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Abstract Low threshold voltage-gated T-type calcium
channels have long been implicated in the electrical
excitability and calcium signaling of cerebellar Purkinje
neurons although the molecular composition, localization,
and modulation of T-type channels within Purkinje cells
have only recently been addressed. The specific functional
roles that T-type channels play in local synaptic integration
within Purkinje spines are also currently being unraveled.
Overall, Purkinje neurons represent a powerful model
system to explore the potential roles of postsynaptic
T-type channels throughout the nervous system. In this
review, we present an overview of T-type calcium channel
biophysical, pharmacological, and physiological character-
istics that provides a foundation for understanding T-type
channels within Purkinje neurons. We also describe the
biophysical properties of T-type channels in context of
other voltage-gated calcium channel currents found within

Purkinje cells. The data thus far suggest that one specific
T-type isoform, Cav3.1, is highly expressed within Purkinje
spines and both physically and functionally couples to
mGluR1 and other effectors within putative signaling
microdomains. Finally, we discuss how the selective
potentiation of Cav3.1 channels via activation of mGluR1
by parallel fiber inputs affects local synaptic integration and
how this interaction may relate to the overall excitability of
Purkinje neuron dendrites.
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Abbreviations
AP Action potential
CF Climbing fiber
CNS Central nervous system
HVA High-voltage activated
IP3R Inositol trisphosphate receptors
KO Knock-out
LTD Long-term depression
Ni2+ Nickel
PCs Purkinje cells
PF Parallel fiber
RAMP Random access two photon microscopy
sEPSC Slow excitatory postsynaptic current
sEPSP Slow excitatory postsynaptic potential
PSD Postsynaptic density
WT Wild-type

Introduction

The discovery of calcium spikes in Purkinje cell (PC)
dendrites by Llinas and Sugimori [1] and their subsequent
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seminal studies initiated an era of unraveling the roles of
dendritic voltage-dependent conductances in neurons. Since
the characterization of high-voltage activated (HVA) P-type
calcium channels in PCs [2, 3], and the finding that the
selective pharmacological block of P-type channels inhibited
calcium spikes in PC dendrites [3, 4], the study of calcium
signaling in PC dendrites has largely been focused on the P-
type calcium channel. However, the spatial resolution of
calcium imaging techniques available in the 1980s could not
adequately discriminate between secondary or tertiary
dendrites and individual spines, while the temporal resolu-
tion did not allow for the fine description of calcium spikes.
For almost 20 years now, robust low threshold calcium
currents have been recorded from PCs, yet few physiological
implications have been demonstrated from these studies.
After a brief discussion of relevant T-type calcium channel
properties, we will develop new hypotheses linking both T-
type and P-type channels to functional dendritic integration
of synaptic inputs in PC dendrites.

T-Type Channel Biophysics

T-type channels have many characteristic biophysical
properties unique among voltage-gated calcium channels
which enable them to serve specialized functions within the
nervous system (see “Physiological Roles of T-Type
Channels in the CNS: Promoting Bursting Modes”). These
include fast activation and inactivation kinetics, a relatively
hyperpolarized voltage-dependence of activation and inac-
tivation, and slow deactivation kinetics [5]. The activation
and inactivation kinetics of T-type channels are strongly
voltage-dependent. After initial cloning, the recombinant
T-type isoforms were biophysically well characterized, and
these properties have been thoroughly reviewed [5]. In
brief, comparison of the three rat Cav3 T-type isoforms
revealed that Cav3.1 and Cav3.2 have properties similar to
“typical” native T-type currents, while Cav3.3 possesses
distinct biophysical properties. The Cav3.1 and Cav3.2
isoforms have fast activation and inactivation kinetics while
Cav3.3 channel activation and inactivation kinetics are
much slower [6]. A recent paper comparing T-type
biophysical parameters at room temperature and at a
physiological mammalian temperature (37°C) demonstrated
that increasing the recording temperature dramatically alters
many of these properties in a non-linear, isoform-specific
manner [7]. In this regard, caution should be used when
extrapolating specific T-type parameters measured at room
temperature to models of physiological neuronal excitabil-
ity. Alternative splicing creates additional functional diver-
sity in T-type channel activity. For example, alternative
splicing in the human Cav3.1 channel leads to multiple
variants including those that shift the voltage dependence of
inactivation in the hyperpolarizing direction and also

increase inactivation kinetics [8]. Also, thalamic splice
variants of the Cav3.2 channel are differentially affected by
a missense mutation from the genetic absence epilepsy rats
from Strasbourg model of absence epilepsy [9].

T-Type Channel Pharmacology and Modulation

The study of T-type currents in native systems has been
historically hindered by two major issues: (1) some HVA
calcium channels in fact activate at relatively negative
potentials (e.g., Cav1.3 L-type and Cav2.3 R-type) and
contaminate what were previously thought to be pure low
threshold T-type currents and (2) unlike the HVA calcium
channel classes, no high affinity channel antagonists are
commercially available that clearly distinguish T-type
currents from HVA currents or that distinguish between
individual T-type channel subtypes. These issues were
compounded in early investigations of native T-type
currents, where biophysical properties and sensitivities to
pharmacological antagonists such as nickel (Ni2+) varied
depending on the cell type. The cloning and characterization
of the three main T-type isoforms has helped explain these
divergent properties and has provided some clarification
concerning the limitations and suitable uses of the pharmaco-
logical tools presently available.

