.7) by discretizing the time variable t, and using a standard numerical
method to integrate ODEs. Therefore, the spectral solution to the diffusion PDE is expressed
in the form of a truncated expansion, like Eq. (4.5), and has coefficients determined by the
integral of Eq. (4.7).

There are many different ways to construct sequences of approximating spaces ℋΛ that
converge to ℋ in the limit Λ → ∞, when the domain is the K-cube. Here, we follow other
authors' preferred choice [7], and choose the basis of Chebyshev polynomials of the first
kind. In the following section we introduce Chebyshev expansions and show why they are a
preferred choice.

4.1. Approximation of functions by Chebyshev expansions

Let  be the basis of Chebyshev polynomials of the first kind. They are the set of
eigenfunctions that solve the singular Sturm-Liouville problem

(4.8)

with i = 0, 1, …, ∞, and −1 ≤ x ≤ 1.  are orthogonal under the L2-product with

weight function :

(4.9)

where c0 = 2 and ci>0 = 1. This basis of polynomials is a natural basis for the approximation
of functions on a finite interval because the associated Gauss-Chebyshev quadrature
formulae have an exact closed form, the evaluation of the polynomials is very efficient, and
the convergence properties of the Chebyshev expansions are excellent [7].

The Chebyshev polynomials of the first kind can be evaluated by using trigonometric
functions, because of the identity Ti(x) = cos(i arccos(x)). The derivatives of the basis
functions can be computed by utilizing the recursion

(4.10)

to express the derivative as

(4.11)

Similar formulae can be found for higher derivatives. The coefficients in the expansion
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(4.12)

can be calculated by using the orthogonality relations of the basis functions

(4.13)

However, a direct evaluation of the continuous inner product, Eq. (4.13), can be a source of
considerable problems, as in the case of the Fourier series. The classical solution lies in the
introduction of a Gauss quadrature of the form

(4.14)

If f(x) is smooth enough, the finite sum over Q grid points in Eq. (4.14) will converge
quicker than O(Q−1) to the exact formula [15]. As Eq. (4.14) is equivalent to a discrete
Fourier cosine transform, general results on the convergence of cosine transforms apply also
to this problem. One can see this relationship by considering the change of variables x = cos
y:

(4.15)

and choosing Q equally spaced abscissas in the interval 0 ≤ y ≤ π,

(4.16)

In order to study the convergence properties of the Chebyshev expansions Eq. (4.12), we
exploit the rich analytical structure of the Chebyshev polynomials. By using the identity Eq.
(4.8), one can re-write Eq. (4.13) as

(4.17)

If f(x) is C1([−1, 1]) (i.e., if its first derivative is continuous), we can twice integrate by parts
Eq. (4.17) to obtain

(4.18)

We can repeat this process as many times as f(x) is differentiable; thus, if f(x) ∈ C2q−1([−1,
1]) then
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(4.19)

If we use the truncation error

(4.20)

as a measure of convergence of the Chebyshev expansion, we may estimate its asymptotic

expansion by calculating the rate of decrease of ai. But as we showed in Eq. (4.19), ,
for some constant c(q) if f(x) ∈ C2q−1([−1, 1]). Therefore, for large Λ the error decreases as
a power law

(4.21)

and if the function is infinitely differentiable (q = ∞), the corresponding Chebyshev series
expansion will converge faster than any power of 1/Λ.

In the applications of this paper we will work with re-scaled Chebyshev polynomials. As the
Allele Frequency Spectrum is defined on the interval [0, 1], or direct products of it, we re-
scale the Chebyshev polynomials to obtain an orthonormal basis on [0, 1]. More precisely,

the basis that we use is  with x ∈ [0, 1], , ,
L2-product:

(4.22)

and orthonormality relations,

(4.23)

4.1.1. High-dimensional domains and spectral approximations of functional
spaces—The joint site frequency spectrum of K populations can be defined as a density on

[0, 1]K. A natural basis of functions on the Hilbert space , comes from the tensor
product of one dimensional functions. More particularly, we consider the tensor product of
Chebyshev polynomials

(4.24)

because . Therefore, any square integrable function
F(x) under the L2-product
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(4.25)

can be approximated as multi-dimensional Chebyshev expansion

(4.26)

The truncation parameters Λ1, Λ2… can be fixed depending on the analytical properties of
the set of functions that one wants to approximate and their corresponding truncation errors.
There always exists a trade-off between the accuracy of the approximation (the higher the Λ
the more accurate the approximation) and the speed of the implementation of the algorithm
(the lower the Λ, the faster the algorithm); therefore, choosing different values of Λi will
yield more optimal implementations of the algorithm. Here, for simplicity in the notation,
we use a unique truncation parameter Λ = Λ1 = ⋯ = ΛK.

