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Abstract

Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis. Since this task involves
more than one criterion, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper proposes a
multiple criteria decision making (MCDM)-based approach to estimate the number of clusters for a given data set. In this
approach, MCDM methods consider different numbers of clusters as alternatives and the outputs of any clustering
algorithm on validity measures as criteria. The proposed method is examined by an experimental study using three MCDM
methods, the well-known clustering algorithm–k-means, ten relative measures, and fifteen public-domain UCI machine
learning data sets. The results show that MCDM methods work fairly well in estimating the number of clusters in the data
and outperform the ten relative measures considered in the study.
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Introduction

Cluster analysis, the most widely adopted unsupervised learning

process, organizes data objects into groups that have high intra-

group similarities and inter-group dissimilarities without a priori

information. Unlike the evaluation of supervised classifiers, which

can be conducted using well-accepted objective measures and

procedures, assessment of clustering algorithms’ outputs, often

called cluster validation, is challenging because of the lack of

objective validation criteria and application-dependent nature of

clustering. Nevertheless, cluster validation is necessary to ensure

that the resulting clustering structures are not occurred by chance

[1].

As an essential step in cluster analysis, cluster validation has

been an active research area. Two fundamental issues that need to

be addressed in cluster validation are: to estimate the number of

clusters in a data set; and to evaluate clustering algorithms [2].

This paper focuses on the first problem. Researchers from several

disciplines, such as statistics, pattern recognition, and information

retrieval, have studied this issue for years. Marriott (1971) used a

heuristic argument to determine the number of clusters in a data

set [3]. Hartigan (1975) suggested the statistic H(k) to estimate the

number of clusters [4]. Milligan and Cooper (1985) evaluated

thirty procedures for determining the number of clusters using

artificial data sets with distinct non-overlapping clusters [5]. The

procedures, also called stopping rules, were clustering-algorithm

independent and selected from the clustering literature to

represent a wide variety of techniques and approaches. Krza-

nowski and Lai (1988) derived a criterion for determining the

number of groups in a data set using sum-of-squares clustering and

illustrated that the new criterion has better performance than the

Marriott’s criterion [6]. Kaufman and Rousseeuw (1990) used the

silhouette statistic to estimate the optimal number of clusters in a

data set [7]. Tibshirani et al. (2001) proposed the gap statistic for

estimating the number of clusters in a data set and compared the

gap method with four other methods in a simulation study [8].

Dudoit and Fridlyand (2002) estimated the number of clusters

using a prediction-based resampling method, Clest, and compared

the performance of the Clest method with some existing methods

using simulated data and gene-expression data [9]. Sugar and

James (2003) developed an information theoretic approach for

choosing the number of clusters; conducted a simulation study to

compare the performance of the proposal with five other methods;

and provided a theoretical justification for the proposed procedure

[10]. Salvador and Chan (2004) designed the L method to

determine the number of clusters for hierarchical clustering

algorithms [11].

Different from previously developed approaches, this study

examines the problem from a new perspective. Since the

determination of the number of clusters in a data set normally

involves more than one criterion, it can be modeled as a multiple

criteria decision making (MCDM) problem [12,13]. The objective

of this paper is to develop a MCDM-based approach to choose the

appropriate number of clusters for a data set. MCDM methods

treat different numbers of clusters for a data set as available

alternatives and performances of clustering algorithms on validity

measures with different numbers of clusters as criteria. Alternatives

are then ranked according to the evaluation of multiple criteria.

An experimental study is designed to examine the proposed

approach using three MCDM methods (i.e., PROMETHEE II,

WSM, and TOPSIS), the well-known clustering algorithm–k-
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means, ten relative measures, and fifteen public-domain UCI

machine learning data sets. Furthermore, the experimental study

applies the ten existing relative measures for estimating the

number of clusters and compares their performances with the

proposed three MCDM methods.

The rest of the paper is organized as follows. The next section

describes the proposed method, the selected MCDM methods, the

clustering algorithm, and the validity measures. Results and

discussion section presents details of the experimental study and

analyzes the results. The last section concludes the paper with

summaries, limitations, and future research directions.

