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Abstract
We present a mixture cure model with the survival time of the “uncured” group coming from a
class of linear transformation models, which is an extension of the proportional odds model. This
class of model, first proposed by Dabrowska and Doksum (1988), which we term “generalized
proportional odds model,” is well suited for the mixture cure model setting due to a clear
separation between long-term and short-term effects. A standard expectation–maximization
algorithm can be employed to locate the nonparametric maximum likelihood estimators, which are
shown to be consistent and semiparametric efficient. However, there are difficulties in the M-step
due to the nonparametric component. We overcome these difficulties by proposing two different
algorithms. The first is to employ an majorize-minimize (MM) algorithm in the M-step instead of
the usual Newton–Raphson method, and the other is based on an alternative form to express the
model as a proportional hazards frailty model. The two new algorithms are compared in a
simulation study with an existing estimating equation approach by Lu and Ying (2004). The MM
algorithm provides both computational stability and efficiency. A case study of leukemia data is
conducted to illustrate the proposed procedures.
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1. INTRODUCTION
A typical assumption in survival analysis is that, had there been no censoring, the event
would eventually be observed for every subject when the followup time is sufficiently long.
However, in some experiments a substantial portion of subjects do not experience the event
by the end of the experiment. Farewell (1982) thus assumed that some of these patients will
never experience the event. Subjects whose endpoints will not occur are usually referred to
as “cured” or “long-term survivors.” An ad hoc way to identify data with a fraction of
“cured” subjects is to look at the Kaplan–Meier estimate of the data, where the Kaplan–
Meier estimate would have a flat long right tail that is apparently above zero. There are two
basic methods to model data with a “cured” fraction. The first is a mixture model proposed
by Farewell (1982) and subsequently studied by: Kuk and Chen (1992), Maller and Zhou
(1992), Taylor (1995), Peng, Dear, and Denham (1998), Fine (1999), Sy and Taylor (2000),
Peng and Dear (2000), Li and Taylor (2002), Lu and Ying (2004), and Fang, Li, and Sun
(2005). It assumes that the population consists of a “cured” and an “uncured” group, where
the “cured” group will never experience the event or, in other words, the event time of
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individuals in the “cured” group is infinity. On the other hand, the event time of individuals
in the “uncured” group is finite, so classical survival models are applicable.

Let T* and C denote the event and censoring time, respectively, and T = T* Λ C and δ =
I(T* ≤ C) be the observed variable under the standard random censoring scheme. We
introduce a binary variable Y as the indicator that an individual will experience the event
eventually, that is, belongs to the “uncured” group (Y = 1). Otherwise, Y = 0 for those
cured. Notice that Y = 0 implies δ = 0, and δ = 1 implies Y = 1. However, the value of Y is
missing for censored observations because we do not know whether they will experience the
event eventually. The population survival function S(·) for the event time T* can thus be
written as

(1)

under the mixture model, where p = Pr(Y = 1) and S(·|Y = 1) is the underlying survival
function of the uncured group. Let X be a (q + 1)-dimensional covariate associated with the
cure probability, with one as the first component of X. A logistic regression model is often
used to model the cure probability p, for a subject with covariate X, through

(2)

The survival function for the uncured population could be modeled as in standard survival
analysis without the cure factor. In this paper, we utilize a general class of models indexed
by a known transformation parameter ρ. Given a q-dimensional covariate vector Z, the
survival function for the uncured event time T* has the form of

(3)

where He(·) is an unknown monotone increasing function with He(0) = 0. Note that when ρ
= 1, (3) becomes a standard proportional odds (PO) model and when ρ approaches zero, it
tends to a proportional hazards model. Besides, similar to PO models, the ratio of SZ(·; ρ)ρ

and 1 − SZ(·; ρ)ρ in (3) at different covariate values is proportional over time. This class of
model was mentioned in Zeng and Lin (2007). Since it originates from the work of
Dabrowska and Doksum (1988), we adopt a similar term as “generalized proportional odds
models.” The covariate vector Z in (3) and the logistic regression covariate vector X could
share some or no common variables. When XT = (1, ZT), the survival probability for the
uncured group and the population cure probability share the same covariates. It is possible,
as in the numerical study in Section 3 of the leukemia data, that the treatment have opposite
effects on the cure rate and the survival probability for the uncured group. This contradictory
treatment effect, which was unveiled only after we fitted the mixture cure model,
demonstrates the advantage of this type of cure model.