4.2. Diffusion Operators in Modal Variables
In order to approximate the PDEs defined in Eq. (3.7) by a system of ODEs in the modal
Chebyshev variables such as Eq. (4.7), we need to project the Fokker-Planck operator in the
Chebyshev basis spanned by Eq. (4.24). Later on we will show how to deal with the influx
of mutations specified by the Dirac deltas.

A direct projection of the Fokker-Planck operator onto the Chebyshev basis spanned by Eq.
(4.24), would require storing the coefficients in a huge matrix with Λ2K matrix elements.
Fortunately, the Fokker-Planck operator in our problem is very simple, and its non-trivial
information can be stored in just four sparse Λ × Λ matrices. First, we need the random drift
matrix

(4.27)

and then, the three matrices needed to reconstruct the migration term

(4.28)

(4.29)

(4.30)

The matrix elements in Eqs. (4.27), (4.28), (4.29) and (4.30) can be quickly determined by
means of the Gauss-Chebyshev quadrature defined in Eq. (4.14). Due to the properties of the
Chebyshev polynomials many matrix elements vanish. More particularly, Dij and Jij are
upper triangular matrices (i.e., Dij = Jij = 0 if i > j), Hij = 0 if i ≥ j, and Gij = 0 if i > j + 1 or i
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< j − 1. Thus, the total number of non-trivial matrix elements that we need to compute, for a

given Λ, is just . This is much smaller than the default number of matrix
elements (i.e., Λ2K).

Finally, the ΛK × ΛK matrix elements of the corresponding ω matrix in Eq. (4.7) can be
easily recovered from the tensor product structure of the ΛK-dimensional vector space that
defines the Chebyshev expansion (as in Eq. (4.26)). Thus,

(4.31)

with δij = 1, if i = j, and δij = 0 if i ≠ j.

4.3. Influx of Mutations
The inhomogeneous terms in Eq. (3.7) that model the influx of mutations are given by
effective mutation densities. As we show in the appendices, a model of mutations given by
an exponential distribution will give the same results, up to an exponentially small deviation,
as a standard model with a Dirac delta. The motivation for using smooth effective mutation
densities is that they are better approximated by truncated Chebyshev expansions. As we
briefly explained in the review on Chebyshev polynomials and its truncated expansions, the
convergence of a truncated expansion depends strongly on the analytical properties of the
function to be approximated. As Dirac deltas are not smooth functions, their truncated
Chebyshev expansions present bad convergence properties. This is related to the problem of
Gibbs phenomena, and we will give a more detailed account of its origin below (see Sources
of error and limits of numerical methods).

In this paper, we only consider a positive influx of mutations in boundary components of
dimension one. In order to approximate the behavior under a mutation term given by a Dirac
delta, an effective mutation density μ(x) has to satisfy the following:

• The truncation error is bounded below the established parameter, ε, for the control
of error; i.e., ‖μ(x) − Λμ(x)‖L2 < ε.

•
The expected frequency of the mass mutation-function is .

• The mutation-function is nearly zero for relatively large frequencies (e.g., x >
0.05), and it is as peaked as possible near x = 1/(2Ne).

