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Abstract
Tumor angiogenesis, the building of blood vessels in an expanding tumor mass, is an elegantly coordinated process that dictates tumor growth and 
progression. Stromal components of the tumor microenvironment, such as myofibroblasts and the extracellular matrix, collaborate with tumor cells 
in regulating development. Such myofibroblasts and the extracellular matrix have ever-expanding roles in the angiogenic process as well. This review 
summarizes how stromal myofibroblasts and the extracellular matrix can modulate tumor angiogenesis, highlighting recent findings.
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Introduction
Angiogenesis, the process of building 
new blood vessels from existing ones, is a 
pivotal step in tumor development. The 
rate of tumor growth and progression 
relies on the tumor vasculature to provide 
a steady supply of nutrients and oxygen 
and to remove waste products from the 
growing tumor. Without a tumor blood 
supply, incipient neoplasms cannot grow 
beyond 2 mm3.1-3 Termed as the “angio-
genic switch,” the change from avascular 
neoplastic growth to vascularized tumor 
growth is believed to be mediated by a 
net shift in favor of pro-angiogenic fac-
tors over anti-angiogenic factors in the 
microenvironment. In addition to being a  
nutrient and oxygen supply, the tumor 
vasculature is used by metastatic tumor 
cells as an entry point into systemic circu-
lation. Finally, growth of micrometasta-
ses into to full metastatic disease is also 
dictated by angiogenesis.

A dynamic microcosm of cellular and 
non-cellular players exists within the 
growing tumor mass. Non-tumor stromal 
cells, such as stromal myofibroblasts, 
perivascular cells, and inflammatory 
cells, assist in the overall growth and 
progression of the tumor.4-6 Further-
more, the extracellular matrix (ECM) 
surrounding these cellular components 
provides contextual cues for tumor 
growth and progression. Although the  

vasculature is technically a stromal 
component of the tumor mass, it will be 
considered as a separate entity in the 
purposes of this review.

Stromal myofibroblasts and the ECM 
impart substantial, often pleiotropic, 
influences on tumor angiogenesis. As 
vessels innervate the tumor mass, a vari-
ety of myofibroblast- and ECM-derived 
signaling cues and proteolytic factors 
help recruit blood vessels, assist negoti-
ations with the microenvironment, and 
stabilize the newly formed vessels. In 
this review, we focus our attention on 
complex interplay among myofibro-
blasts, ECM, and the vasculature within 
tumor microenvironment, highlighting 
recent discoveries in this area of active 
investigation.

The Extracellular Matrix  
Is a Rich Reservoir of Pro-  
and Anti-angiogenic Cues
The extracellular matrix is a protein-
aceous network of macromolecules that 
provide structural support to its sur-
rounding cells. The ECM can be broadly 
categorized into the basement mem-
brane, a specialized 50-nm-thick sheet 
of ECM molecules on which endothelial 
cell or epithelial cells reside, and the 
interstitial matrix, a network of ECM 
molecules in which cells can be found 
embedded. Although collagen IV is the 

major component of basement mem-
branes, fibrillar collagens, such as col-
lage I, II, and III, can be mostly found in 
interstitial matrices.7 Along with colla-
gen, other ECM molecules, including 
laminins, heparan sulfate proteoglycans 
(HSPGs), and fibronectins, come together 
to form a mesh-like network. Matricellu-
lar molecules, such as tenascins, entactin, 
thrombospondins, and SPARC (secreted 
protein, acidic and rich in cysteine), can 
be found embedded within the ECM.

During tumor development and angio-
genesis, the ECM is far more than struc-
tural scaffolding. It provides contextual 
cues to endothelial cells through integrin 
signaling, affecting processes such as 
proliferation, differentiation, migration, 
and survival. Collectively, integrins 
recognize a variety of ECM and matri-
cellular protein molecules, including 
collagens, laminins, fibronectins, throm-
bospondins, and tenascins. Although 
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integrins themselves do not have enzy-
matic capabilities, integrin activation 
relays to downstream signaling path-
ways, such as focal adhesion kinase 
(FAK), the Src family of kinases, and 
integrin-linked kinase (ILK).8 With inte-
grin binding sites removed or cryptic 
ones exposed by the action of matrix 
remodeling proteins, integrin signaling 
is a dynamic sensor to a continuously 
remodeling microenvironment.9