Methods

Proposed Approach
Estimating the number of clusters for a given data set is closely

related to the validity measures and the data set structures. Many

validity measures have been proposed and can be classified into

three categories: external, internal, and relative [1]. External

measures use predefined class labels to examine the clustering

results. Because external validation uses the true class labels in the

comparison, it is an objective indicator of the true error rate of a

clustering algorithm. Internal measures evaluate clustering algo-

rithms by measuring intra- and inter-cluster similarity. An

algorithm is regarded as good if the resulting clusters have high

intra-class similarities and low inter-class similarities. Relative

measures try to find the best clustering structure generated by a

clustering algorithm using different parameter values. Extensive

reviews of cluster validation techniques can be found in [1] and

[14,15].

Although external measures perform well in predicting the

clustering error in previous studies, they require a priori structure

of a data set and can only be applied to data sets with class labels.

Since this study concentrates on data sets without class labels, it

utilizes relative validity measures. The proposed approach can be

applied to a wide variety of clustering algorithms. For simplicity,

this study chooses the well-known k-means clustering algorithm.

Figure 1 describes the MCDM-based approach for determining

the number of clusters in a data set. For a given data set, different

numbers of clusters are considered as alternatives and the

performances of k-means clustering algorithm on the relative

measures with different numbers of clusters represent criteria by

MCDM methods. The output is a ranking of numbers of clusters,

which evaluates the appropriateness of different numbers of

clusters for a given data set based on their overall performances for

multiple criteria (i.e., selected relative measures).

MCDM Methods
This study chooses three MCDM methods for estimating the

number of clusters for a data set. This section introduces the

selected MCDM methods (i.e., WSM, PROMETHEE, and

TOPSIS) and explains how they are used to estimate the optimal

number of clusters for a given data set.

MCDM Method 1: Weighted Sum Method (WSM)
The weighted sum method (WSM) was introduced by Zadeh [16].

It is the most straightforward and widely-used MCDM method for

evaluating alternatives. When an MCDM problem involves both

benefit and cost criteria, two approaches can be used to deal with

conflicting criteria. One is the benefit to cost ration and the other is

the benefit minus cost [17]. For the estimation of optimal number of

clusters for a data set, the relative indices Dunn, silhouette, and PBM

are benefit criteria and have to be maximized, while Hubert,

normalized Hubert, Davies-Bouldin index, SD, S_Dbw, CS, and C-

index are cost criteria and have to be minimized. This study chooses

the benefit minus cost approach and applies the following

formulations to rank different numbers of clusters.

Suppose there are m alternatives, k benefit criteria, and n cost

criteria. The total benefit of alternative A
benefit
i is defined as follows:

A
benefit
i ~

Xk

j~1

wjaij , for i~1, 2, 3,:::, m:

where aij represents the performance measure of the jth criterion for

alternativeAi.Similarly, the total costofalternativeAcos t
i isdefinedas

follows:

Acos t
i ~

Xn

j~1

wjaij , for i~1, 2, 3,:::, m:

where
Pk
j~1

wjz
Pn
j~1

wj~1; 0vwjƒ1: Then the importance of

alternative AWSM{score
i is defined as follows:

AWSM{score
i ~A

benefit
i {Acost

i , for i~1, 2, 3,:::, m:

The best alternative is the one has the largest WSM score [18].

Figure 1. A MCDM-based approach for determining the number of clusters in a dataset.
doi:10.1371/journal.pone.0041713.g001

MCDM Approach to Estimate the Number of Clusters

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e41713



MCDM Method 2: Preference Ranking Organisation
Method for Enrichment of Evaluations (PROMETHEE)

Brans proposed the PROMETHEE I and PROMETHEE II,

which use pairwise comparisons and outranking relationships to

choose the best alternative [19]. The final selection is based on the

positive and negative preference flows of each alternative. The

positive preference flow indicates how an alternative is outranking

all the other alternatives and the negative preference flow indicates

how an alternative is outranked by all the other alternatives [20].