While the first and third qualitative requirements are straightforward, the second numerical
condition is not. One can interpret this requirement as equivalent to fixing the neutral
fixation rate to be u, because the probability that an allele at frequency x = p reaches fixation
at x = 1 is p. Thus, the average number of new mutants that reach fixation per generation is
2Neu × μ(x) = u. This constraint can also be derived by studying the properties of the
equilibrium density associated with this stochastic process. At equilibrium, the density ϕe(x)
of derived alleles obeys

(4.32)

with ψ(x) = x(1 − x)ϕe(x). Therefore, the expected frequency of the mass mutation-function
can be computed as
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(4.33)

Using the identity  one can rewrite Eq. (4.33) as

(4.34)

On the other hand, the probability flux associated with the equilibrium density of alleles at

the boundary x = 1 is . We use this to write the expected frequency of the
mutation density as:

(4.35)

In neutral evolution the probability flux at the boundary x = 1 equals the fixation rate, which
satisfies j(1) = u. Therefore, Eq. (4.35) has to satisfy

(4.36)

which is what we wanted to show.

Numerical experiments show that for a large class of functions μ(x), and in the frequency
range x > x*, the associated solutions to the different diffusion problems are identical (up to
a very small deviation) to the standard model with a Dirac delta. x* is a very small frequency
that depends on the choice of μ(x), and generally can be made arbitrarily small. It is in the
region of the frequency space with 0 ≤ x ≤ x*, where the behavior of the different diffusion
problems can deviate most.

The truncation error in the Chebyshev expansion depends on the smoothness of the function,
and the choice of truncation parameter (see Fig. 6 for an example). For the effective
mutation density μ(x), we use the exponential function

(4.37)

where the values for κ(Λ, ε) ≫ 1 are determined by saturating the bound on error: ‖μ(x) −

Λμ(x)‖L2 < ε.

4.3.1. Comparison of different mutation models at equilibrium—We derive in the
Appendix A the associated equilibrium distributions of derived alleles. For a model with a
mutation density given by a Dirac delta, one finds the equilibrium density
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(4.38)

with θ(y) the Heaviside step function (θ(y) = 0 for y < 0, θ(y) = 1/2 for y = 0, and θ(y) = 1
for y > 0). Which in the region x > 1/(2Ne) simplifies to

(4.39)

In the case of μ2(x) = c exp(−κx), the corresponding equilibrium density is

(4.40)

Therefore, a pairwise comparison of both equilibrium densities shows that the deviation
from both models when x > x* = κ−1 is exponentially small when equilibrium is reached
(see Fig. 7). We can show that the same is true in non-equilibrium.

4.3.2. Non-equilibrium dynamics with effective mutation densities—Here, we
show how the non-equilibrium dynamics of a diffusion system under an exponential
distribution mutation influx is the same (up to an exponentially small deviation) as a system
where mutations enter the population through the standard Dirac delta δ(x − 1/(2Ne)), as
long as the allele frequencies are bigger than certain minimum frequency x*. Below x* the
dynamics will be sensitive to differences in the mutation densities.

Let φ(x) be an arbitrary initial density of alleles. Let ϕ1(x, t) be the solution to the diffusion
equations under pure random drift and a mutation influx given by δ(x − 1/(2Ne)). ϕ2(x, t) is
the solution of the diffusion equations under pure random drift and mutation influx given by
the exponential effective mutation density Eq. (4.37). In Appendix B, we prove the
following identity in the large t limit

(4.41)

with ϕ1(x, 0) = ϕ2(x, 0) = φ, and κ ≤ 2Ne. If we normalize Eq. (4.41) by

the normalized deviation of ϕ2(x, t) from ϕ1(x, t) is, for large t,

(4.42)

We can also show, by applying the Minkowski inequality to Eq. (B.10) in Appendix B, that
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(4.43)

for all t > 0. This means that the deviation is bounded by O(κ−1) for all t, and therefore the
non-equilibrium dynamics of ϕ1(x, t) and ϕ2(x, t) are identical in the large κ limit.

As |ϕ1(x, 0) − ϕ2(x, 0)| = 0 at time zero and the deviation of ϕ2(x, t) from ϕ1(x, t) attains
equilibrium in the large t limit, we can study the frequency dependence of such deviation by
looking at the equilibrium

(4.44)

Here, the O(e−κ) term exactly cancels the singularity at x = 1 and the deviation decays
exponentially as a function of the frequency. This shows that for frequencies x > x* = κ−1 ≥
1/(2Ne) the dynamics of a model with mutation influx given by a Dirac delta is the same, up
to an exponentially small deviation, as the non-equilibrium dynamics of a model with
exponential mutation density.