Endothelial cells express a limited 
number of integrins, including α1β1, 
α2β1 αvβ3, αvβ5, αvβ8, and α5β1. 
Genetic ablation of integrin subunits αv, 
β1, β3, β5, or β8 resulted in vascular 
defects with lethal consequences.10-14 
Expression of select integrins coincides 
with various steps of angiogenesis, sug-
gesting specific functions at these par-
ticular steps.15 Furthermore, although it 
is well known that integrin signaling 
controls various processes in endothelial 
cells, it can also affect tumor angiogen-
esis by acting on mural cells.16

The ECM also serves as a rich  
reservoir for pro-angiogenic and anti-
angiogenic factors. Regulating the bio-
availability of pro-angiogenic and anti- 
angiogenic factors is another way the 
ECM participates in tumor angiogenesis. 
Vascular endothelial growth factor 
(VEGF) and basic fibroblasts growth fac-
tor (bFGF) are often sequestered by 
HSPGs in the ECM, limiting their signal-
ing capacity to the local vicinity of their 
source. Activity from transforming 
growth factor β (TGFβ) and insulin-like 
growth factors (IGFs) can be fine-tuned 
by latent TGFβ binding proteins (LTBP) 
and IGF binding proteins (IGFBPs), 
respectively. Both LTBPs and IGFBPs 
possess domains that bind ECM proteins. 
Proteolytic activity from matrix remodel-
ing proteins can liberate these angiogenic 
growth factors.17

Many matricellular proteins in the 
ECM also exhibit pro-angiogenic or anti- 
angiogenic activity through a wide range 
of mechanisms. SPARC can inhibit 
tumor angiogenesis by directly binding 
to angiogenic factors or by altering ECM 
assembly.18 Although thrombospon-
dins-1 and -2 can bind to VEGF as well, 

they can also act directly on endothelial 
cells to inhibit the angiogenic process 
via interactions with CD36, CD47, and 
integrins.19 In contrast, tenascin-C (tnC) 
promotes angiogenesis. TnC expression 
is associated with vascular sprouts in 
astrocytomas, and loss of TnC resulted 
in less angiogenic tumors.20,21 Osteo-
pontin can promote an autocrine VEGF 
signaling loop in endothelial cells.22,23

ECM proteins themselves harbor 
cryptic anti-angiogenic domains. The  non- 
collagenous (NC1) domains of collagen 
molecules have potent anti-angiogenic 
properties. Endostatin, derived from 
proteolytic cleavage of collagen XVIII, 
acts by inhibiting endothelial prolifer-
ation and migration.24 It may also act 
as a feedback inhibitor of certain 
MMPs.25 Arresten, canstatin, and tum-
statin are derived from NC1 domains 
of collagen IV α1, α2, and α3 chains, 
respectively. Although the mode of 
angiogenic inhibition in arresten and 
tumstatin is mediated by integrin inter-
actions and blocking VEGF or bFGF-
stimulated ERK and Akt signaling, 
canstatin, through interactions with inte-
grin αvβ3 and αvβ5 and the FasL recep-
tor, potentiates endothelial apoptosis.26,27 
Proteolysis of other ECM molecules 
such as perlecan, fibronectin, and fibu-
lins can produce fragments with anti-
angiogenic properties.28

Several classes of proteases partici-
pate in ECM remodeling. The most 
prominent class is matrix metallopro-
teinases (MMPs). The angiogenic con-
tribution of MMPs is best illustrated in 
xenograft studies using MMP-deficient 
hosts. Here, tumors grew at a slower 
pace with impairments in angiogene-
sis.29-32 In particular, MMPs-2, -3, -7, -9, 
and -16 are believed to play key roles in 
regulating tumor angiogenesis.33 Regu-
lation of VEGF bioavailability is mostly 
attributed to the action of MMP-9 and 
MMP-7.34,35

MMP activity can be fine-tuned in the 
tumor microenvironment by endoge-
nously produced tissue inhibitors of metal-
loproteinases (TIMPs). In mammals, there 
are 4 TIMPs (TIMPs 1-4). Because MMPs 
are largely a pro-angiogenic force, TIMPs 

are, therefore, largely anti-angiogenic.36 
Aside from directly inhibiting MMP 
activity, TIMPs can have non–MMP-
dependent effects on angiogenesis. 
TIMP-2 can inhibit angiogenesis by 
inhibiting FGF2-dependent endothe-
lial proliferation via interactions with 
a3b1 integrin.37,38 TIMP-3 has been 
found to disrupt the VEGF binding to 
VEGFR-2.39