While one of the earliest T-type current antagonists to be
identified was Ni2+, the sensitivity to this agent is highly
variable between different native systems. For example,
Ni2+ inhibits T-type currents in chick skeletal muscle cells
with an IC50 of 21 μM [10], while it is a much less effective
T-type current inhibitor (IC50=110 μM) in cerebellar PCs
[11]. Molecular identification of the three Cav3 channels
revealed that Cav3.2 is the only T-type isoform highly
sensitive to Ni2+, with an IC50 of 12 μM compared to IC50

values of 250 and 216 μM for Cav3.1 and Cav3.3,
respectively [12]. Furthermore, Ni2+ blocks Cav1.2 L-type
and Cav2.3 R-type channels with a higher potency than
either of the Cav3.1 or Cav3.3 T-type isoforms [12, 13].
Therefore, low concentrations (e.g., ~50 μM) of Ni2+ can
only be used to selectively block Cav3.2-mediated T-type
currents (with minimal blockade of Cav3.1- and Cav3.3-
mediated T-type currents) but notably cannot reliably
distinguish between Cav3.2- and Cav2.3-mediated R-type
currents at this concentration.

There are a number of clinically used agents that also
nonspecifically target T-type channels. Mibefradil (now
withdrawn from the market) is a prime example of an agent
with good efficacy in blocking T-type currents. For research
purposes, mibefradil was found to selectively inhibit T-type
currents (IC50 ranging from 14 nM to 1 μM) over HVA
currents in some native systems, with state-dependent block
causing greater inhibition of T-type currents at more
depolarized potentials [14]. However, other studies showed
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that mibefradil can potently block R-type currents in NG108-
15 cells [15] and can also block N-type, L-type, and P-type
calcium currents at concentrations of ~1 μM in spinal motor
neurons [16]. Due to the nonspecificity of mibefradil action,
this compound is now deemed to be a relatively nonspecific
T-type antagonist. In recent developments, pharmaceutical
companies are beginning to identify small organic molecules
that are proving highly efficacious (nanomolar affinity) in
blocking T-type channels [17]. One such compound, TTA-
P2, potently (IC50=20 nM) blocks T-type currents in
thalamocortical and reticular thalamic neurons without
altering HVA calcium currents, sodium currents, or gluta-
matergic and GABAergic synaptic currents [17].

T-type channels were originally thought to be largely
resistant to modulation by intracellular signaling pathways.
Subsequent studies on T-type modulation in native systems
revealed a number of discrepancies, with individual
neurotransmitter types being reported to inhibit, stimulate,
or have no effect on T-type currents depending upon the
tissue and cell type being examined (reviewed in [18]).
After a lull following their initial cloning and character-
izations, the study of recombinant T-type channel modula-
tion is emerging as an essential tool aimed at shedding
further light on low threshold current regulation within
native systems. Of the three T-type isoforms, Cav3.2 is the
prototypical modulated T-type isoform as it appears to be
specifically targeted by Gβγ [19, 20], CAMKII [21], and
redox agents [22]. More recent studies are also now
identifying signaling pathways that act on the Cav3.1 and
Cav3.3 isoforms [23–26]. As discussed in subsequent
sections, we have identified a differential modulation of
T-type isoforms that results in the potentiation of Cav3.1-
mediated T-type currents within PCs [27].

Physiological Roles of T-Type Channels in the CNS:
Promoting Bursting Modes

The low threshold activation of T-type currents enables
them to open in response to relatively small membrane
depolarizations and to generate “window currents” whereby
a fraction of channels are tonically open at resting
membrane potentials. Both of these properties are highly
dependent on the resting membrane potential, as T-type
channels become completely inactivated at more depolarized
potentials and are subsequently not available to open without
a de-inactivating hyperpolarization [28]. In thalamocortical
relay cells, the T-type window current contributes directly to
the membrane potential [17] and has been suggested to be
essential for the slow sleep oscillations of thalamic neurons
[29].

The above properties enable T-type currents to be “first
responders” to changes in membrane potential, which
potentially impacts both calcium-mediated signaling path-

ways as well as electrical firing patterns. For example,
T-type calcium spikes can have profound effects on global
neuronal excitability. Low-threshold calcium spikes were
first identified from brain slices of the inferior olive, where
removal of T-type inactivation with hyperpolarization
initiated a spontaneous “rebound-burst” spike [30]. T-type
channels have now been shown to underlie regenerative
low-threshold spikes and burst firing in neurons throughout
the central nervous system (CNS), including in the
thalamus, inferior olive, cerebellum, hippocampus, cortex,
and neocortex (reviewed in [31]). In some neurons, low
threshold spikes and burst firing can alter neuronal
oscillations, causing cells to switch from tonic firing to a
phasic mode with regular intervals of high frequency bursts
of spikes [32, 33]. Within the thalamus, T-type-mediated
changes in rhythmic oscillations directly underlie physio-
logical sleep–wake gating and pathophysiological epileptic
absence seizure activity [34, 35].