An alternative to the mixture cure model is the well-studied bounded cumulative hazard
model proposed and studied by Yakovlev and Tsodikov (1996), Tsodikov (1998), and Zeng,
Yin, and Ibrahim (2006). The basic difference of this model from the mixture model is that
it focuses on modeling the survival function of the combined (cured and uncured) population
rather than the survival function of the uncured group.
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For known transformation parameter ρ, the generalized PO models (3) belongs to the linear
transformation models (Cheng, Wei, and Ying 1995), where T* is linearly linked to Z
through an unknown monotone increasing function H

ε is a random error with a known distribution. With Λ0(·) denoting the cumulative hazard
function for ε, the survival function of T* can be written as

(4)

The generalized PO models (3) can be expressed in the form (4) by equating He(·) as

exp[H(·)] and setting .

Fine (1999) and Lu and Ying (2004) have studied, through estimating equation approaches,
the mixture cure model with the survival function for the uncured population coming from
the linear transformation models (4). Although these approaches have broad applications,
their efficiencies can be improved through a likelihood-based approach. In this paper we
focus on the nonparametric maximum likelihood estimator (NPMLE) in the sense of Kiefer
and Wolfowitz (1956). Similar to the estimation equation approaches, the NPMLE approach
also faces computational challenges due to the presence of the nonparametric component
He(·). Direct maximization of the likelihood function through the Newton–Raphson
approach is unstable and computationally demanding. A solution to overcome this
computational burden can be attained by considering the standard linear transformation
model (4) as a proportional hazard frailty model. This was cleverly observed in Tsodikov
(2003) and exploited in Zeng and Lin (2007) to locate the NPMLE of a linear transformation
model without a cure group. An expectation–maximization (EM) algorithm treating the
frailty parameter as missing data was proposed in Zeng and Lin (2007), and it provides
stable estimates of the nonparametric component He(·), through a Breslow-type estimate in
the M-step. This EM algorithm can be extended to incorporate long-term survivors, as
demonstrated in Section 3.1. However, our numerical experience, including the simulation
studies reported in Section 4, reveals that it may encounter difficulties as a Breslow-type
estimate for He(·) is involved in the algorithm, which increases slowly near the tail, causing
the estimate of the survival function S(·|Y = 1) to stay away from zero and indistinguishable
from the cure probability. A suggestion by Sy and Taylor (2000) and Lu and Ying (2004) to
improve the estimate for the estimate for the cure rate parameter is to set the last jump size
of He estimate an extremely large value. However, our experience has been that this
modification increases the bias of the estimate for β in the frailty model-based algorithm and
the choice of the last jump size is illusive. We propose an alternative approach that bypass
the frailty framework and tackles the computational challenge in the EM algorithm directly
using a minimization–maximization (MM) algorithm to perform the maximization step in
the M-step. This approach also requires this suggested tip. However, numerical evidence
shows that the estimate of He(·) in the MM approach can increase much faster than that in
the frailty approach (even when more extreme value is used for the latter) and the resulting
estimate for β is less sensitive to the bias issue associated with the frailty approach.