While PROMETHEE I obtains partial ranking because it does not

compare conflicting actions [21], PROMETHEE II ranks

alternatives according to the net flow which equals to the balance

of the positive and the negative preference flows. An alternative

with a higher net flow is better [20]. Since the goal of this study is

to provide a complete ranking of different numbers of clusters,

PROMETHEE II is utilized. The following procedure presented

by Brans and Mareschal [20] is used in the experimental study:

Step 1. define aggregated preference indices.

Let a, bMA, and let :

p(a,b)~
Pk
j~1

pj(a, b)wj ,

p(b,a)~
Pk
j~1

pj(b, a)wj :

8>>>><
>>>>:

where A is a finite set of possible alternatives {a1, a2,…, an}, k

represents the number of evaluation criteria, and wj is the weight of

each criterion. For estimating the number of clusters for a given

data set, the alternatives are different numbers of clusters and the

criteria are relative indices. Arbitrary numbers for the weights can

be assigned by decision-makers. The weights are then normalized

to ensure that
Pk

j~1 wj~1: p(a,b) indicates how a is preferred to b

over all the criteria and p(b,a) indicates how b is preferred to a

over all the criteria. Pj(a,b) and Pj(b,a) are the preference

functions for alternatives a and b. The relative indices Dunn,

silhouette, and PBM have to be maximized, and Hubert,

normalized Hubert, DB, SD, S_Dbw, CS, and C-index have to

be minimized.

Step 2. calculate p(a,b) and p(b,a) for each pair of alternatives

of A. There are six types of preference functions and the decision-

maker needs to choose one type of the preference functions for

each criterion and the values of the corresponding parameters

[22]. The usual preference function, which requires no input

parameter, is used for all criteria in the experiment.

Step 3. define the positive and the negative outranking flow as

follows:

The positive outranking flow :

wz(a)~
1

n{1

X
x[A

p(a,x),

The negative outranking flow :

w{(a)~
1

n{1

X
x[A

p(x,a):

Step 4. compute the net outranking flow for each alternative as

follows:

w(a)~wz(a){w{(a):

When w(a)w0, a is more outranking all the alternatives on all the

evaluation criteria. When w(a)v0, a is more outranked.

MCDM Method 3: Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS)

The Technique for order preference by similarity to ideal

solution (TOPSIS) method was proposed by Hwang and Yoon

[23] to rank alternatives over multiple criteria. It finds the best

alternatives by minimizing the distance to the ideal solution and

maximizing the distance to the nadir or negative-ideal solution

[24]. This paper uses the following TOPSIS procedure, which was

adopted from [25] and [24], in the empirical study:

Step 1. calculate the normalized decision matrix. The

normalized value rij is calculated as:

rij~xij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j~1

x2
ij

vuut , j~1,:::, J; i~1,:::,n:

where J and n denote the number of alternatives and the number

of criteria, respectively. For alternative Aj, the performance

measure of the ith criterion Ci is represented by xij.

Step 2. develop a set of weights wi for each criterion and

calculate the weighted normalized decision matrix. The weighted

normalized value vij is calculated as:

vij~wirij , j~1,:::,J; i~1,:::,n:

weight of the ith criterion, and
Pn

i~1 wi~1:

Step 3. find the ideal alternative solution S+, which is calculated

as:

Sz~ vz
1 ,:::,vz

n

� �
~ ( max

j
vij Di[I 0),( min

j
vij Di[I 00)

� �

where I 0 is associated with benefit criteria and I 00 is associated with

cost criteria. In this study, benefit and cost criteria of TOPSIS are

defined the same as the benefit and cost criteria in WSM.

Step 4. find the negative-ideal alternative solution S2, which is

calculated as:

S{~ v{
1 ,:::,v{

n

� �
~ ( min

j
vij Di[I 0),( max

j
vij Di[I 00)

� �

Step 5. Calculate the separation measures, using the n-

dimensional Euclidean distance. The separation of each alterna-

tive from the ideal solution is calculated as:

Dz
j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(vij{vz
i )2,

s
j~1,:::,J:

The separation of each alternative from the negative-ideal

solution is calculated as:

MCDM Approach to Estimate the Number of Clusters
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D{
j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

(vij{v{
i )2,

s
j~1,:::,J:

Step 6. Calculate a ratio Rz
j that measures the relative

closeness to the ideal solution and is calculated as:

Rz
j ~D{

j =(Dz
j zD{

j ), j~1,:::,J:

Step 7. Rank alternatives by maximizing the ratio Rz
j .