Recent immunostaining experiments have revealed a
differential subcellular localization of the three T-type
isoforms in the spines, dendrites, and soma of neurons
throughout the CNS [36, 37]. The predominant expression
of T-type currents in neuronal dendrites also implicates
their potential involvement in signal integration at synaptic
inputs. In both pyramidal cortical and hippocampal CA1
neurons, subthreshold excitatory postsynaptic potentials
(EPSPs) can activate T-type currents and generate a
localized increase in dendritic calcium levels [38, 39]. This
T-type activity may act to boost dendritic depolarizations
and, therefore, increase excitability, or conversely, may
activate calcium-activated potassium currents to cause
membrane hyperpolarizations [40]. T-type channel inputs
have also been linked to synaptic plasticity [41, 42],
although the use of imperfect pharmacological tools make
these postulations preliminary. More thorough investiga-
tions involving high-resolution two-photon calcium imag-
ing, Cav3 knock-out (KO) mice, Cav3 RNAi-mediated
knock-down, and/or more specific T-type antagonists are
required to help elucidate the exact physiological roles of
dendritic T-type currents in both plasticity and excitability.

Expression and Localization of Voltage-Gated Calcium
Channels in Purkinje Neurons

Voltage-Gated Calcium Channel Distribution
and Functional Expression

Of the various calcium channel classes, P-type channels
(Cav2.1) display the highest functional expression within
PCs, forming whole-cell currents on the order of several
nanoamps [2, 3, 43]. Cav2.1 channel proteins are expressed
throughout the PC dendrites, soma, and even axons, but are
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most highly expressed within dendritic spines that are
postsynaptic to parallel fiber (PF) inputs [44, 45]. There is
also both immunohistochemical [46] and electrophysiolog-
ical [47] evidence for the expression of functional L-type
channels (Cav1.2, Cav1.3) in the soma of PCs, but the
relative expression of L-type channels appears to decrease
during PC maturation [43], potentially due to the increased
expression of other calcium channel classes within devel-
oping PC dendrites. There is little evidence for the
expression of ω-conotoxin-sensitive N-type currents
(Cav2.2) in PCs [48] and while the R-type channel isoform,
Cav2.3, has been shown to be expressed at the protein level
in PCs [49, 50] there has yet to be evidence of functional
expression.

T-type calcium channel activity was first identified in
PCs using sharp electrode intracellular recordings in adult
rat cerebellar slices. These recordings on mature PCs
revealed a prominent inward-rectifying hyperpolarization-
activated current (Ih) as well as a putative low threshold
calcium conductance that was de-inactivated by hyperpo-
larization [51]. One single channel recording study failed to
identify low threshold calcium currents in acute cerebellar
slices from adult guinea pigs and so the presence of T-type
currents in mammalian PCs was initially somewhat contro-
versial [3]. T-type currents were however subsequently
identified in PCs of both juvenile and adult rats and mice
through recordings on acutely dissociated and primary
cultured PCs, PCs from slice cultures and PCs from acute
brain slices [11, 52–58]. Purkinje neuron T-type currents
possess all of the hallmark T-type current biophysical
properties, including low threshold activation ranging
between −60 and −40 mV, small single channel conduc-
tance between 7 and 9 pS, a relatively hyperpolarized
voltage dependence of inactivation, fast activation and
inactivation kinetics, and relatively slow deactivation
kinetics [11, 52–54, 57]. Cell-attached recordings on PCs
from newborn rat slice cultures demonstrated that T-type
currents are distributed more densely on dendritic mem-
branes compared to somatic membranes [54]. This finding
is consistent with the observation that in a cell culture
model of PC development T-type currents are only present
in PCs that have developed a dendritic structure [58]. We
furthered these investigations by using a combination of
two photon calcium imaging and voltage-clamp recordings
on PCs from juvenile rat acute cerebellar slices to show that
T-type calcium currents are present in both the spines and
dendrites of PCs [57]. The T-type currents have a large
peak amplitude (approx. −2 nA at postnatal day 10) that
increases with developmental age, which indicates that
T-type currents are functionally expressed in adult rodent
PCs [27, 57] (Fig. 1a). Several studies have now reached
the consensus that P-type and T-type currents comprise the
vast majority (up to 95%) of calcium channel currents in

mature cerebellar PCs [3, 56, 57, 59]. The specific Cav3
isoform(s) that compose the native T-type currents within
PCs is discussed in “The Cav3.1 Isoform is the Major
Functional T-Type Calcium Channel Expressed in Rodent
Purkinje Cells.”

There are several technical limitations and caveats to
recording calcium currents in PCs that are not always
explicitly addressed in studies but that should be highlight-
ed. The high expression of calcium channels in the
extensive dendritic arbor of PCs means that space clamp
issues arise during whole-cell recordings from intact PCs in
cerebellar slices. Thus, whole-cell calcium currents can
only be adequately clamped up to approximately postnatal
day 14 or even younger (especially for large P-type
currents) in PCs from slices ([57] and our unpublished
observations), which inversely correlates with dendritic
development during PC maturation [60, 61]. In fact, in
more mature PCs, the space clamp can become so poor that
dendrites are able to fire calcium spikes [56]. Cell-attached
recordings can be performed on the soma and dendrites of
PCs although this technique is technically challenging,
restricts quantitative investigations, and is affected by
heterogeneity in channel distribution [43]. Space clamp
issues are minimized in recordings on acutely dissociated
PCs, but these neurons lack the dendritic tree where many
calcium channels predominate and the protease treatments
used during dissociation can significantly alter calcium
channel expression compared to recordings on equivalent
PCs from slices (our unpublished observations and [62]).
Similarly, cultures of isolated PCs or cerebellar slices are
taken from newborn or juvenile rats and subsequent
dendritic growth and channel expression is determined by
in vitro culture conditions [63]. A combination of pharma-
cological tools, genetically engineered mice strains, and
two-photon calcium imaging has thus far been the only
configuration to date that allows adequate study of calcium
channel activity in mature animals [27].

