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Abstract

Noncognate or self peptide-MHC (pMHC) ligands productively interact with T-cell receptor (TCR) and are always in a large
access over the cognate pMHC on the surface of antigen presenting cells. We assembled soluble cognate and noncognate
pMHC class I (pMHC-I) ligands at designated ratios on various scaffolds into oligomers that mimic pMHC clustering and
examined how multivalency and density of the pMHCs in model clusters influences the binding to live CD8 T cells and the
kinetics of TCR signaling. Our data demonstrate that the density of self pMHC-I proteins promotes their interaction with CD8
co-receptor, which plays a critical role in recognition of a small number of cognate pMHC-I ligands. This suggests that MHC
clustering on live target cells could be utilized as a sensitive mechanism to regulate T cell responsiveness.
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Introduction

It has been proposed that T-cell responses are regulated not

only by the number of pMHC ligands, but also by the spatial

arrangement and the density of the ligands on the surface of APC

or target cells [1,2]. Although the number of cognate pMHC on

target cells capable to elicit T-cell response was found to be

remarkably low [3,4], the recognition of such a small number of

cognate ligands requires cooperation with noncognate or self

pMHC [5]. To demonstrate directly cooperation between cognate

and noncognate pMHC ligands several model systems have been

tested, in which the pMHC proteins were assembled into

oligomers containing cognate and noncognate pMHC [6,7,8,9].

However, the results of these experiments were controversial. The

discrepancy could be explained at least in part by the difference in

relative positioning of pMHC molecules in these model systems,

which has not been carefully evaluated. Meanwhile, the separating

distances between pMHC molecules in these oligomers could

regulate the cooperation between cognate and noncognate

pMHC. We have previously utilized fluorescent nanoparticles

quantum dots (QD) as a scaffold to assembled pMHC-I proteins

with various biological activities at designated ratios and have

demonstrated that cognate and noncognate pMHC ligands

efficiently cooperate in the binding to CD8+ CTL and the

induction of TCR-mediated Ca2+ signaling [8]. We have also

found that noncognate pMHC-I/QD bind very efficiently to the

T-cell surface, but do not initiate intracellular Ca2+ signaling [8].

Here we compared QD with two other scaffolds, Streptavidin and

dextran, to vary multivalency and density of pMHC-I proteins

assembled on these scaffolds and to study how these parameters

influence the binding to live CD8+ T cells and the kinetics of TCR

signaling.

Results

Noncognate pMHC/QD but not pMHC/tetramer Bind to
the Surface of Live CD8+ T Cells

To understand a unique ability of noncognate pMHC-I

displayed on QD to bind vigorously to the surface of live CD8+

T cells [8], we first compared the binding of cognate and

noncognate pMHC-I/QD with that of the same pMHC-I ligands

assembled on Streptavidin scaffold into the tetramer. As expected,

noncognate pMHC-I/Streptavidin did not bind to a detectable

extent to the cell surface, while noncognate pMHC-I/QD did so

(Fig. 1). The binding of noncognate pMHC-I/QD was evident at

various concentrations indicating that the ability of noncognate

pMHC/QD to bind to the T-cell surface was an intrinsic property

of pMHC-I/QD conjugates as opposed to the tetramer (Fig. S1).

Because QD and Streptavidin scaffolds have very similar size

[10,11,12] but different relative orientation and proximity of

pMHC-I arms, the data suggest that these parameters could be

responsible for the observed distinction.

Specific Binding of Noncognate pMHC the T-cell Surface
is not a Unique Property of pMHC/QD Conjugates

To determine whether the binding of noncognate pMHC/QD

depends on a unique property of QD scaffold, we tested the

binding ability of various noncognate pMHC-I oligomers that

were assembled on different scaffolds. Specifically, we used

QD(520) and QD(620) that display 10 and 40 pMHC-I per dot
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and FITC-labeled linear dextran-based scaffold presenting either 4

or 40 pMHC-I molecules per oligomer. The orientation of

pMHC-I molecules assembled on either the dextran or QD

scaffolds is very different. Because of the dissimilar fluorescence of

these scaffolds, relative binding of the pMHC-I oligomers was

evaluated. To examine how CD8-MHC-I interactions influence

the binding of cognate and noncognate pMHC-I ligands, we

utilized pMHC-I oligomers containing mutation in the MHC non-

polymorphic domain (MHCmut) or blocking anti-CD8 antibody to

disrupt CD8-MHC-I interactions [8,13]. Similar to pMHC-I/

Streptavidin the binding of noncognate pMHC-I/dextran (Dex-

tramer) containing 4 pMHC-I proteins per oligomer was barely

detectable (Fig. 2A). However, when 40 noncognate pMHC-I

molecules were assembled on the dextran scaffold of the same

length, the binding of the noncognate Dextramer was clearly

evident in a wide range of the Dextramer concentrations (Fig. 2A
and Fig. S2). The binding was completely blocked with CD8

specific antibody as we have previously observed for various

pMHC-I/QD [8,13]. Thus, the binding of noncognate Dextramer

was dependent on the pMHC-I density and was not determined

by unique properties of QD scaffold. Nevertheless, relative binding

of noncognate Dextramer containing 40 pMHC-I proteins was

less strong than the binding of noncognate pMHC-I/QD(520)

bearing 10 pMHC-I ligands per dot (Fig. 2C). Noncognate

pMHC-I/QD(620), which have the same valency as the

Dextramer, i.e., 40 pMHC per dot, bound to the cell surface

even stronger than noncognate pMHC/QD(520) (Fig 2A,C). In

contrast, the relative binding of cognate pMHCmut oligomers,

which was mostly determined by TCR-pMHC-I interactions, did

not vary much for oligomers assembled on different scaffolds

(Fig. 2B,D). The binding represented a small increment of the

total binding of intact cognate pMHC oligomers emphasizing the

importance of CD8-MHC-I interactions in the binding of all

oligomers tested.

These data show that the binding of noncognate pMHC-I/

oligomers to T-cell surface does not solely depend on the valency

of the oligomers but is determined by other parameters such as the

pMHC-I density, i.e., separating distances between neighboring

pMHC-I molecules.