4.4. Branching-off of populations
Modeling a population splitting event also involves the use of Dirac deltas, as in Eq. (3.27),
or peaked functions such as Eq. (3.26), whose truncated Chebyshev expansions may present
bad convergence properties. These Gibbs-like phenomena can be dealt with in a similar way
as we did with the mutation term of Eq. (3.7).

We implemented two different solutions to this problem and both solutions yielded similar
results. First, we constructed a smoothed approximation of the Dirac delta by using Gaussian
functions:

(4.45)

with

(4.46)

and σ(xa) as a standard deviation which is chosen as small as possible while preserving the
bound on error, ‖δ̃(xa − x) − Λδ̃(xa − x)‖L2[0≤x≤1] < ε, for any value of xa ∈ [0, 1]. In order
to map the δ̃-function in Eq. (4.45) to a truncated Chebyshev expansion,

(4.47)

one has to perform a Gauss-Chebyshev quadrature in 2 dimensions, 0 ≤ xa ≤ 1, 0 ≤ xK + 1 ≤
1:
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(4.48)

The second approach exploits the analytical behavior of diffusion under pure random drift
(i.e., with no migration). By Kimura's solution to the diffusion PDE in terms of the
Gegenbauer polynomials { i(z)}, see [12], we know that the time evolution of 1-d density
is

(4.49)

with r = 1 − 2p, z = 1 − 2x and ϕ(x, 0) = δ(x − p). Thus, in the exact solution to the diffusion
equation, the time evolution of the coefficients of degree i in the Gegenbauer expansion is
described by the term exp(−(i + 1)(i + 2)t/4N). This means that diffusion smooths out the
Dirac delta at initial time. Fig. 8 represents the evolution of the density at different times.

Thus, we can use diffusion under pure random drift to smooth out the density introduced
after the population splitting event. Let ϕK (x, t) be the density before the splitting and let a
be the population from which population K + 1 is founded. We initially consider the density

(4.50)

The associated Chebyshev expansion ΛϕK+1(x, xK+1, t) will present Gibbs-phenomena.
However, by diffusing for a short time τ under pure random drift

(4.51)

(with Sa = SK+1 = W, Sb = V for K + 1 ≠ b ≠ a, and V ≫ W), ϕK+1(x, xK+1, τ) becomes
tractable under Chebyshev expansions. In other words, by choosing τ such that the error
bound is satisfied

we obtain a smooth density after the population splitting event which can follow the regular
diffusion with migration prescribed in the problem, and approximate accurately the
branching-off event. In some limits this approximation can fail, though we leave the
corresponding analysis for the next section.

Here, we do not consider the numerical solution to the problem of splitting with admixture,
although we are confident that it should be possible to solve along similar arguments.

4.5. Sources of error and limits of numerical methods
There are two major sources of error in these numerical methods. First, the solution of the
diffusion equation is itself a time-continuous approximation to the time evolution of a
probability density evolving under a discrete Markov chain. Hence, whenever the diffusion
approximation fails, its numerical implementation will also fail. Secondly, a numerical
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solution by means of spectral expansions involves an approximation of the infinite
dimensional space of functions on a domain by a finite dimensional space generated by
bases of orthonormal functions under certain L2-product. As we show below, under a broad
set of conditions the numerical solution will converge accurately to the exact solution;
otherwise, the numerical solution can fail to approximate the exact solution. A third source
of error appears because one has to discretize time in order to integrate the high-dimensional
ODE that approximates the PDE. Fortunately, this source of error can be ignored because
the diffusion generators yield a stable time evolution.

We summarize below the main conditions that have to be satisfied in order to obtain high-
quality numerical solutions to the PDEs studied in this work.

4.5.1. Limits of diffusion equations—In the diffusion approximation to a Markov
chain, the transition probability is approximated by a Gaussian distribution [5]. Here, we
review the derivation of the diffusion equation as the continuous limit of a Markov chain, in
order to emphasize the assumptions made and determine the limits of this approximation.

Given a Markov process defined by a discrete state space , transition matrices p(I∣J), initial
value K ∈  and discrete time τ = 0, 1, …, the probability that the state will be at I at time τ
is f(I∣K, τ), where f(I∣K, τ) obeys the recurrence relation

(4.52)

In the diffusion approximation one considers a sequence of discrete state spaces { λ}λ∈ℤ+
such that in the limit λ → ∞ the state space ∞ converges to a smooth manifold (in
practical applications, a compact domain D ⊂ ℝK).