The Cav3.1 Isoform is the Major Functional T-Type
Calcium Channel Expressed in Rodent Purkinje Cells

The properties of T-type currents recorded from PCs
include low sensitivity to Ni2+, fast inactivation kinetics,
and slow deactivation kinetics, which are more character-
istic of Cav3.1 currents than either Cav3.2 or Cav3.3
currents [11, 57] (Fig. 1a, b). In support, the overall
consensus from in situ hybridization and immunohisto-
chemical experiments is that T-type channels are robustly
expressed in the soma and dendrites of PCs, with
predominant expression of Cav3.1 and the potential
expression of Cav3.3 in a subset of cells [27, 36, 64–67].

We have further provided several lines of evidence
which demonstrate that the Cav3.1 T-type isoform conducts
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the majority of functional T-type currents within PCs of
both juvenile and adult rodents [27]. Recordings on both
juvenile and mature PCs from transgenic Cav3.1 KO mice
show a near complete elimination of T-type currents and
calcium transients compared to wild-type (WT) mice.
Furthermore, immunofluorescence with a Cav3.1-specific
antibody reveals a robust expression of Cav3.1 in PCs that
rivals the thalamus for the highest overall Cav3.1 expres-
sion in the brain (Fig. 1c). At a subcellular level, confocal
and electron microscopy demonstrate that Cav3.1 is
predominantly localized to dendritic spines at PF synapses
in both juvenile and adult mice (Fig. 1d–h).

Native Cav3.1 T-Type Channels are Potentiated by mGluR1

Both the synaptic and pharmacological activation of
mGluR1 results in a robust and reversible potentiation of
Cav3.1-mediated T-type transients within PCs. This poten-
tiation involves both an increase in maximal currents and a

slight hyperpolarizing shift in the voltage-dependence of
T-type channel activation, enabling T-type channels to more
potently respond to small depolarizations near the PC
resting membrane potential [27]. Interestingly, the potenti-
ation of T-type currents by mGluR1 occurs through the
same non-canonical G-protein mediated pathway that
couples mGluR1 to the TRPC-mediated slow excitatory
postsynaptic current (sEPSC) within PCs [68, 69]. Exten-
sive pharmacological investigations revealed that both the
activation of the sEPSC and the potentiation of T-type
currents by mGluR1 involve an intracellular pathway that is
independent of phospholipase C and other classical down-
stream mGluR1 effectors but that is dependent upon
tyrosine phosphorylation/dephosphorylation [27, 70]. Both
sEPSC activation and T-type potentiation are blocked by
tyrosine phosphatase antagonists such as orthovanadate and
bpV(phen) and are conversely potentiated by PP1, an
inhibitor of Src-family tyrosine kinases (Fig. 2a). The
augmentation of T-type currents by mGluR1 also involves

Fig. 1 Biophysical properties of T-type currents in juvenile rodents
and Cav3.1 expression in adult rodents. a T-type current activation and
inactivation in juvenile rats. Left panel depolarizing steps to −65, −55,
−45, and −40 mV were applied from −105 mV. Middle panel
depolarizing steps to −40 mV were preceded by conditioning steps
to −80, −75, −70, and −60 mV. Right panel normalized conductance
curves for activation and steady-state inactivation fitted with Boltz-
mann equations. b Effect of nickel application (100 μM) on T-type
current (mean inhibition was 35±15%, n=4). c–h Immunofluorescence
showing predominant distribution of Cav3.1 in the dendritic spines of
cerebellar Purkinje cells. c Specificity of Cav3.1 antibody in mouse

brain. Note intense labeling in the cerebellum (Cb) and thalamus (Th)
of WT but not Cav3.1

−/−. Scale bar 1 mm. d Immunofluorescence for
Cav3.1 in the cerebellar cortex, scale bar 20 μm. e, f Double
immunofluorescence for Cav3.1 (red) and calbindin (green) in (e) and
mGluR1 (green) in (f), scale bar 10 μm. Note the colocalization in
spines. g, h Pre-embedding silver-enhanced immunogold in (g) and
postembedding immunogold in (h) showing Cav3.1 perisynaptic
localization. Scale bar 500 nm in (g) and 200 nm in (h). Panel a
from Isope and Murphy [57] and panels c–h from Hildebrand et al.
[27] with permission
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intracellular calcium signaling but does not require the
activation of the sEPSC channels themselves [27]. As
sEPSCs are activated by PF stimulation within PC dendritic
spines [71], the above observations have led us to
hypothesize that Cav3.1 T-type channels are physically
coupled with mGluR1 and various other signaling elements
within postsynaptic PC spines (Fig. 2b).