Difference in the Distribution of Separating Distances
between pMHC Proteins Assembled on QD and
Streptavidin Scaffolds

To compare directly separating distances between pMHC-I

proteins on the surface of QD(520) and those assembled on

Streptavidin scaffold into the tetramer, we examined Förster

resonance energy transfer (FRET) between AF594-IV9 (donor)

and AF647-IV9 (acceptor) bound to HLA-A2 molecules (see

Material and Methods for details). Natural (unquenched)

fluorescence time-response of the donor was measured for the

Streptavidin-based HLA-A2 tetramer in which one HLA-A2

molecule was loaded with AF594-IV9 and thee others with

unlabeled IV9, as well as for the QD/IV9-HLA-A2 conjugates

carrying 2 AF594-IV9-HLA-A2 and 8 unlabeled IV9-HLA-A2

(Fig. 3A,B, green). When unlabeled IV9-HLA-A2 proteins on

both scaffolds were replaced with AF647-IV9-HLA-A2 mole-

cules, the FRET was clearly evident from the changes in the

lifetime of the donor fluorescence (Fig. 3A,B, red). From the

best fit of the experimental data to the model described by Eqs

1-7 (see Material and Methods), we calculated distributions of

separating distances between IV9-HLA-A2 molecules labeled by

the donor and the acceptor on the two different scaffolds

(Fig. 3C,D). The minimal separating distances between IV9-

HLA-A2 proteins on the surface of QD were characterized by a

narrow distribution with the maximum at 7.3 nm. Almost half

of QD displayed IV9-HLA-A2 molecules that were separated by

5–8 nm distances. In contrast, the distribution of the minimal

separating distances between IV9-HLA-A2 arms assembled on

Streptavidin was significantly broader with the maximum at

about 13.4 nm, i.e., 2-fold larger. Only a very small fraction

(12%) of tetramers carried IV9-HLA-A2 molecules, which were

separated by 5–8 nm distances. Separating distances beyond

15 nm could not be derived from FRET measurements limited

by Foster radii of the fluorophores and were calculated from the

model.

In accord with these data, measuring FRET efficiency between

fluorescent-labeled antibodies’ Fab fragments bound to MHC-I

molecules on live cells revealed that a significant fraction of the

MHC-I is present in clusters [14]. In-depth analysis of these data

allowed estimating distances between MHC-I molecules within

Figure 1. Noncognate pMHC assembled on QD but not on Streptavidin scaffold stain CD8 CTL. Left panel: Staining of 68A62 with
cognate (bold solid line) and noncognate (dotted line) pMHC oligomers is shown; staining with the noncognate oligomers containing HLA-A2 with
A245V mutation in nonpolymorphic domain (solid line) was used as a negative control. Right panel: Normalized MFI of 68A62 CTL incubated with
cognate IV9-HLA-A2/QD(520) and IV9-HLA-A2/Streptavidin are compared with that of noncognate Tax-HLA-A2/QD(520) and Tax/Streptavidin
oligomers. Data represent mean 6 s.d.
doi:10.1371/journal.pone.0041466.g001
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clusters that were about 7–9.4 nm. These values are in a very good

agreement with the minimal separating distances between IV9-

HLA-A2 proteins on the surface of QD. The mean distances

between cell surface MHC-I proteins calculated in the assumption

on their random distribution were to be 40 nm [14]. Thus,

pMHC/QD represent an adequate model of MHC-I membrane

clusters.

The Effect of pMHC Density on the TCR-mediated
Signaling Kinetics

To test how the pMHC-I density affects TCR-mediated

signaling kinetics, the binding of pHLA-A2/QD(520) and

pHLA-A2/Streptavidin to 62A62 CTL and their ability to induce

Ca2+ flux were tested. We exploited cognate strong agonist IV9-

HLA-A2 and weak agonist A6-IV9-HLA-A2 ligands as well as

strong agonist IV9-HLA-A2mut ligand having mutation in the

MHC protein disrupting CD8-HLA-A2 interactions. To evaluate

kinetics of TCR signaling we measured dynamics of intracellular

Figure 2. Comparison of the binding of various cognate and noncognate pMHC oligomers to CD8 CTL. A. Binding of cognate (IV9-HLA-
A2, bold solid line) and noncognate (Tax-HLA-A2, dotted line) pMHC ligands assembled on different scaffolds to 68A62 CTL as established by flow
cytometry. The CTL were incubated with each oligomer at 20 nM for 30 min prior to the analysis. Mutant HLA-A2(A245V) loaded with noncognate
peptide (Tax) was used to produced oligomers which were utilized as negative controls (solid line). B. Binding of different oligomers carrying cognate
peptide (IV9) in association with either intact (bold solid line) of mutated HLA-A2 (A245V) (dashed line) to 68A62 CTL was evaluated. Binding of
cognate dextramers in the presence (dashed) or absence (bold solid line) of blocking anti-CD8 antibodies was examined. Other conditions are as in A.
Data represent mean 6 s.d. C. Normalized MFI of 68A62 bound to cognate or noncognate pMHC oligomers containing intact HLA-A2 protein. The
nature of oligomers and the number of pMHC ligands per oligomer are indicated. Data represent mean 6 s.d. D. Normalized MFI of 68A62 bound to
cognate oligomers or cognate oligomers containing pMHCmut with mutated HLA-A2 (A245V) protein. The tested oligomers are as in C.
doi:10.1371/journal.pone.0041466.g002
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Ca2+ accumulation in a real timescale. The Ca2+ signaling was

induced by QD(520)- and Streptavidin-based pHLA-A2 oligomers

at equal concentrations of both probes and the accumulation of

Ca2+ in the T cells was analyzed during <400 s, a time required

for the intracellular Ca2+ concentration to approach maximum

(Fig. 4A–C and Fig S3). The kinetics of Ca2+ signaling induced

by IV9-HLA-A2/QD(520) was significantly more rapid as

compared to that initiated by IV9-HLA-A2/Streptavidin

(Fig. 4A). The signaling kinetics in response to IV9-HLA-A2/

Streptavidin was always slower regardless of the concentration of

the 2 probes (Fig. S4). When a weak agonist A6-IV9-HLA-A2 was

used instead of a strong agonist IV9-HLA-A2 to reduce TCR-

pHLA-A2 interactions, relative equilibrium binding of the

tetramer was notably decreased, while the binding of A6-IV9-

HLA-A2/QD(520) conjugate was only slightly lower (Fig. 4D).

Accumulation of intracellular Ca2+ in 68A62 CTL was not

detectable even at a higher concentration of A6-IV9-HLA-A2/

Streptavidin (Fig. 4B). Meanwhile, A6-IV9-HLA-A2/QD(520)

conjugates added to the extracellular medium at the same

concentration triggered rapid kinetics of Ca2+ flux (Fig. 4B).