In this paper, we take λ to be [0, λ]K, and ∞ ∼ [0, 1]K. Therefore, the state variables can
be re-scaled as Ka/λ = xa, with a = 1, …, K and Ka ∈ [0, λ]K. Similarly, we introduce the
time variable t = τ/λ. In the large λ limit, the transition probability for the change of the
state from time τ/λ to time (τ + 1)/λ is governed by a distribution with moments

(4.53)

(4.54)

(4.55)

In this continuous limit, the equation that describes the time evolution of the Markov chain
in Eq. (4.52) can be written as a forward Kolmogorov equation if we neglect terms of order
O(1/λ2). However, if Ma(x) is proportional to λ, the O(1/λ2) terms in Eq. (4.53) cannot be
neglected and the diffusion approximation will not be valid. As in this paper we take λ =
2Ne, and Ma(x) proportional to the migration rates mab, if the migration rates obey 2Ne,amab
≤ O(1) the diffusion approximation will be valid. Indeed, computer experiments show that
the numerical solutions become unstable and yield incorrect results if this bound is violated.
This limit precisely defines when two populations can be considered the same [9].
Therefore, in cases when 2Ne,amab ≫ O(1), we can consider populations a and b as two
parts of the same population. Another assumption in the diffusion approximation is that a
binomial distribution with 2Ne,a degrees of freedom can be approximated by a Gaussian
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distribution. This will be a valid approximation as long as Ne,a is large enough. Numerical
experiments show that the approximation is accurate if Ne,a > 100; otherwise, effects due to
the finiteness of the Markov chain cannot be neglected and the approximation will fail.

4.5.2. Limits of spectral expansions—Spectral methods, as with any numerical
scheme for solving PDEs, require several assumptions about the behavior of the solution of
the PDE. The most important one is that one can approximate the solution as a series of
smooth basis functions,

(4.56)

In other words, the projection of the solution Λϕ(x, t) is assumed to approximate ϕ(x, t)
well in some appropriate norm for sufficiently large Λ. As one has to choose finite values
for Λ, Eq.(4.56) will sometimes fail to approximate correctly the solution of the PDE.

In the applications of this paper, the basis of functions that we use consist of the Chebyshev
polynomials of the first kind3. Below we provide bound estimates for the truncation error ‖
Λϕ(x, t) − ϕ(x, t)‖L2[−1,1]K, to understand the quality of the approximate solutions for

different values of Λ, (see also [7, 1] for different choices of basis functions).

More precisely, as the L2 inner product and norm in the Chebyshev problem are:

(4.57)

and

(4.58)

3One can work either with the basis of functions {Ti(x)} on x ∈ [−1, 1], or with the re-scaled basis {Ri(x)} defined on x ∈ [0, 1], by
performing a simple scale transformation.
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the terms in the expansion Eq. (4.56) can be computed by performing inner products

(4.59)

with c0 = 2 and cj = 1 (j > 0). A consequence of the orthogonality of the basis functions is
that the squared truncation error admits a simple formulation in terms of the coefficients in
the expansion:

(4.60)

Thus, the truncation error depends only on the decay of the higher modes |αi1, i2, … iK| in the
expansion. On the other hand, the decay of these higher modes depends on the analytical
properties of ϕ(x, t) itself. For instance, if ϕ(x, t) ∈ C2q1 − 1,2q2 − 1, …, 2qK − 1 ([−1, 1]K), i.e.
if

(4.61)

we can integrate by parts Eq. (4.59), as we did in Eq. (4.18), to write the decay of each mode
as

(4.62)

Eq. (4.62) implies that the truncation error is directly related to the smoothness of ϕ(x, t): it
follows that we can bound the truncation error as a function of Λ:

(4.63)

Another convenient measure of smoothness is the Sobolev norm:

(4.64)

in terms of the Sobolev norm, the truncation error is bounded as

(4.65)
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A corollary of Eq. (4.65) is that if ϕ(x, t) is smooth, Λϕ(x, t) converges to ϕ(x, t) more
rapidly than any finite power of Λ−1. This is indeed the basic property that has given name
to spectral methods.