Our proposal of the generalized PO cure models is motivated by an insightful observation in
Lu and Ying (2004) that, compared to the proportional hazards model, a more clear
separation between the short-term and long-term covariate effects exists under the
proportional odds model, where the hazard functions at different covariate values all
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converge to the same limit. In other words, in the presence of a cure subpopulation, a
proportional odds model for the uncured group is better suited to tackle the identifiability
problem in comparison to a proportional hazards model with or without frailty. The
generalized PO cure model maintains this property while allowing more flexibility. In this
paper, we develop procedures to locate the NPMLE under the mixture cure model [cf. (1)
and (2)] with S(·|Y = 1) modeled by (3), and establish the semiparametric efficiency of the
estimates for α and β. Because a closed-form solution exists during each EM-step to update
the nonparametric baseline function, the computation of the NPMLE is actually more stable
and conceptually simpler than the algorithm in Lu and Ying (2004), as their approach
involves sequential use of the Newton–Raphson algorithm to locate the solutions of a series
of estimating equations. It is a pleasant surprise that the proposed estimator is not only
efficient in terms of its statistical accuracy but also effective as a numerical procedure.

The rest of the paper is organized as follows. The NPMLE and its asymptotic properties are
presented in Section 2. Two algorithms to compute the NPMLEs are described in Section 3.
The numerical performance of the estimators are examined in Section 4 through a data
example and simulation studies. The findings of this paper are summarized in Section 5 with
the proofs relegated to the Appendix.

2. MAXIMUM LIKELIHOOD ESTIMATION AND MAIN THEOREMS
Assume the mixture cure model (1) and suppose that for the ith subject, we observe (ti, δi,
xi, zi), where ti is the minimum of the event and censoring time, xi and zi are the covariate
vectors for the logistic model (2) and the survival model (3) for S(·|Y = 1), respectively. The
transformation parameter ρ is fixed throughout this section and Section 3. The observed
likelihood function can be written as

(5)

where η = (He(·), β, α). However, this likelihood is unbounded if He(·) is unrestricted. We
therefore turn to the NPMLE approach. It can be shown that

Lemma 2.1.a. Model (1) is identifiable with p(x) modeled as (2) and S(·|Y = 1) modeled as
(3) when the support for x and z is finite.

Lemma 2.1.b. The nonparametric maximum likelihood estimation in the sense of Kiefer and
Wolfowitz (1956) for He(t) is an increasing stepwise function with jumps at t(i), i = 1, …, m,
where t(1) < t(2) < ⋯ < t(m) are the uncensored observation times.

Let τ denote the time at the end of the study. Following common practice, we assume in this
paper that the true parameter He0(τ) is bounded by a constant and (β0, α0) lies in a compact
set Bβ × Bα.

Theorem 2.2. Assume ρ is fixed. When the NPMLE for He is bounded on [0, τ] almost
surely, the NPMLE η̂ = (Ĥe, β̂, α̂) is strongly consistent, that is, ‖Ĥen(·) − He(·)‖∞, ‖β̂n −
β0‖, and ‖α̂n − α0‖ all converge strongly to 0, where ‖·‖∞ denotes the supremum norm on [0,
τ].

Remark. An assumption is needed on the NPMLE for He to guarantee the consistency in
Theorem 2.2. This is a technical assumption that ideally should be satisfied in applications
but a proof is lacking at this point. Our numerical experience suggests that it is actually
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beneficial to make the estimate for He larger than the NPMLE at the last uncensored
observation.

Theorem 2.3. If (β0, α0) is an interior point in Bβ × Bα and the conditions of Theorem 2.2

hold, then β̂ and α̂ are semiparametric efficient, where 
converge separately in distribution to some multivariate normal distributions with mean 0
and variances Σβ and Σα, respectively.

Standard Error Estimation
The profile likelihood approach in Murphy, Rossini, and van der Vaart (1997) could be

employed to obtain consistent estimates for  and take the inverse to get the

variance estimates. For example, to estimate , let  be the q-dimensional vector with one
at the ith position and zero elsewhere. Define the profile likelihood of β as

Calculate

for i ≠ j, and

Usually, we can use , where βi is the ith element in vector β.
Simulation results in Section 4 support the accuracy of these standard error estimates.