Clustering Algorithm
The k-means algorithm, the most well-known partitioning

method, is an iterative distance-based technique [26]. The input

parameter k predefines the number of clusters. First, k objects are

randomly chosen to be the centers of these clusters. All objects are

then partitioned into k clusters based on the minimum squared-

error criterion, which measures the distance between an object

and the cluster center. The new mean of each cluster is calculated

and the whole process iterates until the cluster centers remain the

same [27,28]. Let X~ xif g, i~1,2, � � � ,n be the n objects to be

clustered, C~ C1,C2, � � � ,Ckf g is the set of clusters. Let mi be the

mean of cluster Ci. The squared-error between mi and the objects

in cluster Ci is defined as.

WCSS Cið Þ~
X
xj[Ci

xj{mi

�� ��2

Then the aim of k-means algorithm is to minimize the sum of the

squared error over all k clusters, that is

min WCSS(C)ð Þ~ arg min
C

Xk

i~1

X
xj[Ci

xj{mi

�� ��2

where WCSS denotes the sum of the squared error in the inner-

cluster.

Two critical steps of k-means algorithm have impact on the sum

of squared error. First, generate a new partition by assigning each

observed point to its closest cluster center, the formula is as follows:

C
(t)
i ~fxj : DDxj{m

(t)
i DD ƒ DDxj{m

(t)
i� DD for all i�~1,:::,kg

where m
tð Þ

i denotes the mean of the ith cluster in tthtimes

clustering, while C
tð Þ

i represents all sets contained in the ith cluster

in tth times clustering. Second, compute new cluster mean centers

using the following formula.

m
(tz1)
i ~

1

DC(tz1)
i D

X
xj[C

(t)
i

xj

where m
tz1ð Þ

i denotes the mean of the ith cluster in (tz1)th times

clustering while C
tz1ð Þ

i represents all sets contained in the ith

cluster in (tz1)th times clustering. The algorithm is implemented

using WEKA (Waikato Environment for Knowledge Analysis), a

free machine learning software [29].

Clustering Validity Measures
Ten relative measures are selected for the experiment, namely,

the Hubert C statistic, the normalized Hubert C, the Dunn’s

index, the Davies-Bouldin index, the CS measure, the SD index,

the S_Dbw index, the silhouette index, PBM, and the C-index.

Relative measures can also be used to identify the optimal number

of clusters in a data set and some of them, such as the C-index and

silhouette, have exhibited good performance in previous studies

[5,8]. The following paragraphs define these relative measures.

N Hubert C statistic [30]:

C~ 1=Mð Þ
Pn{1

i~1

Pn
j~iz1

P i, jð Þ:Q i, jð Þ

where n is the number of objects in a data set, M~n(n{1)=2, P is

the proximity matrix of the data set, and Q is an n|n matrix

whose (i, j) element is equal to the distance between the

representative points (vci,vcj ) of the clusters where the objects xi

and xj belong [15]. C indicates the agreement between P and Q.

N Normalized Hubert C:

C
^

~

(1=M)
Pn{1

i~1

Pn
j~iz1

(P(i, j){mP)(Q(i, j){mQ)

" #

sPsQ

Where mP, mQ, sP, and sQ represent the respective means and

variances of P and Q matrices [14].

N Dunn’s index [31] evaluates the quality of clusters by

measuring inter cluster distance and intra cluster diameter.

D~ min
i~1,:::,K

f min
j~iz1,:::,K

½ d(Ci,Cj)

max
l~1,:::,K

diam(Cl)
�g

where K is the number of clusters, Ci is the ith cluster, d(Ci,Cj) is

the distance between cluster Ci and Cj , and diam(Cl) is the

diameter of the lth cluster. Larger values of D suggest good

clusters, and a D larger than 1 indicates compact separated

clusters.