Diminishing CD8-HLA-A2 interactions resulted in substantial

decrease of relative equilibrium binding of IV9-HLA-A2mut/

Streptavidin, and the binding of IV9-HLA-A2mut/QD(520) was

reduced even more (Fig. 4D). Consequently, the difference in

kinetics of Ca2+ flux initiated by IV9-HLA-A2mut/Streptavidin

and IV9-HLA-A2mut/QD(520) was significantly decreased

(Fig. 4A and C). Thus, stronger stimulatory potency of the

cognate pMHC-I/QD was very sensitive to CD8-MHC-I

interactions, while the ability of pMHC-I/Streptavidin to stimu-

late CTL was more dependent on the TCR-pMHC-I interactions.

To further examine the role of pMHC-I density in triggering of

TCR signaling, we compared the ability of the strong agonist IV9-

HLA-A2 ligands assembled on QD(520) and QD(620), which can

accommodate 10 and 40 pMHC proteins per dot, respectively, to

induce Ca2+ flux in cognate 68A62 CTL. Relative orientation and

the density of IV9-HLA-A2 on QD(520) and QD(620) are very

similar regardless of their size, while valency differs 4-times.

Figure 5A shows that the increase in valency of cognate IV9-

HLA-A2 ligands assembled on QD(620) as compared to QD(520)

did not significantly influence the magnitude or kinetics of TCR-

mediated signaling. However, QD(620) carrying 10 cognate IV9-

HLA-A2 ligands per dot with all others (30 per dot) being

noncognate Tax-HLA-A2mut proteins (see Material and Methods)

serving as irrelevant proteins were less effective in the induction of

Ca2+ flux in 68A62 CTL (Fig. 5B). Very similar data have been

produced using different CTL clone CER43 specific for Flu-

derived peptide GL9 (see Material and Methods) in association

with HLA-A2 (Fig. S5). Thus, pMHC-I/QD having the same

valency but a lower density of cognate ligands lost their capacity to

elicit a rapid and robust Ca2+ flux in CTL.

Due to the radial/omni directional position of pMHC proteins

on the surface of QD, it is not straightforward to estimate

‘‘functional valency’’ of pMHC-I/QD conjugates. We replaced

irrelevant Tax-HLA-A2mut proteins on QD(620) with noncognate

Tax-HLA-A2 molecules that are not recognized by 68A62 CTL’s

TCR, but interact with CD8 co-receptor. This (IV9-HLA-

A2)10(Tax-HLA-A2)30/QD(620) probe had the same valency,

i.e., 10 cognate pMHC per dot, while the density of HLA-A2

proteins recognizable by CD8 co-receptor was restored to 40 per

dot. Figure 5C demonstrates that (IV9-HLA-A2)10(Tax-HLA-

Figure 3. Distribution of separating distances between IV9-HLA-A2 proteins assembled on QD and Streptavidin scaffolds.
Fluorescence decay of AF594-IV9 peptide bound to HLA-A2 protein (donor) in the presence or absence of AF647-IV9-HLA-A2 protein (acceptor)
displayed on the surface of QD(520) (A) or Streptavidin scaffold (B). Fitting the experimental data to the model (Eqs. 1–7) yielded satisfactory fit
(x2,1.2) allowing to evaluate distribution of separating distances between IV9-HLA-A2 molecules displayed on QD (C) or Streptavidin (D).
doi:10.1371/journal.pone.0041466.g003
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A2)30/QD(620) conjugates had essentially the same potency as the

(IV9-HLA-A2)40/QD(620) and (IV9-HLA-A2)10/QD(520)

probes. The effect was dependent on the presence of cognate

pMHC-I ligands because QD(620) displaying all noncognate

pMHC-I proteins, i.e., (Tax-HLA-A2)40/QD(620), did not induce

any detectable Ca2+ flux (Fig. 5C).

These data suggest that the density of pMHC-I capable of

interacting with CD8 co-receptor but not multivalency of pMHC

oligomers appears to have a greater influence on the signaling

kinetics.

Cooperation between Cognate and Noncognate pMHC
Depends on the pMHC Density within pMHC Oligomers

To further investigate the role of pMHC-I density in recognition

of self pMHC-I, we compared the stimulatory capacity of pMHC-

I/QD(520) and pMHC-I/Streptavidin that present cognate IV9-

HLA-A2 and noncognate Tax-HLA-A2 or Tax-HLA-A2mut

ligands at various ratios. The valency of cognate IV9-HLA-A2

proteins was varied from 1 to 4 per dot to be the same as the

valency of the tetramer. Although the tetramer presenting only

cognate IV9-HLA-A2 proteins (red) elicited Ca2+ flux in 68A62

CTL, tetramers containing cognate IV9-HLA-A2 and noncognate

Tax-HLA-A2 proteins (yellow) at 2:2 and 1:3 ratios, respectively,

were inactive (Fig. 6A). In contrast, QD(520) loaded with 4, 2 or 1

cognate IV9-HLA-A2 proteins per dot with all others being

noncognate Tax-HLA-A2 proteins, i.e., 6, 8 and 9, correspond-

ingly, induced Ca2+ responses in 68A62 CTL (Fig. 6B) that was

comparable to that triggered by (GL9-HLA-A2)10/QD(520)

conjugates (not shown). However, when noncognate ligands in

these pHLA-A2/QD(520) conjugates were systematically replaced

with inactive Tax-HLA-A2mut proteins (grey), the cooperation

between cognate and noncognate pHLA-A2 ligands was dimin-

ished (Fig. 6C). Importantly, (IV9-HLA-A2)4(Tax-HLA-A2mut)6/

QD(520) conjugate behaved similarly to the tetramer carrying 4

cognate IV9-HLA-A2, and the stimulatory potency of the

QD(520)-based conjugates declined as the number of Tax-HLA-

A2mut proteins per dot increased (Fig. 6C). As expected, (Tax-

HLA-A2)4(Tax-HLA-A2mut)6/QD(520) probe was inactive

(Fig. 6C).

In accord with previously published results [8], the above data

show that presence of a single cognate pMHC per dot on average

with all other pMHC-I being noncognate is sufficient to induce

TCR-mediated signaling (Fig. 6B). This raises a question whether

the observed T-cell response induced by QD displaying only one

cognate pMHC-I could be due to a fraction of QD presenting

more than one cognate pMHC. To address this issue, we tested 3

different pMHC oligomers assembled on QD(520), all presenting

10 pMHC-I proteins per dot. The two probes, QD(520) present-

ing 10 noncognate pMHC-I per dot and QD(520) that display 1

cognate and 9 irrelevant pMHC proteins (noncognate pMHCmut)

per dot on average, were not able to elicit detectable Ca2+ flux in

CTL (Fig. 6D). In contrast, QD(520) bearing 1 cognate and 9

noncognate pMHC-I molecules per dot on average, stimulated

efficient Ca2+ flux in CTL (Fig. 6D). If only a fraction of the

pMHC-I/QD(520) presenting more then 1 cognate pMHC was

responsible for the ability to induce Ca2+ flux, then both probes

presenting 1 cognate pMHC per dot on average would have been

able to initiate Ca2+ response.