3. TWO ALGORITHMS
Lemma 2.1 tells us that the likelihood funtion (5) involves a large number of parameters.
Therefore, direct maximization of (5) through the Newton–Raphson approach will be
unstable. We thus revert to the EM algorithm, treating the uncured status Y as missing data
when it is not available for censored subjects. However, a complication arises in the M-step,
due to high-dimensional nonlinear maximization involving the nonparametric function He(·).
Below we describe two algorithms which avoid inversion of high-dimensional matrices and
focus instead on estimating He(·) as a step function with jumps at ti of size He{ti}.

3.1 Proportional Hazards Frailty (PHF) Models Approach
The first approach is not restricted to the generalized PO cure models and can be applied to
the general linear transformation cure models in (4). Writing G(·) = Λ0[log(·)], the survival
function can be written as
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A similar idea as in Tsodikov (2003) and Zeng and Lin (2007) is to rewrite the above linear
transformation model as a proportional hazards frailty model

(6)

where the density of the frailty random variable U is the inverse Laplace transformation of
exp[−G(·)]. With such a presentation, a standard EM algorithm can be employed and a
Breslow type estimate for He(·) is available in the E-step, which also provides a profile
likelihood estimate for β. Details of the algorithm are provided in the Appendix.

3.2 Minimization–Maximization MM Approach
The complete likelihood for generalized PO model (3) with cure fraction, had Y been
observable, is equal to

For uncensored observations, Yi is observable and equals to one, so obviously

For censored observations,

In the M-step, the target function, E[log(LC)|(Ti, δi)] is equal to

where lM1 and lM2 can be maximized separately. A simple one-step Newton–Raphson
method can be applied to update α in lM1, since it is of low dimension. However, the
maximization of lM2 suffers similar difficulties as many other semiparametric maximization
problems in the sense that: (i) the parametric part β and the nonparametric part He(·) are
tangled together; (ii) He(·) is high dimensional, of the order n. To overcome these
difficulties, we utilize a MM algorithm, as detailed below, to maximize lM2.

The “minimization–maximization” algorithm was first proposed by Ortega and Rheinboldt
(1970, p. 253) and termed MM algorithm by Hunter and Lange (2000). The algorithm we
use below is an extension of Hunter and Lange (2002), who introduced maximum likelihood
estimation for the standard proportional odds model without a cure group. The maximization
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of both β and He is quite stable because it avoids inverting high-dimensional matrices,
which is the main attraction for us.

A MM algorithm usually proceeds in two steps. Let L(θ) be the target function to be
maximized and θ(k) be the current value of iteration. The first step is to construct a surrogate
function R(θ|θ(k)), which is a function of θ and satisfies: (i) R(θ(k)|θ(k)) = L(θ(k)); (ii) R(θ|
θ(k)) ≤ L(θ) for all θ and θ(k). In other words, for every fixed θ(k), the function R(θ|θ(k)) is
always beneath L(θ) and they meet at θ(k). Then we maximize or simply increase R(θ|θ(k))
with respect to θ to obtain θ(k+1). This results in R(θ(k+1)|θ(k)) > R(θ(k)|θ(k)). Now one can
see that, combing (i) and (ii) leads to L(θ(k+1)) ≥ R(θ(k+1)|θ(k)) > R(θ(k)|θ(k)) = L(θ(k)). So
the target function L(θ) has been increased.

In our setting, it is more convenient to reparametrize the step function He(·) by the logarithm
of its jump sizes so that the maximization is unrestricted. Let γ = (γ1, γ2, …, γm) be the
corresponding log of jump sizes of He(·) at t(1), …, t(m). For each individual i, introduce di =

max{j : t(j) ≤ ti}, the index of the latest jump point before . Thus, He(·) is converted to γ

with  and

which is our target function to be maximized. As pointed out in Hunter and Lange (2000),
for a convex function f(v), the inequality based on the first order Taylor expansion

provides a natural surrogate function which is linear in v. A surrogate function for lM2(β, γ)
can thus be developed by applying this inequality to the convex function − log(·) there. This
leads to

where  and θ =
(β, γ). Since Ci(θ(k)) does not depend on θ, we can ignore this term and reduce R(θ|θ(k)) to
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(7)

where uj represents the number of uncensored observation at t(j).