ADAMs (a disintegrin and metallo-
proteinases) and ADAMTS (a disintegrin 
and metalloproteinase with thrombos-
pondin motifs) are additional classes of 
metalloproteinases whose role in tumor 
angiogenesis is still emerging. In addi-
tion to having proteolytic activity for 
various ECM molecules, ADAMs and 
ADAMTSs possess a variety of signal-
ing and binding domains, allowing for 
an expanded repertoire of functional 
capabilities. These include disintegrin 
domains, EGF-like domains, and, more 
specifically in ADAMTSs, thrombos-
pondin type I sequence repeat (TSR) 
domains.40 In general, although ADAMs 
are membrane-bound, ADAMTS are 
associated with the ECM through its 
TSR domain. Some ADAM/ADAMTS 
members lack proteolytic activity.

A pro-angiogenic role of ADAMs has 
been implicated through the use of an 
ADAM-specific inhibitor.41 A splice iso-
form of ADAM-9, known as ADAM-
9-S, can be secreted and can mediate 
stromal-tumor interactions and degrade 
laminins at the invasive front of the 
tumor.42 More recently, loss of ADAM-
17 cells has been demonstrated to affect 
cell proliferation and vessel formation in 
vitro.43 Furthermore, its proteolytic 
activity is key to tumor necrosis factor α 
(TNFα) and TGFβ shedding, which may 
have secondary effects on angiogene-
sis.44 ADAM-10 acts as a sheddase for 
Delta, a key ligand in the Notch-Delta 
pathway, and may affect tumor angio-
genesis in this manner.45

So far, only 6 ADAMTSs (ADAMTS-1, 
-2, -8, -9, -12, -15) are known to affect 
angiogenesis, and all of them appear to 
exert anti-angiogenic effects.46-49 This is 
attributed, in part, to their TSP domains, 
which may directly interact with 
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endothelial cells or sequester the 165-kDa 
isoform of VEGF. Caution must be taken 
to not overgeneralize the role of ADAMs 
and ADAMTSs in tumor angiogenesis, as 
the potential role of many family members 
remains unknown.

Tumor angiogenesis is also regulated 
by the ECM architecture. ECM stiffness, 
density, and patterning have been impli-
cated in modulating endothelial cell sur-
vival, sprouting, and migration.50-53 
Although the pro-angiogenic properties 
of syndecan-1 has been attributed to 
integrin-based signaling to endothelial 
cells, it may also contribute in part by 
reorganizing the structure of fibrillar 
collagen to promote directional endothe-
lial cell migration.54,55 Needless to say, 
ECM architecture is not a stagnant fea-
ture of the microenvironment, as active 
remodeling of such ECM parameters by 
endothelial cells has been captured via 
in vivo imaging methods.56

Stromal Myofibroblasts Control 
Tumor Angiogenesis through 
Direct and Indirect Interactions

As one of the first cell types recruited to 
an incipient tumor, stromal myofibro-
blasts produce a vast array of secreted 
factors that modulate both tumor and 
endothelial behavior. Characterized by 
their spindle-shaped morphological char-
acteristics and expression of smooth 
muscle actin (αSMA), stromal myofibro-
blasts are a principal source for growth 
factors, chemokines, ECM molecules, 
and matrix-remodeling proteins within 
the tumor microenvironment.

Not surprisingly, stromal myofibro-
blasts are often found at the leading edge 
of the tumor, a place where tumor–host 
interactions, such as angiogenesis and 
local ECM remodeling, are most robust.57 
Several studies show increased angiogen-
esis in xenograft models where tumor cells 
were co-inoculated with stromal myofi-
broblasts.58,59 The importance of stromal 
myofibroblast in tumor angiogenesis is 
further highlighted in a study demonstrat-
ing that recruited myofibroblasts act as a 

secondary source of VEGF and compen-
sate for the loss of VEGF in tumor cells.60

Stromal myofibroblasts participate 
in tumor angiogenesis through a multi-
prong approach (Fig. 1). First, they 
provide a repertoire of secreted pro-
angiogenic growth factors, including 
VEGF, bFGF, TGFβ, platelet-derived 
growth factors (PDGFs), hepatocyte 
growth factor (HGF), connective tissue 
growth factor (CTGF), and interleukin-8 
(IL-8).5,60-63 Combined with other sources 
of pro-angiogenic growth factors in 
the tumor, myofibroblast-derived pro-
angiogenic factors can tip the angiogenic 
balance in favor of tumor angiogenesis.