Figure 4. Difference in TCR-mediated signaling kinetics induced by pMHC/QD and pMHC/Streptavidin oligomers. A, B, C. Time-
dependent changes in intracellular calcium concentration in CD8+68A62 CTL induced by indicated pHLA-A2 ligands assembled on either QD(520)
(red) and Streptavidin (blue) scaffolds. Concentration of the probes in extracellular medium was the following: 1 nM for IV9-HLA-A2/QD(520) and IV9-
HLA-A2/Streptavidin (A), 10 nM for A6-IV9-HLA-A2/QD(520) and A6-IV9-HLA-A2/Streptavidin (B), 5 nM for IV9-HLA-A2mut/QD(520) and IV9-HLA-
A2mut/Streptavidin (C). Representative results are shown. D. Relative equilibrium binding of indicated pHLA-A2 ligands assembled on either QD(520)
and Streptavidin scaffolds to 62A68 CD8+ CTL is shown. The relative amounts of cell-bound ligands were calculated from MFI measured by flow
cytometry. Data represent mean 6 s.d.
doi:10.1371/journal.pone.0041466.g004
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Overall, these data show that the ability of a few cognate

pMHC-I ligands to elicit T-cell response requires cooperation with

noncognate pMHC-I proteins and that the efficiency of the

cooperation depends on the density of the pMHC-I ligands.

Does Recognition of Noncognate pMHC by TCR
Contribute to Cognate-noncognate pMHC Cooperation?

To evaluate how the nature of noncognate peptides affects

cognate-noncognate pMHC cooperation, we have analyzed the

ability of different noncognate pMHC-I complexes displayed

along with cognate pMHC-I ligands on QDs to initiate Ca2+

response by CTL. We have found that all noncognate pMHC-I

proteins have a very similar capacity to cooperate with cognate

pMHC-I in the induction of TCR-mediated Ca2+ signaling

(Fig. 7B). The difference in the binding of various noncognate

pMHC-I/QD conjugates to the CTL surface was not apparent

(Fig. 7C) presumably due to the strong contribution of CD8-

MHC-I interactions that may erase small differences in the

intrinsic TCR-pMHC-I affinities. Consistent with this, we have

found that the binding of QD bearing various noncognate pMHC-

I proteins containing mutant MHC-I(A245V) that diminishes

CD8-MHC-I interactions was indistinguishable from the binding

of QD displaying irrelevant pMHC-II proteins (not shown). In

contrast, the contribution of noncognate pMHC-II proteins was

shown to be dependent on the nature of noncognate peptide, but

the role of CD4 co-receptor was less significant [7]. Binding of

noncognate conjugates does not induce Ca2+ response of

established CTL clones (Fig. 7A) making it difficult to study their

recognition. Perhaps, analysis of other T-cell responses at various

stages of differentiation and activation induced by noncognate

QD/pMHC will prove to be more informative in this regard.

Discussion

It is well established that the recognition of self pMHC is

necessary for T cell development [15] and the induction of a tonic

signal necessary for maintenance of peripheral T cells [16,17].

Although these data suggest that T cells productively interact with

self pMHC, the binding of self pMHC to the T-cell surface is

difficult to detect due to weak interactions between self pMHC and

TCR. The tetramer, a widely used pMHC oligomer, revealed

relatively poor binding of noncognate pMHC-I to the T cell

surface merely in special cases [18]. In contrast, our experiments

described here (Fig. 2) and elsewhere [8,13] clearly demonstrate

that noncognate pMHC-I proteins assembled on QD effectively

binds to the surface of live antigen experienced CTL. We would

like to propose that the observed distinction in the binding of

noncognate pMHC-I assembled on the two different scaffolds is

determined by the difference in the density of the pMHC-I

molecules. In fact, the analysis of separating distances between

pMHC-I proteins showed that the average distance between TCR

contact surfaces of pMHC-I molecules displayed on QD was 2-

times shorter as compared to that found for the same pMHC-I

within the tetramer (Fig. 3). Thus, the effect of the MHC density

appears to be essential for the recognition of noncognate pMHC-I

oligomers.

Despite a strong binding of noncognate pMHC/QD conjugates

to the surface of CTL (Fig. 2), there was no detectable Ca2+

response induced by these conjugates even if their concentration in

the extracellular medium was raised up to 100 nM (not shown).

This is consistent with our previous findings [8,13] and a

prevailing view that recognition of self pMHC do not trigger

conventional T-cell responses unless cognate pMHC ligands are

also presented. Combining cognate and noncognate pMHC-I

ligands on the surface of OD at various ratios resulted in their

efficient cooperation in the induction of Ca2+ flux (Fig. 5B).

However, the cooperation between the same cognate and

noncognate ligands were not evident when the ligands were

assembled on Streptavidin scaffold (Fig. 5A). Because the number

of cognate ligands per oligomer in these experiments was matched,

the data suggest that larger separating distances between

noncognate pMHC-I molecules precluded their ability to facilitate

recognition of cognate ligands. Indeed, when increasing number of

noncognate pMHC-I ligands on QD scaffold was replaced with

inactive pMHC-I proteins raising the pMHC-I-pMHC-I separat-

ing distances and consequently lowering the density of the

noncognate pMHC-I on the QD surface, the cognate-noncognate

cooperation diminished resulting in a slower kinetics of Ca2+

signaling (Fig. 5C). These data demonstrate that the density of

noncognate or self pMHC-I is essential for their ability to aid

recognition of cognate pMHC-I and regulates the kinetics of TCR

signaling. The pMHC-I density also influences the efficiency of

TCR signaling initiated by QD presenting only cognate pMHC-I.