N Davies-Bouldin index is defined as [32]:

DBK~
1

K

XK

i~1

Ri,Ri~ max
i~1,:::,K ,i=j

Rij ,Rij~
sizsj

dij

,i~1,:::,K

where K is the number of clusters, si and sj represent the respective

dispersion of clusters i and j, dij measures the dissimilarity between

two clusters, and Rij measures the similarity between two clusters

MCDM Approach to Estimate the Number of Clusters
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[15]. It is the average similarity between each cluster and its most

similar one [30].

N The CS measure is proposed to evaluate clusters with different

densities and/or sizes [33]. It is computed as:

CS~

PK
i~1

1
Ni

P
xj[Ci

max
xk[Ci

d(xj ,xk)
� �( )

PK
i~1

min
j[f1,2,...,Kg,j=i

d(vi,vj)
� �� � ,vi~

1

Ni

X
xj[Ci

xj

Where Ni is the number of objects in cluster i and d is a distance

function. The smallest CS measure indicates a valid optimal

clustering.

N SD index combines the measurements of average scattering for

clusters and total separation between clusters [15]:

SD(K)~Dis(cmax)|Scat(K)zDis(K)

where cmax is the maximum number of input clusters,

Scat(K)~ 1
K

PK
i~1

s(vi)k k= s(X )k k, and

Dis(K)~ Dmax
Dmin

PK
k~1

PK
z~1

vk{vzk k
� 	{1

, Dmax is the maximum

distance between cluster centers and the Dmin is the minimum

distance between cluster centers.

N S_Dbw index is similar to SD index and is defined as [15]:

S Dbw(K)~Scat(K)zDens bw(K),

Dens bw(K)~
1

K:(K{1)

XK

i~1

XK

j~1
j=i

density(uij)

max density(vi),density(vj)
� �

0
BB@

1
CCA,

density(u)~
XNij

l~1

f (xl ,u)

where Nij is the number of objects that belong to the cluster Ci and

Cj, and function f(x,u) is defined as:

f (x,u)~
0, ifd(x,u)wstdev

1, otherwise

�
, stdev~

1

K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

i~1

s(vi)k k

vuut

N Silhouette is an internal graphic display for clustering methods

evaluation. It represents each cluster by a silhouette, which

shows how well objects lie within their clusters. It is defined as

[34]:

s(i)~
b(i){a(i)

max a(i),b(i)gf

where i represents any object in the data set, a(i) is the average

dissimilarity of i to all other objects in the same cluster A, and b(i) is

the average dissimilarity of i to all objects in the neighboring

cluster B, which is defined as the cluster that has the smallest

average dissimilarity of i to all objects in it. Note that A=B and

the dissimilarity is computed using distance measures. Since a(i)

measures how dissimilar i is to its own cluster and b(i) measures

how dissimilar i is to its neighboring cluster, an s(i) close to one

indicates a good clustering method. The average s(i) of the whole

data set measures the quality of clusters.

N PBM is developed by Pakhira, Bandyopadhyay, and Maulik

[35] and it is based on the intra-cluster and inter-cluster

distances:

PBM~
1

K

E1

EK

DK

� 	2

,

where E1~
XN

i~1
xi{xk k,EK~

XN

l~1

X
xi[Cl

xi{x
l

��� ���,

DK~ max
l,m~1,...,K

�xxl{�xxmk k

N The C-index [36] is based on intra-cluster distances and their

maximum and minimum possible values [37]:

CI~
h{ min h

max h{ min h
, h ~

Xn{1

i~1

Xn

j~iz1

qi,j xi{xj

�� ��
where qi,j = 1 if the ith and jth objects are in the same cluster and

qi,j = 0 otherwise. Small C-index indicates good partitions.

Results and Discussion

The experiment is designed to examine the proposed MCDM-

based approach for estimating the number of clusters in a data set.

The data sets, the experimental design, and the results are

discussed in sequence.