Cav3.1 Channels are Embedded in a Scaffolding
and Calcium Signaling Complex within Dendritic Spines

Unraveling the fine microstructure and protein scaffolding
organization within PC dendritic spines is yielding exciting
new results towards understanding local synaptic integra-
tion. Biochemical assays have demonstrated physical
interactions between several calcium signaling pathways
and the structural organization of the spine [72, 73]
(Fig. 2b). The scaffolding of postsynaptic densities (PSDs)
in PC spines includes tight interactions between PDZ
domain proteins such as PSD-93 and Shank [72, 74, 75].
AMPA receptors (containing GluR2) that mediate fast
synaptic transmission are linked to this structure via GRIP
and PICK1 proteins [76, 77]. Purkinje cell spines that
receive PF inputs contain a specific PSD that lacks NMDA
receptors but includes the GluRδ2 receptor, a GluR subunit
with thus far no assigned ionotropic activity [78]. After
3 weeks of age, GluRδ2 is specifically expressed at the PF-
PC synapse and is essential for both stabilization and
plasticity (long-term depression; LTD) of this synapse via
an interaction between its C terminus and PSD scaffolding
proteins such as Shank [79, 80] [72]. Homer 3 is another
highly expressed and critical scaffolding protein that forms
a lattice around the PSD of PF-PC synapses [81–83].
Homer also binds calcium signaling proteins; indeed,
homer co-immunoprecipitates with GluRδ2, Shank,
mGluR1a, PLCβ4 and IP3 receptors (IP3Rs) [72, 84]. This
architecture surrounds the PSD like a belt and links it to the
endoplasmic reticulum via IP3Rs, suggesting that proteins
of the mGluR1/PLC/IP3 pathway, involved in the induction
of LTD (for review, see [85]), are tethered to each other by
homer proteins. Electron microscopy studies have shown
that mGluR1 and PLCβ4 receptors are highly expressed at
the perisynaptic site of the PF synapse [73, 86]. Upon
glutamate binding to mGluR1, the coupled Gαq/11 activates
two independent intracellular pathways: one leads to
calcium release from internal stores through IP3Rs [87–
89], while a second pathway activates a slow EPSP [90]
mediated by a nonselective cation channel that is calcium
permeable and recently identified as the TRPC3 channel
[68] (Fig. 2b). Like IP3-mediated calcium release, this
sEPSC has a delayed onset in the range of hundreds of
milliseconds [90]. PTPMEG tyrosine phosphatase is highly
expressed in PC spines and binds to GluRδ2 receptors in

the PSD structure and thus, could be directly involved in
the tyrosine-phosphatase dependent activation of sEPSCs
(see “Native Cav3.1 T-Type Channels are Potentiated by
mGluR1”). Interestingly, PTPMEG KO mice and TRPC3
KO mice exhibit severe impairment in rotarod tests and
walking coordination, respectively [68, 91].

Although membrane depolarization is thought to spread
throughout the spines and dendrites of PCs, suggesting that
voltage-dependent channels do not need to be part of a
microdomain to be activated, recent studies have demon-
strated that calcium channels are also part of this scaffold-
ing belt surrounding the PSD in PF spines and that they can
be modulated by physical interactions. Functional and
physical interactions between T-type and P-type calcium
channels and scaffolding architecture might impact calcium
signaling within PC spines and dendrites. Electron micros-
copy and biochemical assays have demonstrated a physical
link between mGluR1s and Cav2.1 (P-type) channels in
spines via their carboxyl terminal intracellular domains,
leading to a decrease in calcium conductance [44, 92].
Conversely, a coactivation of mGluR1 and Cav2.1 channels
can also induce large calcium increases within PCs [92].
Furthermore, functional and anatomical studies have dem-
onstrated that a combination of P-type calcium channel
activity and mGluR1 activity can activate BK potassium

Fig. 2 The spine machinery: intracellular pathway involved in the
functional coupling between Cav3.1 and mGluR1. a Bar graph
showing T-type channel potentiation values during various pharma-
cological treatments compared with the control (DHPG) potentiation
value (indicated by dashed line). Blocking mGluR1 receptors with
500 μM MCPG (n=6) or 100 μM LY367385 (n=8), inhibiting
G-protein signaling with 2 mM GDP-β-S (n=5), buffering intracel-
lular Ca2+ through inclusion of 20 mM BAPTA (n=6) in the pipette,
and blocking tyrosine phosphatases with 100 μM bpV(phen) (n=6) or
1 mM Na3VO4 (n=5) all significantly (blue bars; p<0.02) reduced the
DHPG-mediated increase. Conversely, blocking Src-family tyrosine
kinases with inclusion of 10 μM PP1 (n=5) or 10 μM PP2 (n=6) in
the pipette significantly (p<0.02) augmented the DHPG-induced
increase. Blocking phospholipase C with 1 μM U73122 (n=6) or
10 μM edelfosine (n=7), serine/threonine kinases (such as protein
kinase C) with 1 to 2.5 μM staurosporine (n=8), IP3Rs with 1 μM
xestospongin C (n=6), and sEPSC currents with 250 μM IEM 1460
(n=6) or 100 μM NA-spermine (n=5) all caused no significant
(p>0.05) change in the level of DHPG-mediated increase in T-type
currents. Inset Representative voltage-clamped current traces from rat
PCs during depolarizations to potentials ranging from –60 to –30 mV
before (left; black) and after (right; red) mGluR1 was activated with
30 μM DHPG. From Hildebrand et al. [27] with permission. b
Synaptic scaffolding of the parallel fiber to Purkinje cell synapse.
Glutamate AMPA and GluRδ2 receptors are embedded in a
subsynaptic ultrastructure composed notably by Shank and Homer
proteins. Homer proteins also tether various calcium signaling
receptors and channels to scaffolding proteins, creating a perisynaptic
molecular microdomain ideally suited for calcium signal integration
within Purkinje cell spines. Inset mGluR1 receptor activation leads
either to a release of calcium from internal stores via the PLCβ/IP3
pathway or to activation of Cav3.1 and TRPC3 via tyrosine
phosphatases