In the absence of influx of polymorphisms in the populations, the time evolution of the
density obeys pure diffusion, and therefore |αi1,i2,…iK(t)| → 0 whent t → ∞ as it follows
from Eq. (4.49). This means that diffusion acts as a smoothing operator on the initial
density. Empirically, we find that in the presence of influx of polymorphisms the density can
also be approximated by spectral expansions and the truncation error remains low.

After two populations split and the K-dimensional diffusion becomes a K + 1 dimensional
process, the K + 1 dimensional density becomes a distribution concentrated in the linear
subspace of [−1, 1]K+1 defined by xa = xa+1 (with a and a + 1 labeling the two daughter
populations that just split). Such density has an infinite Sobolev norm and cannot be
represented as a finite sum of polynomials. Fortunately, the diffusion generator acts on the
density by smoothing it out and by bringing the density to a density with finite Sobolev
norm. The main variables involved in this process are: the time difference between the
current splitting event and the next one, TA+1 − TA, and the effective population sizes Ne,a
and Ne,a+1 of the daughter populations. Therefore, depending on the choice of the truncation
parameter Λ, a minimum diffusion time tm(Ne,a, Ne,a+1, Λ) will be necessary to bring the
truncation error within desired limits ‖ Λϕ(x, tm) − ϕ(x, tm)‖L2 ≤ ε. Here, ε is the control
parameter on numerical error. Therefore, the bigger the largest effective population size of
the two daughter populations, the bigger will be such minimum diffusion time. If the time
difference between the current splitting event and the next one is bigger than

(4.66)

(where C(Λ) is a function that can be computed numerically), the resulting numerical error
will stay below the desired limits. As our model aims to reproduce the real SNP Allele

Frequency Spectrum density there should exist low error approximations of such density
(that we denote as γ̂(x)) in terms of polynomial expansions. Otherwise, the methods here
presented will fail to solve the problem. This can only happen if γ̂(x) is so rugged, i.e. the
corresponding Sobolev norm is so high, that the largest finite choice for Λ that we can
implement in our computer-code is not large enough to approximate accurately γ̂(x):

(4.67)

In case that Eq. (4.67) is obeyed, it is likely that 2 or more populations are so closely related
that we can treat them as if they were one identical population. If we reduce the
dimensionality of the problem in this way (by only incorporating differentiated populations),
the correlations will disappear and the Sobolev norm of γ̂′(x) will be such that we will be
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able to find a sensible parameter Λ to approximate γ̂′(x) as a truncated Chebyshev
expansion.

5. Conclusion
In this paper we have introduced a forward diffusion model of the joint allele frequency
spectra, and a numerical method to solve the associated PDEs. Our approach is inspired by
recent work in which similar models were proposed [21, 4, 8]. Analogously, our methods
are quite general and can accomodate selection coefficients and time dependent effective
population sizes.

The major novelties of the model here presented with respect to previous work are:

• The introduction of spectral methods/finite elements in the context of forward
diffusion equations and infinite sites models. Traditionally, these techniques yield
better results than finite differences schemes when the dimension of the domain is
high (i.e., when the final number of populations is high), and the solutions are
smooth. A comparison of our implementation using spectral methods, and previous
implementations using finite differences [8], will be the matter of future work.

• A set of boundary conditions that deals with the possibility that some
polymorphisms reach fixation in some populations while remaining polymorphic in
other populations. When the differences in effective population sizes between
different populations are large, this phenomenon can become very important. Here,
we have introduced a solution to address this possible scenario. Previous work
imposed zero flux at the boundaries [8], and hence avoided the fixation of
polymorphisms in some populations while remaining polymorphic in the rest.

• The introduction of effective mutation densities, which generalize previous models
for the influx of mutations [4]. We have emphasized how different ways to inject
mutations at very low frequencies converge to the same solution for larger
frequencies.