One advantage of this expression is that one can maximize or increase the functions

 separately. We use a one-step Newton–Raphson method
to update β in each iteration. As for the high-dimensional γ parameter, there exists a closed-

form solution to the equation . So one can update γ by simply setting

The main advantage of the MM algorithm in the M-step is its stability. However, as the
algorithm slows down near the end, we thus suggest switching to the Newton–Raphson
method near the end of the algorithm. The rationale is that the maximization steps would
have stabilized after a few iterations, so applying Newton–Raphson at the end generally
does not cause computational complications. This hybrid algorithm is not sensitive to initial
values. Meanwhile, it is substantially more stable than applying the Newton–Raphson
algorithm in the M-step throughout the iteration. Additional savings in computing time can
be achieved by doing only a one-step iteration, instead of a full iteration, when
implementing the MM and Newton–Raphson algorithms during the EM iteration. This
results in substantial saving in computing time. There is essentially no loss in accuracy,
since major updating of the estimates occurs during the main loop of the EM algorithm, and
therefore one-step iteration in the intermediate loop suffices. This one-step shortcut is
conceptually different from the sequential algorithm in Lu and Ying (2004) based on
estimating equations. In the simulation studies presented in Section 4, we demonstrate the
advantages of the MM-based EM algorithm as compared to the estimating equation method
and the proportional hazards frailty models approach in Section 3.1.

4. NUMERICAL STUDIES
We applied both approaches to the leukemia data in Klein and Moeschberger (1997, p. 10,
table 1.4). This dataset consists of 101 patients with advanced acute myelogenous leukemia
reported to the International Bone Marrow Transplant Registry. Fifty patients received an
allogeneic bone marrow transplant from an HLA (Histocompatibility Leukocyte Antigen)
matched sibling. The other patients had an autologous bone marrow transplant where their
own marrow was reinfused by a high dose of chemotherapy. The leukemia-free survival
times (in months) were recorded. Let the covariate Z be a one-dimensional indicator of the
autologous transplants and X = (1, Z) for the logistic regression model. We can see from the
Kaplan–Meier plots (Figure 1) that the survival curves of both groups level off after 25
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months and stayed above 0.3 with a long tail till the end of study, which is 50 months. This
suggests a cure fraction in both populations based on the recommendation in Maller and
Zhou (1992).

To apply the two algorithms we need to provide a value for the transformation parameter ρ.
It is in general very difficult to estimate a transformation parameter accurately unless the
sample size is extremely large. This was also observed by Zeng, Yin, and Ibrahim (2006) for
another cure-transformation model. We thus propose an ad hoc model selection method to
select the desirable ρ over a grid of candidate values, and choose the one that maximizes the
likelihood function. This method is fairly robust in the sense that the survival functions will
look very similar if one jitters the value of ρ a little.

Figure 2 provides the estimated likelihood function over values of the transformation
parameter ρ obtained from the MM approach (solid) and proportional hazard frailty (PHF)
approach (dashed). We can see that the estimated likelihood function of PHF approach is
always under the one from MM approach. The resulting maximum likelihood estimate for ρ
is 2.1 from MM and 2.3 from PHF. We use the nearest integer 2 for the transformation
parameter. The NPMLEs of the regression coefficients from the MM approach are β̂ =
−1.7171 and α̂ = (−0.1066, 0.5511). Thus, for the uncured group, the ratio of S2/(1 − S2)
between the autologous and the allogeneic group is e1.7171 = 5.5684. The estimated cure
probability for allogeneic group is 1 − p̂allo = 0.5266, and 1 − p̂auto = 0.3907 for the
autologous group. This implies that the allogeneic group has a higher cure probability.
However, in the uncured group, autologous transplants have a higher survival probability
throughout the study. The estimations from the PHF approach are β̂ = −0.9834 and α̂ =
(−0.0348, 0.5529). The estimated He(·) function from both approaches are plotted in Figure
3 up to the third largest event time. The solid curve (MM) increases much faster than the
dashed one (PHF) even though both have been set to the same value at the largest event time
following our suggestion at the end of Section 3. The estimated survival curves in Figure 1
also reveals that the MM approach (dashed curve) provides a better fit than the PHF
approach (dotted curve) when compared to the Kaplan–Meier curves (solid curve). Overall,
the MM aproach leads to a satisfactory fit of the generalized PO cure model.