�
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currents in PC spines, indicating that this channel may also
be closely associated with mGluR1 at the PF-PC synapse
[93–95]. In a recent study [27], we suggest that Cav3.1 and
mGluR1 are tightly linked together within PC spines.
Although, Cav3.1 channels and mGluR1s are also found
in PC dendrites, they are both highly expressed at the
perisynaptic site around the PSD (Fig. 1f–h). Furthermore,
when internal stores are blocked, the mGluR1-mediated
augmentation of T-type calcium transients is observed in
PC spines, but not their parent dendrites, indicating that the

modulation occurs in a microdomain within spines. This
evidence suggests either a physical link between Cav3.1
and mGluR1 or that key elements of the modulation
pathway are restricted to PC spines. We have also
demonstrated that Cav3.1 channels are potentiated by the
same unique mGluR1 signaling pathway as for sEPSCs
(see “Native Cav3.1 T-Type Channels are Potentiated by
mGluR1”). Thus, we propose that activation of mGluR1-
mediated pathways can increase intracellular calcium levels
within PF-PC spine microdomains through the activation of
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both voltage-dependent (Cav3.1 and Cav2.1) and voltage-
independent (sEPSC) membrane calcium channels
(Fig. 2b). The specific physiological roles of both Cav3.1
and Cav2.1 channels are discussed in “PF Inputs Induce
Spine-Specific Fast Calcium Signaling Mediated by Cav3.1
T-Type Channels.”

Although direct evidence has not yet linked all of these
signaling elements together within a single PC distal
dendritic spine, this proposed organization of microdomains
below the PSD of the PF-PC synapse is likely to play a
major role in calcium signaling and thus in the regulation of
synaptic transmission. Indeed, in mice with mutations in
myosin Va, the endoplasmic reticulum and associated IP3Rs
do not enter into the spine head of the PC [96]. In these
mice, basic excitatory transmission is normal and all the
synaptic proteins are functional; however, IP3-mediated
calcium signaling in spines is altered and LTD induction is
impaired [96]. This is the first demonstration in PCs of the
requirement for the structural integrity of the subsynaptic
scaffolding microdomain.

T-type Channels Promote Bursting Behavior
in Reduced Preparations

Recent studies have implicated T-type calcium channels as
having a significant role in dendritic calcium spikes and the
resultant burst firing within the soma and proximal
dendrites of PCs (reviewed in [97]). For over 25 years, it
has been accepted that sodium-driven action potentials
(APs) are produced at the PC soma while calcium-driven
APs are produced in the PC dendrites and that both are
generally restricted to their respective compartments. The
dendritic calcium spikes originally studied in guinea pig
PCs were shown to include both calcium-dependent plateau
potentials as well as calcium spikes [1, 98], and P-type
calcium channels were thought to generate these calcium
spikes [3, 56]. Studying PCs from rat organotypic cerebel-
lar slice cultures revealed that T-type calcium channels
underlie the dendritic calcium spikes while P-type channels
underlie a plateau potential that is unmasked when
potassium channels are blocked [99]. In fact, pharmacolog-
ical blockade of the P-type current promoted propagation of
the low threshold calcium spikes to the PC soma [100]. The
robust P-type dendritic currents in PCs have been shown to
activate calcium-dependent BK and SK potassium chan-
nels, which induces afterhyperpolarizing potentials and
alters the frequency of PC firing [94, 95]. It is proposed
that dendrosomatic propagation of T-type-dependent calci-
um spikes is inhibited by this activation of calcium-
dependent potassium channels and that these low threshold
spikes may underlie the CF-induced complex spike [100,
101]. In separate experiments on acutely dissociated PCs

and PCs from acute cerebellar slices, it has been shown that
P-type currents are required to sustain the spontaneous
firing of PCs, while T-type currents have a substantial
contribution to calcium currents generated during interspike
intervals of spontaneous bursting PCs [59, 102].

Although this collection of studies implicates T-type
calcium channels in generating calcium-dependent bursting
in PC dendrites, with potentially large physiological
implications, several limitations of these studies should be
noted. Firstly, the overall structure and native composition
of PCs is not well maintained in most of the in vitro
systems used. Acutely dissociated PCs lack the dendritic
tree where T-type calcium channels predominate [59] while
cerebellar slice cultures are taken from newborn rats and
subsequent dendritic growth and channel expression is
determined by in vitro culture conditions [63, 99–101].
Indeed, in acute slices from young and mature rodents,
T-type calcium currents are not directly involved in the
generation of PC bursting behavior [59, 102–104] and
except during the CF response, potassium channels likely
prevent the generation of calcium spikes in Purkinje cell
dendrites [95, 103, 105–107].