Lowering the density of cognate pMHC-I on the surface of

QD(620) led to notable reduction of the amplitude and slowed

down the kinetics of signaling as compared to those triggered by

the same pMHC-I displayed on QD(520) at higher density

(Fig. 4F). The impact of the pMHC-I density on the stimulatory

Figure 5. The dependence of TCR-mediated signaling kinetics
upon the density of cognate and noncognate pMHC displayed
on QD of different sizes. Time-dependent accumulation of
intracellular Ca2+ in Fura Red-labeled 68A62 CTL in response to
stimulation with 10 nM QD of different sizes presenting various
combinations of cognate, noncognate and inactive pMHC ligands.
The comparison of the stimulatory potency of (IV9-HLA-A2)40/QD(620)
(A) or (IV9-HLA-A2)10(GL9-HLA-A2mut)30/QD(620) (B) or (IV9-HLA-
A2)10(GL9-HLA-A2)30/QD(620) (C) versus (IV9-HLA-A2)10/QD(520) is
shown.
doi:10.1371/journal.pone.0041466.g005
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potency was found to be stronger on the recognition of the weak

agonist as opposed to the strong agonist pMHC-I ligands

(Fig. 4A,B).

From the size of QD(520) and the dimensions of pMHC protein

(including spacer) assembled on QD we have calculated the

density of pMHC molecules in the pMHC/QD conjugates to be

<76103 molecule/mm2. This is in a good agreement with the

MHC density, i.e., 1.6286103 molecules per mm2, within MHC

patches (70 nm in radius) on the cell surface, each containing 25–

125 MHC molecules [19]. Similar density of pMHC-I within the

MHC patches suggests that noncognate pMHC-I on the surface of

live APC and target cells could also cooperate with cognate

pMHC-I proteins and facilitate their recognition. In fact, this was

apparent from the comparison of CTL responses to target cells

Figure 6. Kinetics of Ca2+ flux in CTL stimulated with pMHC/QD or pMHC/Streptavidin containing cognate and noncognate or
inactive pMHC ligands at various ratios. A. Time-dependent Ca2+ accumulation in the cytoplasm of Fluo-3-labeled 68A62 CTL induced by
Streptavidin-based oligomers presenting IV9-HLA-A2 (cognate, red) and Tax-HLA-A2 (noncognate, yellow) ligands at various ratios, i.e., 4:0, 2:2, 1:3,
0:4, respectively. Corresponding Ca2+ flux traces are designated as 4 (4:0, red), 2 (2:2, blue), 1(1:3, green), 0(0:4, grey). B, C, D. Time-dependent Ca2+

accumulation in the cytoplasm of Fura Red-labeled 68A62 CTL induced by QD-based oligomers presenting IV9-HLA-A2 (cognate, red), Tax-HLA-A2
(noncognate, yellow) or Tax-HLA-A2mut (inactive, grey) ligands at various ratios. One series of pHLA-A2/QD conjugates being tested displayed 4, 2, 1
or 0 cognate (red) ligands per dot and 6, 8, 9 or 10 noncognate (yellow) ligands per dot keeping the total number of pHLA-A2 molecules per dot to
be 10 (B). In another series of tested pHLA-A2/QD conjugates, the number of the cognate (red) ligands was the same, i.e., 4, 2, 1 or 0 per dot and the
number of the noncognate (yellow) ligands per dot was 0, 2, 3, or 4, respectively, while the number of the inactive (grey) ligands and the total
number of pHLA-A2 ligands per dot was kept 6 and 10, correspondingly (C). In the latter series (C), the density of noncognate Tax-HLA-A2 ligands on
the conjugates was lower as compared to the conjugates of the former series (B). In the third series, QD presenting 1 cognate (red) along with either
9 noncognate (yellow) or with 9 inactive (grey) pMHC-I per dot were tested. QD presenting 10 inactive GL9-HLA-A2mut proteins per dot were used as
a negative control (D). Corresponding Ca2+ flux profiles are designated as in A.
doi:10.1371/journal.pone.0041466.g006
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presenting a small number of a strong agonist pMHC-I ligand in

the presence or absence of noncognate pMHC-I [20]. Therefore,

the significance of the noncognate pMHC-I density that emerged

from this study involving pMHC/QD conjugates appears to be

relevant to that observed with live target cells.

We have previously shown that introduction of a single

mutation (A245V) into non-polymorphic domain of MHC-I that

diminishes CD8-MHC-I interactions or addition of blocking anti-

CD8 antibody abrogate the ability of noncognate pMHC-I/QD to

bind to the T-cell surface and significantly impair the cooperation

between cognate and noncognate pMHC-I ligands [8,13]. These

findings have demonstrated essential role of CD8 co-receptor in

recognition of noncognate pMHC-I. Here we have shown that the

density of noncognate pMHC-I ligands affects their binding to

CTL and the ability to cooperate with cognate pMHC-I

augmenting the kinetics of TCR signaling (Fig. 5). We propose

that the high pMHC-I density facilitates rapid on-rate of the CD8-

pMHC-I interactions [21] diminishing the effect of a short half-life

time of the complex and shifts the equilibrium towards the

formation of CD8-MHC-I bond. Consistent with this, CTL’s

encounters with target cells that present only noncognate pMHC-I

still result in recruitment of CD8 co-receptor to the CTL-target

cell interface indicative of efficient CD8-MHC-I interactions [22].

Raising the affinity of the CD8-MHC-I interactions leads to

detectable binding of noncognate tetramer to T-cell surface [23].

Lowering pMHC density in vivo results in CD8 upregulation [17]

emphasizing the role of CD8 co-receptor in recognition of self

pMHC-I.

Because TCR/pMHC-I/CD8 interactions occurs between

pMHC patches on target cell and TCR and CD8 co-clusters on

activated T cell, efficient CD8-MHC-I rebinding allows even a

single cognate pMHC protein within activating microclusters to

rebind efficiently to different TCRs resulting in activation of many

TCRs, a mechanism that we previously called signal spreading [8].

Efficient rebinding of CD8 co-receptor to clustered noncognate

pMHC-I also promotes recruitment of p56lck to activating

microclusters. Elevating the density of p56lck facilitates transphos-

phorylation contributing to TCR-mediated signal amplification.

In fact, it has been recently shown that the density of Nck signaling

protein plays a critical role in regulating the actin polymerization

induced by TCR activation [24].

CD8 co-receptor also contributes to the recognition of cognate

pMHC-I ligands [25] and kinetically promotes pMHC-I binding

to TCR [26,27]. This is in accord with previous findings showing

that CD8 co-receptor facilitates TCR-pMHC interactions in a cell

free system [28] and enhances the sensitivity of CTL response to

target cells by one million-fold [29]. Importantly, TCR and CD8

cooperation in the recognition of cognate pMHC-I could be

influenced by the nature of the peptide presented by the MHC-I

proteins [30]. Indeed, the difference between ‘‘cellular’’ and ‘‘cell

free’’ affinities of a TCR for diverse cognate pMHC ligands varies

from 7.5 to 30 fold [31] suggesting that the CD8 contribution

could depend on subtle structural changes of MHC-I proteins

loaded with different peptides. While all these data suggest that

TCR-pMHC-I and CD8-MHC-I interactions could influence

each other, the existence of such mechanism remains to be further

investigated.