Data Sets
Fifteen data sets are used in the experiment. They are provided

by UCI machine learning repository (http://archive.ics.uci.edu/

ml/) [38]. Table 1 summarizes the characteristics of the data sets.

The breast cancer data set was provided by Dr. William H.

Wolberg from the University of Wisconsin Hospitals [39]. Each

record has ten attributes to describe cytological characteristics of

breast and belongs to either benign or malignant class. The breast

tissue data set contains impedance measurements of freshly excised

tissue samples from the breast [40]. The acute inflammations data

set includes examples of diagnosing of the acute inflammations of

urinary bladder and acute nephritises [41]. The ecoli data set

contains protein localization sites [42]. The glass data set describes

six types of glass in terms of their oxide content [43]. The

Haberman’s survival data set includes samples from a study that

was conducted between 1958 and 1970 on the survival of patients

who had undergone surgery for breast cancer [44]. The

Ionosphere data set describes radar data return from the

MCDM Approach to Estimate the Number of Clusters

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e41713



ionosphere [45]. The iris data uses length and width of sepal and

petal to describe three types of iris plant [46]. The Parkinson’s data

set consists of a range of biomedical voice measurements from

people who are either healthy or with Parkinson’s disease [47].

The Pima Indians diabetes data set uses several aspects to separate

females from Pima Indian heritage who are either healthy or with

diabetes [48]. The sonar data set collects data obtained by

bouncing sonar signals off a metal cylinder and rocks at various

angles and under various conditions [49]. The transfusion data set

has four aspects of blood donors, i.e., months since last donation,

total number of donation, total blood donated, and months since

first donation [50]. The wine data uses constituents found in wines

to distinguish three types of wine [51]. The wine quality (red) data

set contains inputs from physicochemical tests to describe red

variant of the Portuguese ‘‘Vihno Verde’’ wine [52]. The yeast

data set collects the amino acid sequence information to predict

the cellular localization sites of proteins [53].

Experimental Design
The experiment is designed for two purposes: (1) examine the

effectiveness of the proposed approach and (2) compare the

proposed approach with existing methods. The effectiveness of

the proposed approach is examined by applying three MCDM

methods to estimate the number of clusters for fifteen public-

domain UCI machine learning data sets. The performances of

the three MCDM methods are then compared to the ten relative

measures presented in the previous section using the same sets of

UCI data [54].

The experiment is carried out according to the following

process:

Input. fifteen UCI machine learning data sets.

Output. Rankings of different numbers of clusters for each

data set by the MCDM methods and the relative measures.

Step 1. Prepare the data sets: remove class labels from the data

sets and upload the data sets to Weka 3.6.

Step 2. Get clustering solutions using the k-means algorithm for

all data sets.

Step 3. For each data set, the k-means algorithm is used to

compute the ten selected relative measures nine times, each time

with a different number of clusters (i.e., from 2 to 10).

Step 4. For each data set, generate the optimal number of

clusters determined by each relative measure.

Step 5. Twelve domain experts were asked to assign weights to

relative measures for each data set based on their experiences. The

score ranges from 0 to 10 with increasing importance, and the

averaged and normalized scores are weights of relative measures.

Step 6. Generate three rankings of different numbers of clusters

using PROMETHEE II, WSM, and TOPSIS for the data sets.

For each data set, different numbers of clusters are alternatives and

the performances of k-means algorithm on the relative measures

are criteria. PROMETHEE II was implemented by the MCDM

software D-Sight, and WSM and TOPSIS were implemented

using MATLAB 7.0 [54]. If the top-three ranked numbers of

clusters have very close ranking values (i.e., the difference between

their values is less than 0.01), both the ranking order and ranking

values should be provided to the decision-maker.

END

Table 1. Data set structures.

Data Sets Number of Records Number of Attributes Number of Classes

Breast cancer 699 10 2

Breast tissue 106 10 6

Acute inflammations 120 6 2

Ecoli 336 8 8

Glass 214 10 6

Haberman’s survival 306 3 2

Ionosphere 351 34 2

Iris 150 4 3

Parkinsons 197 23 2

Pima Indians diabetes 768 8 2

Sonar 208 60 2

Transfusion 748 5 2

Wine 178 13 3

Wine quality (red) 1599 11 6

Yeast 1484 8 10

doi:10.1371/journal.pone.0041713.t001

Table 2. Rankings of numbers of clusters for the yeast data
set.