T-Type Channels in Local Calcium Signaling
in Purkinje Cell Dendrites

PF Inputs Induce Spine-Specific Fast Calcium Signaling
Mediated by Cav3.1 T-Type Channels

Miyakawa et al. [108] first demonstrated that bursts of PF
stimulation induce two types of calcium transients in PC
spines. While low-intensity PF stimulation induces a barely
detectable graded response in the distal part of the dendrites
(see also [109]), strong PF stimulation induces clear
regenerative calcium spikes in PC dendrites. Using confo-
cal and two photon laser microscopy, Eilers et al. [110] and
Denk et al. [111] showed that subthreshold PF stimulation
induces localized calcium transients in PC spines. Further-
more, both CNQX, an AMPA receptor antagonist, and
hyperpolarization decrease the size of the calcium tran-
sients, suggesting that they are mediated by voltage-
dependent calcium channels. More recently, we found that
T-type channels are expressed in PC spines [57] and used
ultrafast random access two photon microscopy (RAMP)
[112] to demonstrate that bursts of low-intensity PF
stimulation induce fast calcium transients that are mainly
mediated by Cav3.1 T-type channels in individual spines
[27]. At low-stimulation intensity, focal PF stimulation
(trains of extracellular stimulation in the molecular layer)
induces local calcium influx that is reduced by more than
75% in Cav3.1 KO mice compared to WT mice when
internal stores are blocked by heparin. Since P-type
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channels are also present in PC spines, why are they not
activated by low intensity PF stimulation? As shown by
Isope and Barbour [113], the individual synaptic efficacy of
granule cell to PC connections is widely distributed. Based
on the distribution of individual connections, the conver-
sion factor between EPSCs and EPSPs (8.3 μV/pA, see
figure 3 of [113]) and a model of dendritic filtering by Roth
and Hausser [114], we can estimate that individual synaptic
EPSPs range from tens of microvolts to a few millivolts.
Although we certainly underestimate the filtering capacity
of the spine neck and the drop of potential between the

spine and parent dendrite [115, 116], such small EPSPs are
below the threshold for activation of Cav2.1 P-type
channels (around −45 mV). In fact, for moderate PF
stimulations, the first EPSP in the train does not induce
any detectable calcium influx, suggesting that temporal
summation may be required to even reach the activation
threshold for low threshold T-type channels (between −60
and −55 mV; Fig. 3). However, when stimulation intensity
is raised and individual PF inputs now summate to locally
depolarize PC dendrites, regenerative P-type calcium
transients can be observed in several spiny branchlets

Fig. 3 Spine-restricted fast calcium signaling is mediated by T-type
channels. a Variation of calcium fluorescence in individual spines
following parallel fiber stimulation in control conditions (black) and
during application of an antagonist of the mGluR1 receptor (red,
1.5 μM JNJ16259685; for detailed description, see [27]). In all
experiments, calcium release by internal stores was pharmacologically
blocked using heparin and cyclopiazonic acid. Left panel an example
of the EPSPs recorded at the soma. Note that when multiple spines are
activated in one spiny branchlet (“focal stimulation”), two types of
voltage-dependent calcium transients are observed: in one population
of spines (spines 2 and 3), the calcium transients are not blocked by
the mGluR1 antagonist, suggesting that depolarization is the sole
mediator of T-type channel opening. In a second population (spines 1
and 4), the calcium transients are highly affected by the mGluR1
antagonist, suggesting that they directly receive synaptic input. Right

panel However, when one spine is active in the spiny branchlet
(“sparse stimulation”), the calcium transient is almost completely
controlled by mGluR1 activation (spine 2). We postulate that this
situation resembles physiological conditions. From Hildebrand et al.
[27] with permission. b Model of fast calcium signaling in Purkinje
cell dendritic spines. When a burst of parallel fiber action potentials
release enough glutamate to activate both AMPA and mGluR1
receptors, the combination of local depolarization and potentiation of
T-type channel activation mediated by mGluR1 leads to an enhanced
calcium transient in the activated spine. Spine specificity is promoted
by: (1) the fact that in non-synaptically activated spines, the
depolarization is smaller and does not reach the threshold for T-type
channel activation (e.g., PF1 and PF3) and (2) the high number of
silent synapses (e.g., PF4 and PF5; Isope and Barbour [113]). Spiny
branchlet picture courtesy of Boris Barbour

Cerebellum (2012) 11:651–665 659



(Supplementary figure 6 in [27] and unpublished data).
Interestingly, these calcium spikes do not propagate to the
soma and Rancz and Hausser have also demonstrated that
calcium-activated BK channels can restrict the spread of
calcium spikes in PC dendrites [105].

We have also shown that mGluR1 gates the T-type
calcium transients by shifting the activation curve towards
hyperpolarized potentials and increasing maximal conduc-
tance. Blockade of mGluR1 leads to a significant decrease
in synaptic calcium transients produced by low intensity
burst stimulation of PFs. Interestingly, when focusing on
individual spiny branchlets, we observed that focal stimu-
lation of PF inputs can induce T-type calcium transients in
most spines of a given branchlet, leading to depolarization
of the entire branchlet (Fig. 3). In this particular case,
“unlocking” by mGluR1 is not necessary for the activation
of T-type channels (although mGluR1-mediated potentia-
tion is still observed in most spines). However, at the
periphery of the excited PF beam, it is possible to identify
spiny branchlets wherein T-type calcium transients are
elicited in single spines and are almost fully blocked by
mGluR1 antagonist (Fig. 3). We postulate that T-type
channel signaling is designed to mediate local calcium
signaling selectively in spines that receive a PF input. In
vivo experiments have revealed a large dynamic range for
granule cell activity: although the activity of granule cells is
notably sparse, they are also capable of bursting at
frequencies exceeding 1 kHz [117–119]. We hypothesize
that mGluR1 activation will both amplify the discrepancy
between activated spines and their neighbors as well as
detect incoming bursts of PF inputs.