Because responses of some pMHC-I-restricted T cells could be

CD8-independent, allogeneic or xenogeneic responses in partic-

ular [32,33], the cooperation between pMHC proteins during

these T cell responses may not be required. It has to be noted that

some MHC-I proteins could present on the cell surface as b2m-

free heavy chains; the latter tend to form oligomeric structures [34]

with a strong stimulatory potency and could cause autoimmune

diseases [35]. Since b2m contributes to the MHC-I interactions

with CD8, the recognition of b2m-free self pMHC proteins is likely

to be CD8-independent.

Figure 7. The dependence of cognate-noncognate pMHC-I cooperation on the nature of noncognate peptide. A, B. Ca2+ mobilization
in Fura Red-labeled CER43 CTL stimulated with QD(520) that display different noncognate pMHC-I proteins (10 per dot) (A) or 1 cognate and various
noncognate pMHC (9 per dot) (B) is presented. C. Normalized values of MFI of CER43 cells interacting with either cognate or various noncognate
pMHC-I are shown. The nature of cognate and noncognate pMHC-I ligands is designated (see Material and Methods for details).
doi:10.1371/journal.pone.0041466.g007
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Our data presented here are in accord with the results of

previously published experiments in which covalently linked

pMHC dimers have been exploited [6,7,36]. It has been shown

that soluble pMHC dimers containing cognate and noncognate

pMHC-I molecules linked by a rigid spacer, could specifically bind

and induce activation of CD8+ T cells only if the spacer is short,

i.e. 5–8 nm, positioning the pMHC-I molecules in a close

proximity [6]. The optimal length of the spacer is very similar to

the minimal separating distances between contact surfaces of

pMHC-I molecules on the surface of QD that we found here

(Fig. 3). The ability of soluble pMHC class II (pMHC-II) dimers

to stimulate CD4 T cells also depends on the length of the covalent

linker [36], and cognate and noncognate pMHC-II ligands linked

by the short spacer show cooperation in the induction of a T cell

response [7].

However, there is an important distinction between covalently

linked pMHC dimers and pMHC/QD oligomers. The pMHC-I

molecules attached to the QD surface have a coherent orientation

and their mobility is limited as they are positioned very closely to

each other, i.e. spaced by 5–8 nm minimal separating distances

(Fig. 3). Although pMHC proteins within the dimer are linked by

a rigid spacer of the same length at the C-termini [6,36], the

pMHC arms can freely rotate in solution relative to each other. At

these circumstances, average separating distances between the

pMHC contacting surfaces are significantly larger. Indeed,

attempts to measure FRET between fluorescent-labeled peptides

bound to MHC-I within the dimer have not been successful [6].

The difference in the orientation and the proximity of pMHC

arms in pMHC/QD conjugates and pMHC dimers could explain

why the binding of noncognate pMHC-I dimers to the CTL

surface was not evident [6].

We have shown here that larger separating distances between

pMHC arms within tetramer also preclude the cooperation

between cognate and noncognate pMHC-I proteins (Fig. 5A).

Similarly, when cognate and noncognate pMHC-II ligands were

assembled on the Streptavidin immobilized on the glass surface,

their cooperation in stimulating a response in CD4 T cells was not

observed [9]. The cooperation between cognate and noncognate

pMHC-II ligands was also not evident when these ligands were

incorporated into glass-supported bilayers and were free to diffuse

[9]. At such conditions the pMHC density in the bilayers required

for cooperation could not be reached. Indeed, we have never

observed cooperation between cognate and noncognate pMHC-I

incorporated into the bilayers as well (Somersalo, Anikeeva,

Sykulev, Dustin, unpublished data). It has also been found that at a

very low density of cognate pMHC in the bilayers, conditions at

which individual CD4 T cells presumably recognize a single

pMHC protein, the T cells were still able to produce IL2 [9]. It is

likely that very few strong pMHC agonists confined to the surface

would be able to efficiently rebind to sufficient number of TCR

within individual microclusters resulting from increase of the on-

rate of the receptor-ligand interactions occurring between two

opposing surfaces [37,38]. The efficient pMHC rebinding to TCR

could be also facilitated through restriction of the mobility of

engaged pMHC molecules. It has been shown that such pMHC

entrapment occurs on the surface of target cells and results in the

increased sensitivity of CTL response [39].

T-cell responses to strong agonist ligands discussed above do not

exclude the significance of self pMHC clustering and cooperation

between agonist and self pMHC ligands. Presence of self pMHC

would facilitate the kinetics of cognate pMHC identification by T

cells on APC and expedite the kinetics of TCR signaling. In

addition, at physiological conditions, T cells do not always face

strong agonist pMHC and have to respond to a weak agonist

pMHC to protect the host. We have shown that the clustering of

noncognate pMHC-I proteins and their cooperation with a weak

agonist pMHC-I ligand was essential to induce rapid and robust

TCR signaling (Fig. 4B) that is linked to efficient CTL cytolytic

activity [40,41]. Thus, the major role of cognate-noncognate

pMHC cooperation is to accelerate T cell hunting for the antigen

and to enhance the kinetics of TCR signaling that improves the

kinetics of CTL cytolytic response. This mechanism could also be

important for maintaining effective responses to mutated viral

epitopes that is necessary for winning the race against the virus

spread [42].

In our experiments and other studies discussed here, activated T

cells were utilized. It is thought that TCR on T cells could form

oligomers of various sizes and the extent of TCR oligomerization

could influence T cell responses [43,44,45,46]. Recently it has

been directly shown by near field scanning microscopy that large

proportion of TCR and CD8 molecules on the surface of activated

but not naı̈ve T cells form co-clusters [47]. Thus, the interactions

of pMHC-I oligomers with the surface of naı̈ve T cells and the

mechanism of initiation of TCR signaling could be very different

[48].

MHC proteins also interact with other proteins on the cell

surface such as ICAM-1 molecules [49] or tetraspanins [50] as well

as with the cytoskeleton [51]. While formation of ICAM-1-MHC-I

heteroclusters may expedite restriction of pMHC mobility on the

cell membrane enhancing efficiency of antigen presentation

[39,52], tetraspanins has been shown to interact with MHC

molecules presenting a particular set of peptides which may be

important to increase a local concentration of these peptides [53].

Such heterotypic interactions could regulate the distribution and

sorting of pMHC ligands on the cell surface that serve as a

mechanism contributing to diversification of T cell responses.