PROMETHEE II TOPSIS WSM

Number of
clusters Value Order Value Order Value Order

K = 2 20.2265 8 0.400601 9 20.25409 9

K = 3 0.1125 3 0.537494 5 20.1994 3

K = 4 20.17975 7 0.451931 8 20.2342 7

K = 5 0.102 4 0.539354 4 20.2154 4

K = 6 20.31675 9 0.481188 7 20.2463 8

K = 7 0.02575 5 0.544836 3 20.2213 5

K = 8 20.10825 6 0.529223 6 20.2336 6

K = 9 0.29475 2 0.626924 1 20.1827 1

K = 10 0.29625 1 0.603641 2 20.185 2

doi:10.1371/journal.pone.0041713.t002
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For each data set, nine different numbers of clusters (i.e., from 2

to 10) are used as alternatives in the MCDM methods due to the

structures of these data sets (refer to Table 1). When the structure

of a data set is unknown, reasonable numbers of clusters can be

used as alternatives.

The 0–10 scale used by domain experts indicates increasing

importance of criteria. Number 0 indicates that the domain expert

is not interested in that criterion and number 10 indicates that the

domain expert considers the criterion extremely important.

Number 5, the midpoint of the scale, shows the moderate

importance of a criterion. Domain experts can use numbers 1, 2,

3, and 4 to represent the importance between none and moderate,

with increasing strength. Similarly, numbers 6, 7, 8, and 9 are used

to represent the importance between moderate and extreme, with

increasing intensity. Since the weights of criteria have important

impact on the final evaluation of alternatives, some MCDM

softwares provide tools to facilitate sensitivity and robustness

analyses. For instance, the D-Sight software allows the decision-

maker to find out the stability intervals of the weights of criteria

and observe the impact of a change of weight on the final ranking.

Experimental Results and Discussion
To illustrate the values and rankings generated by the MCDM

methods for different numbers of clusters [55], Table 2 presents

the yeast data set as an example. The number of classes provided

by UCI machine learning repository for yeast is ten. As can be

seen from Table 2, PROMETHEE II finds the right number of

clusters for this data set. Both TOPSIS and WSM rank K = 9 as

the best alternative and K = 10 as the second best.

Table 3 and Table 4 summarize the best ranked numbers of

clusters for all data sets produced by the ten relative measures and

the three MCDM methods, respectively. Both tables have the

same structure. The leftmost column lists the data sets and the

rightmost column gives the number of classes provided by UCI

machine learning repository for each data set. The entries in the

middle of Table 3 and 4 show the optimal number of clusters for

each data set determined by the relative measures and the MCDM

methods, respectively. The correctly estimated numbers of clusters

are highlighted in boldface and italic. Table 5 summarizes the

number of correct determinations for the three MCDM methods

and the ten relative measures.

A number of observations can be made based on the

experimental study. First, the proposed approach is effective at

estimating the optimal number of clusters in data. WSM,

TOPSIS, and PROMETHEE II can estimate the optimal

Table 3. Estimations of number of clusters by the relative measures.

Relative measures

Data sets Dunn Sil PBM Hubert
Normalized
Hubert DB SD S_Dbw CS C-index #Cluster

Breast cancer 5 2 2 2 2 10 2 10 2 5 2

Breast tissue 3 2 6 2 2 3 2 7 6 10 6

Acute inflammations 4 2 9 2 2 10 4 10 9 4 2

Ecoli 3 2 3 2 2 10 4 7 4 4 8

Glass 2 2 2 2 2 2 2 10 8 2 6

Haberman’s survival 8 2 5 2 2 10 4 10 4 10 2

Ionosphere 2 2 2 2 3 10 2 9 9 10 2

Iris 2 2 2 2 2 2 2 10 2 2 3

Parkinsons 3 3 5 2 2 8 3 9 8 10 2

Pima Indians diabetes 2 2 4 2 2 10 3 10 10 10 2

Sonar 4 2 2 2 2 10 4 10 4 4 2

Transfusion 9/10 2 7 2 2 2 2 10 7 9 2

Wine 6 3 3 2 2 3 2 7 3 6 3

Wine quality (red) 2 2 3 2 2 9 3 3 3 9 6

Yeast 9/10 2 2 2 2 10 3 9 10 10 10

doi:10.1371/journal.pone.0041713.t003

Table 4. Estimations of number of clusters by the MCDM
methods.