The non-equilibrium theory of Allele Frequency Spectra is of primary importance to analyze
population genomics data. Although it does not make use of information about haplotype
structure or linkage non-equilibrium, the analysis of AFS allows the study of demographic
history and the inference of natural selection. In this work, we have extended the diffusion
theory of the multi-population AFS, to accommodate spectral methods, a general framework
for the influx of mutations, and non-trivial boundary interactions.
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Appendix A. Comparison of mutational models at equilibrium
In this appendix we compute the equilibrium densities associated with Wright-Fisher
processes with mutation. Two types of mutation processes are considered, both modeled by
a mutation density. The first mutation density is a Dirac delta, while the second one is an
exponential distribution.

As the diffusion equation that describes the time evolution of the density of alleles for
diallelic SNPs is
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(A.1)

the equilibrium density ϕe(x) satisfies . By using instead the function ψ(x) = x(1 −
x)ϕe(x), the associated second order ordinary differential equation becomes

(A.2)

As Eq. (A.2) is only defined for x > 0, we can use Laplace transforms to solve the equation.
Let

(A.3)

be the Laplace transform associated with the mutation density μ(x), and

(A.4)

the Laplace transform associated with ψ″(x), with ψ(0) and ψ′(0) integration constants.
Therefore, in the s domain, ψ̃(s) is

(A.5)

and by performing the inverse Laplace transform we obtain the solution to the equilibrium
density

(A.6)

We fix the integration constants, ψ(0) and ψ′(0), by requiring ϕe(x) to be finite at x = 1, and
the probability flow at x = 1 to be equal to u,

(A.7)

As an example, we can evaluate exactly Eq. (A.6), for μ1(x) = δ(x − 1/(2Ne)) and μ2(x) = c
exp(−κx). For the Dirac delta, the Laplace transform is

(A.8)

If we compute the corresponding inverse Laplace transform in Eq. (A.6), and fix the
integration constants as explained above, we find the equilibrium density
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(A.9)

with θ(y) the Heaviside step function (θ(y) = 0 for y < 0, θ(y) = 1/2 for y = 0, and θ(y) = 1
for y > 0). If x > 1/(2N), Eq. (A.9) simplifies to

(A.10)

In the case of μ2(x) = c exp(−κx), the Laplace transform is

(A.11)

and the corresponding equilibrium density, after integrating Eq. (A.6), is

(A.12)

which in the large κ limit, and for x ≫ 1/κ, converges exponentially quickly to

(A.13)

In the limit x → 0, ϕe(x) is finite only iff , which is the
normalization choice made in Eq. (4.37), and the only one satisfying

(A.14)

This shows how a mutation model defined by a certain class of smooth mutation densities
reaches the same equilibrium density, up to a small deviation, as the standard model with a
Dirac delta.

Appendix B. Comparison of mutational models at non-equilibrium
In this appendix we compare the non-equilibrium dynamics of models with a mutation
influx described by exponential distributions, with models that consider a standard Dirac
delta.

More particularly, we prove that if ϕ1(x, t) is the solution to an infinite sites model PDE,
with absorbing boundaries,

(B.1)

and ϕ2(x, t) is the solution to the same model, but with an exponential mutation density
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(B.2)

then, the deviation of ϕ2(x, t) with respect to ϕ1(x, t), as a function of time and for any initial
condition ϕ2(x, t = 0) = ϕ1(x, t = 0) = φ(x), is, in the large t limit,

(B.3)

Here, | · | is the absolute value, and O(e−κ) are terms that decay exponentially as a function
of κ, which can be neglected in the large κ limit.

As the total number of SNPs that are polymorphic in one population depends on the
population size and the mutation rate, it is convenient to normalize the deviation Eq. (B.3)

by . In this normalization we have

(B.4)

To prove Eq. (B.3), we first describe the solutions to Eq. (B.1) and Eq. (B.2). Both equations
consist of a homogeneous term and an inhomogeneous contribution given by the mutation
density. As they are linear equations, the solution to the PDE is the sum of a homogeneous
and an inhomogeneous term

(B.5)

satisfying

(B.6)

Hence, the only time-independent term  that solves Eq. (B.6) is the equilibrium density

Eq. (A.9), and  obeys a standard diffusion equation with no mutation density, and

with initial condition . If  denotes the Fokker-Planck

operator acting on ,

we can write the solution to Eq. (B.6) in the following compact form

(B.7)
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Here, exp (tℒ) is the time-dependent action of the diffusion operator on the initial density
 while preserving the absorbing boundary conditions. This operator can be

diagonalized in the basis of Gegenbauer polynomials on L2([0, 1]); see [12]. The
corresponding eigenvalues of exp (tℒ) are exp(−(i + 1) (i + 2)t/4Ne) with i ∈ [0, ∞).