Simulation
We conducted two simulation settings to examine the performance of the proposed
procedure. The first setting reported in Table 1 mimics the setting of the leukemia samples
with a transformation parameter ρ = 2, where β0 and α0 were set to be −1.7 and (−0.10,
0.55). As for the target baseline function He0(·), we approximated the NPMLE of He(·) from
the leukemia study with a continuous function

and use it as the true He0-function.

The censoring variable is generated uniformly from [0, 50], providing it with a very similar
shape to the Kaplan–Meier estimate of the censoring survival function for the leukemia data.
Thus, all target parameters/functions resemble their counterparts estimated from the
leukemia data. We aimed at comparing the two EM algorithms with the estimating equation
(EE) approach in Lu and Ying (2004). However, we could not get any sensible results for
the EE method due to its low convergence rate. Table 1 thus only contains the results of the
two EM algorithms. The last jump size of Ĥe(·) is set to be 5 ×103 for both approaches in
Table 1 and 103 for Table 2. The convergence rate for the MM approach is 98.6% when
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sample size = 100 and 97.4% when sample size = 200; for the PHF approach, the
convergence rate is 98.8% when sample size = 100 and 97.8% when sample size = 200. The
mean curve of the estimated He(·) for n = 100 is plotted in Figure 4, where the MM approach
is much less biased than the PHF approach near the end of study.

In a second simulation, we modified the setting in Simulation 1 to ρ = 1, β0 =−1.3, α0 =
(−0.12, 0.56), and

Both simulations are based on samples of sizes n = 100 and 200, each with half of the
patients assigned to the autologous group and the other half to the allogeniec group. For
initial estimates, we use a rough estimate of α from the end point of the Kaplan–Meier
estimate and an estimate from the Cox proportional hazards model as the initial value for β.
Our experience shows that a “reasonable” initial value helps to improve the convergence
rate for the EE approach, however, the two EM algorithms are not sensitive to the initial
values.

The results for all three approaches are reported in Table 2. While both EM algorithms
converge over 95% of the time (sample size = 100, MM convergence rate = 98.4%, PHF
convergence rate = 98.4%; sample size = 200, MM convergence rate = 96.8%, PHF
convergence rate = 97.2%), the EE method was very unstable with a substantial divergence
rate (the convergence rates for the EE method for sample sizes = 100 and 200 are 72.2% and
21%, respectively). We thus can only compare our procedure with those Monte Carlo
samples where the EE method converges.

In general, the MM-based EM algorithm has better performance, especially for the
estimation of β. As expected, the precision of the two EM algorithms (MM and PHF)
improves as sample size increases, and a fairly large sample size is needed to estimate α
satisfactorily. This is a prevalent concern for all cure models. Li, Taylor, and Sy (2001) have
provided a comprehensive discussion about this concern. In general, due to a potential lack
of data near the end of the study, a sufficient long followup time with large sample size and
many censored observations beyond the typical event time is needed to gain additional
precision.