MCDM Methods

Data sets PROMETHEE II TOPSIS WSM #Cluster

Breast cancer 2 2 2 2

Breast tissue 6 6 6 6

Acute inflammations 2 4 4 2

Ecoli 4 3 3 8

Glass 8 2 2 6

Haberman’s survival 2 2 2 2

Ionosphere 2 2 2 2

Iris 2 2 2 3

Parkinsons 5 3 3 2

Pima Indians diabetes 2 2 2 2

Sonar 2 2 2 2

Transfusion 2 2 2 2

Wine 3 3 3 3

Wine quality (red) 6 6 3 6

Yeast 10 9 9 10

doi:10.1371/journal.pone.0041713.t004
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numbers of clusters for eight, nine, and eleven datasets,

respectively. Second, the three MCDM methods outperform the

ten existing relative measures considered in this study. The best

performance of the relative measures (i.e., Silhouette and Hubert)

is equal to the worst performance of the three MCDM methods

(i.e., WSM). Furthermore, as can be seen from Table 3 and 4, the

data sets that were missed by the MCDM methods were also

missed by the relative measures, except the Parkinson’s data set.

Third, the estimation of numbers of clusters for a given data set

generated by different MCDM methods may vary. Fourth, there

are situations that the top-ranked numbers of clusters by MCDM

methods have very close ranking values. For instance, 9 and 10

were ranked by WSM as the best and the second best choices for

the yeast data set, respectively (Table 2). But the difference

between their WSM scores is only 0.0023. In such a case, both 9

and 10 and their corresponding ranking values should be provided

to the decision-maker.

Conclusions
Determining the number of clusters in a data set is intrinsically

difficult because this is often a subjective process. This paper has

proposed a MCDM-based approach for estimating the optimal

number of clusters in a data set, which treats different numbers of

clusters as alternatives and clustering validity measures as criteria.

Different numbers of clusters are ranked according to the

corresponding performances of clustering algorithms on validity

measures. The top ranked number of clusters is the one with the

best overall performances for all the selected validity measures.

The experiment is designed to examine the effectiveness of the

proposed method and compare the new approach with existing

methods using three MCDM methods (WSM, TOPSIS, and

PROMETHEE II), the k-means clustering algorithm, ten relative

measures, and fifteen public-domain UCI machine learning data

sets. The results prove the effectiveness of the proposed approach

in estimating the number of clusters. Specifically, WSM, TOPSIS,

and PROMETHEE II can estimate the optimal numbers of

clusters for eight, nine, and eleven datasets, respectively. The

comparative study shows that the three MCDM methods

outperform the ten existing relative measures considered in the

present study. The best performance of the relative measures (i.e.,

Silhouette and Hubert) is equal to the worst performance of the

three MCDM methods (i.e., WSM).

MCDM methods normally require decision makers or domain

experts to provide weights for the criteria involved in the decision

problem. In this study, the proposed approach needs domain

experts to assign weights for the relative measures. When

automatic decision process is required or inputs of criteria weights

from domain experts are unavailable, it is necessary to find a way

to obtain the weights automatically and this is a future research

direction. In addition, different MCDM methods may generate

different rankings of the numbers of clusters. How to reconcile

these differences is another future research avenue. This study only

considers validity indices for crisp clustering. However, many real-

life data sets have overlapping clusters, whose boundaries are hard

to define. Therefore a potential direction of future work is to

introduce validity indices that are suitable for fuzzy clustering to

MCDM methods.
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