We can solve Eq. (B.2) in a similar way, by using the decomposition

(B.8)

In this case,  is the equilibrium density associated with the exponential mutation

density, as defined in Eq. (A.12). The term  evolves under pure random drift, with no

mutation influx, and initial condition :

(B.9)

By subtracting Eq. (B.9) from Eq. (B.7), we can describe the time evolution of the deviation
as

(B.10)

which is independent of the initial condition φ(x).

One can show that  is non negative on [0, 1], if κ ≤ 2Ne. This can be seen more
clearly by computing  in the large κ limit

(B.11)

(B.12)

The terms of order e−κ in Eq. (B.12) exactly cancel the divergence at x = 1. Therefore, the
action of the diffusion operator on , will preserve the non-negativity of the
density

(B.13)

Because of this inequality, the absolute value , is the same as
, and we can evaluate exactly the integral

(B.14)

by expanding  in the eigenbasis of exp (tℒ). This basis is orthogonal
under the L2-product defined by the weight x(1 − x), and the constant function on [0, 1]
corresponds to the eigenfunction with the smallest eigenvalue. In this way we can interpret
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the right-hand side of Eq. (B.14) as a projection on this eigenfunction, and evaluate the
integral exactly.

The eigenbasis of exp (tℒ) is defined by the Gegenbauer polynomials. As an example, the
first three Gegenbauer polynomials on [0, 1], orthonormal under the L2-product with weight
x(1 − x), are

(B.15)

(B.16)

(B.17)

The corresponding eigenvalues in exp (tℒ), are eigenvalues exp(−t/(2Ne)), exp(−3t/(2Ne)),
and exp(−3t/Ne). Thus, Eq. (B.14) is the same as

(B.18)

and

(B.19)

As  for all x ∈ [0, 1] and for t ≫ Ne, we lastly
compute Eq. (B.3), as

(B.20)

which is

(B.21)

as we wanted to show.
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Figure 1.
A graphical representation of a model for the demographic history of three populations.
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Figure 2.
One unit of time transition in a finite Markov chain.
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Figure 3.
Decomposition of the singular probability density, for two populations, on the two-
dimensional bulk and the different subdimensional boundary components.
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Figure 4.
Decomposition of the singular probability density, for three populations, on the three
dimensional bulk and the different subdimensional boundary components.

Lukić et al. Page 38

Theor Popul Biol. Author manuscript; available in PMC 2012 August 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
A model for a stochastic census population size, with exponential decay in the small
population size limit, a quadratic decay ∼ N−2 in the large population size limit, and a
population peak at N = 1000.
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Figure 6.
On the left, we show the plot of five different truncated Chebyshev expansions for a
Gaussian peaked at x = 0.5 and σ = 0.03. On the right, we show the truncation error of
different Chebyshev expansions (with Λ = 3, 6, 10 and 15) of a family of Gaussian functions
peaked at x = 0.5 and parametrized by the standard deviation 0.01 ≤ σ ≤ 0.5.
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Figure 7.
Three comparisons of the equilibrium densities associated with the exponential mutation
density (blue) for several values of κ vs. the equilibrium density associated with the Dirac
delta mutational model (red). For illustrative purposes, the population size used was N = 10,
000 and the spontaneous mutation rate is u = 10−6. On the left the equilibrium density
associated with the exponential distribution with κ = 10 is shown, in the middle κ = 20, and
on the right κ = 40. For a truncation parameter Λ = 20, one can choose mutation densities
with κ up to 43, while keeping the truncation error below sensible limits.
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Figure 8.
Diffusion under pure random drift acts by smoothing out the initial density at t = 0. Here we
show numerical solutions to the diffusion equations with Λ = 28, at 5 different times, with
initial condition ϕ(x, t = 0) = δ(x − 0.3). As time passes, the numerical solution approaches
the exact solution more quickly, and the Gibbs phenomena disappear.
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