5. DISCUSSION
In this paper, we investigate the NPMLE for a class of “generalized proportional odds”
models with a cure fraction and propose two EM algorithms (PHF-based and MM-based) to
locate the NPMLE. One of the EM algorithms (PHF-based) can be also applied to general
linear transformation models with a cure fraction, but may not be as efficient as the other
version (MM-based), which is specifically designed for the class of generalized PO models.
In reality, one needs to specify the value of the transformation parameter ρ but direct
estimation is impractical and would magnify the near nonidentifiability problem in cure
model because the estimation of ρ and the cumulative hazard function He(·) might affect
each other. We thus propose a model selection procedure in lieu of estimation in Section 4.

The use of the EM algorithm is quite natural in our setting, since the indicator of cure status
can be treated as a missing variable. The main challenge lies in the M-step, due to the high-
dimensional parameters of the order n. Traditional Newton–Raphson methods would be very
unstable here as they involve inverse of high-dimensional matrices. To avoid this problem,
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we use a much more stable maximizing algorithm, the MM algorithm, which provides a
closed-form solution to updating high-dimensional parameters. Our experience suggests that
for mixture cure models, the stability of algorithms is crucial, due to the nearly
nonidentifiability feature that arises at the end of a study, although some of the algorithms
work well when the cure probability is not involved. We also want to clarify that although
both the MM and PHF algorithms maximize the same objective function and theoretically
they should lead to the same result, the numerical results could be different in practice. The
simulation studies demonstrate that the MM algorithm suits better to the “cure” model
settings than the latter.

We also proved the semiparametric efficiency of the NPMLE, which might be extended to
other classes of linear transformation models when the invertibility of the information
operator can be verified, given a specific form of the link function. The advantages of
NPMLE go beyond the usual semiparametric efficiency and extend to computational
efficiency. The latter is a particular attractive feature of the NPMLE approach, as it also has
computational advantages over existing estimators based on estimating equations.
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APPENDIX

A.1 EM Algorithm Based on Proportional Hazards Frailty Models
The complete log-likelihood, had Y and U been observable, is equal to

In the E-step, we have

for censored observations. In addition, the E-step also involves calculation of the conditional
expectation of YiUi. Note that

Denoting E(Ui|Yi = 1, Ti, δi) by Ûi, it can be shown that

completing the E-step.

In the M-step, after plugging in πi and Ûi, the target function becomes
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where lM1 and lM2 can be maximized separately. A Breslow type estimate for He(·) is
available when maximizing lM2:

which also provides a profile likelihood estimate for β.

A.2 Proofs of the Main Results in Section 2
Proof of Lemma 2.1.a. Without loss of generality, we assume the logistic model (2) and the
generalized PO model (3) share the same covariate variables and write p(x) as p(z) and
exp(−zTβ) as r(z) for convenience. The proof will be similar to that of theorem 2 in Li,
Taylor, and Sy (2001) for the identifiability of the proportional hazards mixture cure models.
If there exist two different sets of functions (p(x), r(x), He(t)) and  which
yield the same survival function for the mixture population, that is, for any z and t,

we will have

(A.1)

where c(z) is not depending on the time t. Setting z = 0 and solve for  in (A.1) gives

(A.2)

Solving for r*(z) in (A.1) and plugging in (A.2), we have

(A.3)

Rewrite r*(z) as r*(z) = g(c(z), He(t), c(0), r(z)), for appropriately defined function g. Let
Δc(z) = c(z) − c(0), expand g around c(0) by the first-order Taylor expansion:

(A.4)

where c* is somewhere between c(0) and c(z). Since r*(z) should be independent of He(t), it
requires that Δc(z) = 0 and c(0) = 1 in (A.4). Thus, from (A.1) and (A.3), we have p(z) =
p*(z) and r*(z) = r(z) and hence .
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Proof of Lemma 2.1.b. The NPMLE must be a step function with positive jumps at
observation times because of the term dHe(t) in the likelihood function. Next we show that
the NPMLE should only assign positive weights to uncensored observations. This can be
seen through the following example. Let He1(t) be any step function with positive weight at
all uncensored observations plus one censored observation time t* with t(j) < t* < t(j+1),
where t(0) < t(1) < t(2) < ⋯ < t(m) < t(m+1) are ordered uncensored observation times with t(0)
= 0 and t(m+1) = ∞. Define He2(t) = He1(t) everywhere, except that He2(t) = He1(t(j)), for t* ≤
t < t(j+1), that is, the weight of t* in He1(t) is assigned to t(j+1) in He2(t). When we compare
the two likelihood functions L(He1(·), β, α) and L(He2(·), β, α), the contribution of each
individual would be the same except for those subjects whose observation times fall between
t*− and t(j+1) (inclusive). For censored observations in this interval, it is easy to see that