Climbing Fiber Signaling: Decoupling Somatic
and Dendritic Excitability

During the 1990s, the laboratory of William Ross first
demonstrated that distal CF-evoked calcium transients are
highly variable compared to proximal ones ([108]; see also
figure 1 of [109]), suggesting that regenerative calcium
spikes do not always propagate to spiny branchlets.
Furthermore, they showed that evoked inhibition by
activation of molecular layer interneurons is able to block
the CF-activated calcium transient in identified dendritic
branches or even the full dendritic tree [120]. Ross and
colleagues also showed that the shape of the complex spike
recorded at the soma of PCs is not modified by the extent of
the dendritic calcium transient, suggesting that sodium
channel input is the major component of the plateau
depolarization typical of the complex spike waveform. This
finding was confirmed in a recent article using simulta-
neous dendritic and somatic patch-clamp recordings [121].
Since a direct projection of the CF onto molecular
interneurons has now been demonstrated both in vitro and

in vivo [122, 123], it appears that synaptic connections
between stellate and basket cells might dampen the extent
of the calcium transient mediated by the CF input. Finally,
the group of Stephane Dieudonné showed that T-type
calcium channels are also involved in CF calcium signaling
that is dependent on PC dendritic excitability ([124]; see
also [125]).

An emerging hypothesis of CF signaling in PCs is that
the stereotyped somatic complex spike mediated by sodium
channels is decoupled from the dendritic calcium transient
that is highly variable and strongly modulated both by
intrinsic dendritic conductances and molecular layer inter-
neuron inhibition. How could such a large depolarization
by climbing input in the main trunk of PC dendrites decline
so rapidly and lead to only small depolarizations in spines?
Since both low threshold (Kv1 and Kv4.3) and high
threshold (Kv3) voltage-dependent potassium channels
have been identified in PC dendrites [106, 126–128], one
hypothesis suggests that these channels can dampen CF
EPSPs. Indirect experiments demonstrate that Kv1 or Kv4
blockade favors the initiation of calcium spikes in the
dendrites, suggesting that low threshold potassium channels
control dendritic excitability [106, 129]. We hypothesize
that high levels of low-threshold potassium channels can
dramatically decrease the large CF-EPSP as it travels up to
more distal parts of the PC dendrites (as far as 150 μm in
adult mice). Furthermore, after calcium spike occurrence,
high levels of calcium-activated potassium channels (BK
and SK) will help repolarize dendrites and limit spike
propagation [95, 105]. These findings help explain the
absence of propagation of calcium transients from the
dendrites toward the somatic compartment. We further
postulate that CF dendritic calcium spike gating regulates
the source (T-type vs P-type) and amplitude of CF-mediated
calcium signaling and provides for new mechanistic
possibilities concerning activity-dependent learning in PCs.

Physiological Consequences and Future Directions

Based on the above discussions, we propose a new picture
of voltage-dependent calcium signaling within PC dendrites
and make hypotheses that may stimulate new experiments
on information processing in the cerebellar cortex.

1. Cav3.1 T-type channels are highly expressed in PC
dendrites and spines. T-type channels are not inacti-
vated at rest and regular spiking at the soma does not
interfere with channel availability in spines [27, 54].
Low threshold potassium channels such as Kv1 and
Kv4.3 channels probably clamp the cell to hyper-
polarized potentials [106, 126–128]. As recently
described [130], the activity of inhibitory oscillatory
networks could also enhance the deinactivation of

660 Cerebellum (2012) 11:651–665



T-type channels in distal dendrites in some physiological
conditions.

2. Parallel fiber synaptic input induces fast T-type calcium
transients in spines following either conjunctive activa-
tion of a group of neighboring synapses or by mGluR1
activation, which selectively unlocks T-type channels in
individual spines. This effect is specific to PF bursts
and occurs during the burst itself with no time lag. The
T-type channel conductances contribute to synaptic
charge and boost individual synaptic inputs. LTP at
PF synapses is mediated by an unknown mGluR1-
mediated calcium-dependent pathway [131, 132] and
we postulate that T-type channels could be the source
of calcium in this plasticity.

3. Although 85% of PF-PC synapses are electrically silent
in the adult rat when recorded at the soma, it is likely
that sparse glutamate receptor activation at a synaptic
site would not induce sufficient charge to be detected at
the soma due to dendritic filtering. Indeed, it was
demonstrated that all spines possess at least a small
number of AMPA receptors [133]. The functional
coupling between mGluR1 and T-type channels could
then provide a mechanism for inducing calcium inputs
in spines where the efficacy of transmission is low
because of a small number of receptors. This pathway
could potentially lead to the awakening of synaptic
transmission to the soma via LTP.

4. We postulate that P-type channels are activated only
when a large number of PF inputs impinge simulta-
neously on the PC dendritic tree, or during simulta-
neous CF activation. Conjunction of CF inputs and PF
inputs could lead to the inactivation of low threshold
potassium channels (Kv1, Kv4.3) and promote a supra-
linear calcium increase in spines as shown by Wang
and Hausser [109] and LTD induction. T-type channel
unlocking in the early phase followed by subsequent
IP3-mediated calcium release from internal stores might
combine to reach a high level of calcium both in local
microdomains and in the whole spiny branchlets. This
second level of voltage-dependent calcium signaling is
projected to propagate to groups of spiny branchlets
and could trigger release of retrograde signaling via
endocannabinoids [105] or glutamate [134]. The two
levels of calcium signaling might be tightly regulated in
PC dendrites by potassium channels and/or the depo-
larization state of the PC.
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