Stromal myofibroblasts are a key 
source of matrix remodeling proteins 
within the tumor microenvironment, 
including MMP-1, MMP-2, MMP-3, 
MMP-7, MMP-11, and MT-MMP1.64-67 
Induction of MMPs in stromal myofi-
broblasts by tumor-derived factor 
EMMPRIN further stimulates tumor 
angiogenesis.68,69 In colorectal cancer, 
ADAMTS-12 expression is selectively 
robust in myofibroblasts.70 Furthermore, 
in the liver, ADAM-9, ADAM-12, ADAM-
28, ADAMTS-1, and ADAMTS-2 are up-
regulated following activation of hepatic 
stellate cells, which are stromal myofibro-
blasts of the liver, either in hepatocellular 
carcinoma or cirrhotic livers.30,71

In addition to recruiting existing endo-
thelial cells to proliferate, migrate, and 
form blood vessels, stromal myofibro-
blasts may elicit endothelial progenitor 
cells to build blood vessels de novo, a pro-
cess called vasculogenesis. Secretion of 
stromal-derived-factor 1 by stromal myo-
fibroblasts (SDF1/CXCL12) stimulates 
recruitment of Sca1+CD31+ EPCs to the 
primary tumor.72

Modulation of the inflammatory 
response within the tumor microenviron-
ment by stromal myofibroblasts is an addi-
tional mechanism to amplify its angiogenic 
agenda. Stromal myofibroblasts express 
an array of pro-inflammatory cytokines 
and chemokines, a process that recruits 
immune cells to the local microenviron-
ment.72-76 Following recruitment, the secre-
tory milieu of macrophages, neutrophils, 

and mast cells includes pro-angiogenic 
factors, such as VEGF, or ECM remodel-
ing proteins, such as MMP-9 and MMP-
13. A more detailed overview on the 
influence of inflammatory cells on tumor 
angiogenesis can be found in Noonan et 
al77 and Zumsteg and Christofori.78

The genetic landscape of stromal 
myofibroblasts has gained considerable 
interest in recent years. Mutations in stro-
mal cells have been implicated in tumor 
initiation.79,80 Stromal-specific mutations 
of key tumor-suppressive genes, such as 
TP53 and PTEN, have been identified in 
patient samples.81,82 Loss of stromal p53 
has been identified critical step in tumor 
progression in a murine model of prostate 
cancer.83 In addition having a direct effect 
on tumor cells, p53 in stromal myofibro-
blasts can modulate tumor angiogenesis 
as well. p53 regulates the expression of 
TSP-1 and SDF-1, two potent regulators 
of angiogenesis, in stromal fibro-
blasts.84,85 As mentioned already, stromal 
myofibroblasts are a prominent source of 
VEGF and bFGF, two angiogenic factors 
regulated by p53.86,87 Dissecting the func-
tional consequences of specific mutations 
in stromal myofibroblasts will be an 
exciting area to watch in cancer biology.

Fibrosis and the  
Desmoplastic Reaction  
in Tumor Angiogenesis
In many solid tumors, dense fibrotic tis-
sue, rich in myofibroblasts and ECM 
molecules, often encapsulates proliferat-
ing tumor mass. Termed the stromal or 
desmoplastic response, it is a prominent 
feature in many cancers, including those 
of the breast and pancreas. Given their 
well-characterized role in fibrosis, stro-
mal myofibroblasts are believed to be 
the predominant orchestrators of the 
desmoplastic response.88

The underlying cause of the desmo-
plastic response in cancer remains 
largely speculative. Some hypothesize 
that it is a host defense mechanism 
against incipient neoplasms, where the 
fibrotic tissue essentially isolates the 
neoplastic cells from the rest of the 



1142 Genes & Cancer / vol 2 no 12 (2011)M Monographs

organ.87 In contrast, because of similari-
ties between wound healing and the stro-
mal response, others have suggested that 
the tumor cells hijack the wound-healing 
mechanism to support their own 
growth.89,90 In concordance with this 
notion, exposing fibroblasts to tumor 
cells induces changes in fibroblast gene 
expression that promote invasion and 
angiogenesis.91,92