Materials and Methods

Cells and Antibody
Human CTL clone 68A62 recognizing the ILKEPVHGV (IV9)

peptide from HIV reverse transcriptase in association with HLA

A2 class I MHC [54] was kindly provided by B. D. Walker. The

human flu-specific CTL clone CER43 that recognizes the matrix

protein peptide GILGFVFTL (GL9) [55,56] was kindly provided

by A. Lanzavecchia. Antibody specific for human CD8 co-

receptor were kindly provided by Bice Perussia.

Peptides and Soluble Peptide-MHC Complexes
HIV RT-derived peptide ILKEPVHGV (IV9) was a generous

gift from H.N. Eisen. Other peptides, i.e., LLFGYPVYV (Tax)

from human T lymphotropic virus type 1 [57,58], ILKEPAHGV

(A6-IV9), a synthetic variant of IV9 peptide, GILGFVFTL (GL9)

from Influenza virus [55,56], SLLNATDIAV (SV10) from HIV

gp41 [59] and ELAGIGILTV (Melan-A) from melanoma [60], all

were synthesized by Research Genetics, Inc. The IV9 variant

ILKEPVHCV was stoichiometrically labeled with maleimide

derivatives of either Alexa594 or Alexa647 (Invitrogen) at the

Cysteine residue. Custom synthesis, purification (more than 95%)

and characterization of ILKEPVHC(Alexa594)V peptide, termed

AF594-IV9, and ILKEPVHC(Alexa647)V peptide, termed

AF647-IV9, were performed by ProImmune Ltd. The peptide

labeling at the penultimate Cysteine does not impair the peptide

binding to HLA-A2 [61]. AF594-IV9 and AF647-IV9 peptides

were used as a donor and an acceptor, respectively, in FRET

experiments (see below).

Soluble HLA-A2 protein was expressed in S2 cells and ‘‘empty’’

HLA-A2 protein was purified from the culture supernatant as
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previously described [62,63]. Soluble HLA-A2 molecules (3–

5 mg/ml) were loaded with the unlabelled peptide of interest

overnight at 23–25uC at saturating peptide concentration (1024–

1025 M). HLA-A2 loading with fluorescent-labeled peptides was

performed at 3-5 molar excess of the peptides. The mixture was

incubated overnight at 37uC in the presence of protease inhibitors

(Roche). Unbound peptides were removed by gel filtration on

Superdex 200 HR column and purified complexes of HLA-A2

with fluorescent-labeled peptides were immediately frozen in

aliquots in liquid nitrogen. Soluble His6-tagged pHLA-DRB1

loaded with RVEYHFLSPYVSPKESP peptide (TfR) from

transferrin receptor [64] was produced and purified as previously

described [40]. The TfR peptide was kindly provided by L. Stern.

DHLA-capped Quantum Dots
Single-crystal core-shell CdSe/ZnSTOPO(trioctylphosphine

oxide)-capped QDs with emission wavelength 520 nm

[QD(520)] and 620 nm [QD(620)] were kindly provided by

G.M. Bosak from Evident Technologies. Water-soluble aggregate-

free DHLA-capped QDs were produced as previously described

[40,65].

Assembly of pHLA-A2 Oligomers on QD, Streptavidin and
Dextran Scaffolds

Assembly of IV9-HLA-A2/QD conjugates was driven by

interactions of C-terminal hexahistidyl of HLA-A2 molecules with

ZnS shell of QD in 10 mM sodium tetraborate buffer, 25 mM

NaCl, pH 8.0 at room temperature (22–25uC). Because of the

high local concentration of ZnS on the QD surface, the (His)6-

tagged proteins binds to QD very strongly resulting in a stable

conjugate formation [66]. HLA-A2 loaded with Alexa594-IV9

(donor) was first combined with QD(520) at the 2 molar excess of

the protein over the QDs. HLA-A2 bearing Alexa647-IV9

(acceptor) was then added to the dots at protein-to-QD 8:1 ratio.

Thus, in each preparation two Alexa594-IV9-HLA-A2 molecules

per dot served as donors while remaining Alexa647-IV9-HLA-A2

proteins were acceptor.

QD bearing cognate and noncognate pMHC ligands at various

ratios were produced as previously described [8]. The total

number of peptide-HLA-A2 per QD(520) was kept at 10 (Fig. S6),

while the number of peptide-HLA-A2 per QD(620) was higher

and fixed at 40. These peptide-HLA-A2/QD conjugates were

used in binding experiments or to trigger TCR-mediated Ca2+ flux

in 68A62 CTL.

Peptide-HLA-A2/tetramers containing cognate and noncog-

nate peptide-HLA-A2 ligands at various ratios were assembled

using Alexa-488-labeled or unlabeled Streptavidin from Invitrogen

and Prozyme, respectively, as described previously [62,63].

Linear pMHC oligomers assembled on dextran scaffold

containing either of 4 or 40 pMHC ligands (experimental

Dextramers) were produced as described previously [67,68].

Fluorescence Resonance Energy Transfer Measurements
The Förster resonance energy transfer (FRET) between donor

(AF594-IV9-HLA-A2) and acceptor (AF647-IV9-HLA-A2) was

measured from the changes of natural fluorescence time-response

of the donor in the presence of the acceptor either on the surface

of QD(520) or within the Streptavidin-based tetramer. Analyzing

fluorescence time-response instead of fluorescence intensity in

FRET measurements allows to calculate the distribution of the

minimal donor-acceptor separating distances. FRET efficiency

was evaluated from changes in the fluorescence time-response of

non-quenched and quenched donor. The donor’s fluorescence was

excited at 470 nm (8 nm bandwidth) by 100-ps pulses of a

Supercontinuum laser SC450-2 (Fianium) operated at 2 MHz

repetition rate. Fluorescence time-responses of the donor were

measured at 630 nm (8 nm bandwidth) in a time correlated single

photon counting spectrometer, LifeSpec II (Edinburgh Instru-

ments, UK), fitted with a subtractive dispersion double mono-

chromator, a cooled microchannel plate (MCP) photomultiplier

(Hamamatsu, R3809U-50) and a Glan-Thompson polarizer and

analyzer. To avoid the effects of molecular rotation on the lifetime

measurements the polarizer was set vertically and the analyzer at

54.7u (the magic angle). All measurements were taken in a

363 mm plastic cuvette (Bio-Rad Laboratories, Hemel Hemp-

stead, UK) in a TLC 50 temperature controlled sample holder

(Quantum NortWestat, Liberty Lake, WA) at 20uC. Fluorescence

time-resolved responses were evaluated either by the discrete

exponential model of the FAST software (Edinburgh Instruments)

or by Matlab-based software based on the Nelder-Mead minimi-

zation algorithm.

