Skip to main content
. Author manuscript; available in PMC: 2012 Aug 3.
Published in final edited form as: J Am Stat Assoc. 2012 Jan 1;105(489):302–311. doi: 10.1198/jasa.2009.tm08459

Table 2.

360 (n = 100) and 105 (n = 200) Monte Carlo samples that converge under the EE method when ρ = 1. The estimated standard deviation of the EM algorithms is listed on the third column and the corresponding Monte Carlo standard deviation of both estimates are listed in column 4. The last column gives the MSE ratio of EE/MM and EE/PHF

True Estimation Est SD MC SD MSE MSE ratio
n = 100 β(MM) −1.3 −1.3994 0.5745 0.5737 0.3429 141.03%
(PHF) −1.3 −1.5150 0.5655 0.5700 0.3711 130.32%
(EE) −1.3 −1.6066 0.6242 0.4836
α1(MM) −0.12 −0.1808 0.3065 0.2804 0.0823 102.43%
(PHF) −0.12 −0.1318 0.3160 0.3124 0.0977 86.28%
(EE) −0.12 −0.1862 0.2827 0.0843
α2(MM)   0.56 0.5076 0.4510 0.4353 0.1922 100.10%
(PHF)   0.56 0.6096 0.4852 0.4588 0.2130 110.65%
(EE)   0.56 0.5284 0.4375 0.1924
n = 200 β(MM) −1.3 −1.3376 0.3967 0.4104 0.1699 119.54%
(PHF) −1.3 −1.3933 0.3993 0.4035 0.1715 118.43%
(EE) −1.3 −1.4575 0.4222 0.2031
α1(MM) −0.12 −0.1544 0.2174 0.2094 0.0450 103.11%
(PHF) −0.12 −0.1217 0.2226 0.2218 0.0492 94.31%
(EE) −0.12 −0.1562 0.2123 0.0464
α2(MM)   0.56 0.5076 0.3210 0.3242 0.1079 101.85%
(PHF)   0.56 0.5798 0.3408 0.3436 0.1185 92.74%
(EE)   0.56 0.5270 0.3299 0.1099