Whether the desmoplastic response 
promotes or inhibits tumor angiogen-
esis is up for debate. On one hand,  

the desmoplastic response coincides 
with the invasive front of the tumor. 
An area of active angiogenesis, the 
invasive front is rich in angiogenic 
growth factors and ECM remodeling 
proteins. Furthermore, increased 
angiogenesis is a feature of fibrosis in 
certain organs.93,94 On the other hand, 
excessive deposition of ECM creates  
a physical barrier that impedes 
angiogenesis.95

Studies targeting the desmoplastic 
process have suggested that an overtly 

fibrotic microenvironment is counterpro-
ductive to angiogenesis. In pancreatic 
cancer, tumor cell–derived sonic hedge-
hog (Shh) was found to stimulate myofi-
broblast activation and desmoplasia 
formation in pancreatic cancer.96-98 Admin-
istration of an inhibitor of sonic hedgehog 
signaling led to reductions in myofibro-
blast proliferation, type I collagen, and 
desmoplastic formation. These changes 
were correlated with increased angiogen-
esis and enhanced perfusion throughout 
the tumor.99 In another murine model, 

Figure 1.  Stromal myofibroblasts modulate angiogenesis with a multiprong approach. Stromal myofibroblasts are a prominent source of angiogenic 
growth factors, extracellular matrix (ECM) remodeling factors, and ECM components. Additionally, myofibroblast-derived inflammatory cytokines and 
chemokines recruit infiltrating immune cells, such as macrophages, neutrophils, and T-cells, which can have secondary effects on angiogenesis. 
ADAMTS, a disintegrin and metalloproteinases with thrombospondin motifs; bFGF, basic fibroblast growth factor; CTGF, connective tissue growth 
factor; IL-8, interleukin-8; MMPs, matrix metalloproteinases; PDGF, platelet-derived growth factor; TGFb, transforming growth factor b; TIMPs, tissue 
inhibitor of MMP; VEGF, vascular endothelial growth factor.
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pharmacological inhibition or genetic 
deletion of fibroblast activation protein 
(FAP), a serine protease expressed on 
fibroblasts and pericytes, has resulted in 
tumors with increased collagen deposition 
and decreased angiogenesis.100

Endothelial Cells in the 
Tumor Microenvironment  
Can Affect Neighboring  
Stromal Components
Stromal myofibroblasts and the ECM 
are important agents in modulating 
tumor angiogenesis. They participate in 
every step of angiogenesis and can be 
responsible for mediating resistance to 
chemotherapeutic, anti-angiogenic, and 
other targeted therapies. However, a 
clearer understanding of how tumor 
cells, endothelial cells, and stromal cells 
co-exist and collaborate is needed.

Although this review has focused on 
the unidirectional communication from 
stromal myofibroblast/ECM to endothe-
lium in tumor angiogenesis, one must not 
forget that endothelial cells may recipro-
cally affect myofibroblasts and the ECM 
as well. The most parsimonious manner 
by which endothelial cells can interact 
with its stromal partners is through ECM 
remodeling. During tumor angiogenesis, 
endothelial cells also produce ECM 
remodeling proteins to assist in their own 
navigation through the ECM. Successful 
establishment of tumor vasculature will 
reoxygenate hypoxic areas, altering the 
expression profiles of cells within that 
area, including that of stromal myofibro-
blasts. In recent years, it has been demon-
strated that endothelial cells can act as 
niche cells to brain tumor stem cells.101 
Thus, it is conceivable that paracrine sig-
nals from vascular cells can alter other 
cells in the tumor stroma as well. Further-
more, recruitment of bone marrow–
derived myofibroblast progenitors, 
termed fibrocytes, may rely on coordi-
nated presentation of adhesion molecules 
on the endothelium, perhaps using mech-
anisms similar to that of leukocyte 
extravasation. Additionally, endothelial 
cells themselves can serve as a source of 

stromal myofibroblasts in the tumor 
microenvironment by undergoing endo-
thelial-to-mesenchymal transition.102 
Indeed, the influence of the endothelial 
cells on its surrounding stromal neigh-
bors remains an underexplored area.
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