For uncensored observations at t(j+1), we have

because dHe1(t) < dHe2(t) and He1(t−) > He2(t−) at t(j+1). So L(He1(·), β, α) will always be
smaller than L(He2(·), β, α). This simple illustration holds in general.

Proof of Theorem 2.2. From Lemma 2.1.a, we replace He(·) by a step function with jump
size He{t(i)} at t(i) in the likelihood function (5). The relationship between NPMLE α̂, β̂, and

Ĥe can be derived by solving the score equation  and this leads to

We introduce Pn and P0 to denote the expectation with respect to the empirical distribution
of the data and with respect to the distribution under the true parameter η0. Define

and Gn(u) = PnδI(T ≤ u), then the NPMLE Ĥe(·) satisfies the equation

The consistency of the NPMLE can be derived following a similar framework as the proof
of theorem 2.2 in Murphy, Rossini, and van der Vaart (1997).

Proof of Theorem 2.3. First we derive the score operator and information operator as defined
in van der Vaart (1998, p. 371). To do so, we introduce a family of submodels of the form
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, where, for any fixed direction h ≡ (hHe (·), hβ, hα), hHe (·)
is an arbitrary nonnegative bounded function, and hβ and hα are arbitrary p and (p + 1)-
dimensional vectors. By taking the derivative of l(T, δ; ηε) with respect to ε and evaluating
it at 0, we obtain a score operator

(A.5)

where

The information operator

is the solution to

(A.6)

In our setting,
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and

This can be shown from σHe (h)(u) = I1 − I4 − I5, σβ(h) = I2 − I4 − I6 and σα(h) = I3 − I5 −
I6, where
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and

Adopting a similar framework as in the proof of theorem 2.3 in Murphy, Rossini, and van
der Vaart (1997), it suffices to show that the information operator σ is onto and continuously
invertible. As pointed out by Murphy, Rossini, and van der Vaart (1997) in the proof of
lemma A.3, this can be done by writing σ as the sum of two operators A and K, where A(h)
= (hHe W(·; η0), hβ, hα), then proving A−1K is compact and σ is one to one. The first part is
relatively straightforward and is omitted here. Hence we only need to show the second part.
Note from (A.6) that ‖σ(h)‖ = 0 implies for almost every z, that the score operator S(η0)(h)
is almost surely equal to zero with respect to (T, δ). When δ = 1, this becomes, for almost
every z and t,

(A.7)

Define t* = inf{t : He0(t) > 0}. By the continuity of He0(·), we have He0(t*) = 0 and He0(t) >
0 for t > t*. When evaluated at t*, (A.7) becomes

(A.8)

Subtracting (A.8) from (A.7), we have for almost every z and t > t*, that

(A.9)

Note that the left-hand side of (A.9) does not depend on z, which implies hHe (t) = 0 and hβ
= 0, and hence hα = 0.
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Figure 1.
Estimated survival curve for the generalized PO model with ρ = 2 by the Kaplan–Meier
estimates (solid), MM approach (dashed) and PHF approach (dotted).
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Figure 2.
Maximum likelihood function of the transformation parameter ρ by the MM approach
(solid) and PHF approach (dashed).
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Figure 3.
Estimated He(·) by the MM approach (solid) and PHF approach (dashed).
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Figure 4.
Mean of the estimated He(·) by the MM approach (dashed) and PHF approach (dotted)
compared with He0(·) (solid).
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