Because fluorescence time-responses of unquenched donor

AF594-IV9C8-HLA-A2 confined to either QD(520) or Streptavi-

din deviated slightly from a single exponential pattern, a two-

exponential model was found to provide a satisfactory fit of the

experimental data.

fD(t,r)~b1 exp ({t=tD1)zb2 exp ({t=tD2)zb ð1Þ

where b1 and b2 are pre-exponential coefficients; b is a background

The following model was used to evaluated the donor emission

time-responses IDA(t) in the presence of the acceptor:

IDA(t)~

ð?

0

IRF (t)FDA(t{t0)dt
0
zb ð2Þ

where IRF(t) is an instrument response function and FDA is a

donor’s time-response; b is a background. FDA (t) is given by the

following equation:

FDA(t)~

ð?

0

D(r)fDA(r,t)dr ð3Þ

where D(r) is a distribution of distances between HLA-A2 labeled

with AF594-IV9 (donor) to the nearest HLA-A2 labeled with

AF594-IV9 (acceptor) that is described by an asymmetrical bell-

shape function:

D(r)~ exp ({(
d{d0

s
)2

� �2

ð4Þ

where d0 and s are parameters describing distribution maximum

and width, respectively. Asymmetry of the distribution is given by

a distance-dependence of s dð Þ

s~s0za:d ð5Þ

where a is a coefficient.

fDA(d,t) is a time-response of the donor separated by distance d

from the acceptor.

fDA(t,r)~b1 exp ({t=tDA1)zb2 exp ({t=tDA2) ð6Þ
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where

tDA1~
tD1

1z(
R0
r

)6
, tDA2~

tD2

1z(
R0
r

)6
ð7Þ

and R0 is the Förster radius (7.2 nm ) for energy transfer from

AF594 to AF547 (62).

Binding of pMHC Oligomers to Live CTL
CTL were incubated with a pMHC oligomers at various

concentrations for 30 min at 4uC, washed free of unreacted

conjugates, and immediately analyzed on an Epics XL-MCL flow

cytometer (Beckman Coulter). To evaluate equilibrium binding of

pMHC oligomers to live T cells, the washing procedure was

omitted and the amount of cell bound pMHC oligomers was

determined at various time points. In some experiments pMHC

oligomers were assembled with a mixture of cognate and

noncognate pMHC proteins at designated ratio. Noncognate

pHLA-A2 proteins contained either intact HLA-A2 or HLA-A2

with a single mutation (A245V) in the nonpolymorphic domain

(HLA-A2mut) that disrupts CD8-HLA-A2 interaction. The oligo-

mers loaded with noncognate pHLA-A2mut or pMHC class II

(pHLA-DRB1) proteins were used as a control and revealed

similar background staining. Loading and staining buffers

contained excess of noncognate peptide (3 6 1024 M) to avoid

the peptide exchange. The extent of the binding of pHLA-A2

oligomers to live CTL was characterized by normalized MFI; the

latter was calculated as follows: (MFIsample 2 MFI0)/(MFIcognate 2

MFI0), where MFIsample, MFI0, and MFIcognate are measured with

oligomers bearing predetermined number of tested pHLA-A2

proteins, noncognate pHLA-A2mut proteins and cognate pHLA-

A2 proteins, correspondingly.

Measurements of Intracellular Ca2+ Flux
CTL (107 per ml) were loaded with 5 mM Fura Red (Molecular

Probes) or 2 mM Fluo-3 Ca2+ indicators in complete medium

containing 4 mM probenecid and 0.02% pluronic F-127 at 37uC
for 30 min. After the first wash, the cells were further incubated

for 30 min at 37uC to allow de-esterification of the dye and then

were washed twice and resuspended in the assay buffer

(Dulbecco’s PBS containing 1 mM CaCl2, 0.1 mM MgCl2,

5 mM glucose, and 0.025% BSA) at 106 per ml. After the

background measurements, the pMHC oligomers of interest were

promptly added to 1 ml of the CTL suspension at various

concentrations, and the samples were analyzed on an Epics XL-

MCL flow cytometer. The data were analyzed with FlowJo

software (Tree Star, Ashland, OR).

Supporting Information

Figure S1 Relative equilibrium binding of noncognate
pMHC/QD conjugates to CTL surface does not depend
on the conjugates concentration added to the extracel-
lular medium. Cognate or noncognate pMHC/QD were

combined with the CTL and the mixture was incubated for 30

minutes prior to flow cytometry analysis. The dependences of MFI

associated with the cell surface upon concentration of cognate and

noncognate conjugates added to the extracellular medium were

evaluated. Actual (A) and normalized (C) values of MFI of cognate

IV9-HLA-A2/QD(520) and noncognate Tax-HLA-A2/QD(520)

conjugates bound to the surface of 68A62 CTL at 2 different

concentrations are shown. Comparison of actual (B) and

normalized (D) values of MFI of cognate GL9-HLA-A2/

QD(520) and noncognate Tax-HLA-A2/QD(520) bound to the

surface of CER43 CTL at indicated concentrations is presented.

(TIF)

Figure S2 The extent of the equilibrium binding of
noncognate pMHC/QD to the T-cell surface depends on
the density of the pMHC ligands assembled on the
dextran scaffold. Cognate (IV9-HLA-A2) or noncognate (Tax-

HLA-2) proteins were assembled on a linear fluorescent-labeled

dextran scaffold to yield p-HLA-A2/dextran oligomers containing

either 4 (left panels) or 40 (right panels) pHLA-A2 arms per

dextran molecule of the same length. The cognate and noncognate

oligomers were incubated with 68A62 CTL for 30 minutes and the

amount of IV9-HLA-A2/dextran or Tax-HLA-A2/dextran asso-

ciated with the surface of the CTL was determined by flow

cytometry. Actual (A and B) and normalized (C and D) values of

MFI at various concentrations of the tested IV9-HLA-A2/dextran

or Tax-HLA-A2/dextran conjugates are shown.

(TIF)

Figure S3 The binding kinetics of pMHC/QD and
pMHC/Streptavidin oligomers to the surface of 68A62
CTL as established by flow cytometry. The binding kinetics

of various QD(520)-based conjugates (red), i.e., strong agonist IV9-

HLA-A2/QD (A), a weak agonist A6-HLA-A2/QD (B) or IV9-

HLA-A2mut/QD containing HLA-A2 mutant (A245V) (C), was

compared with binding kinetics of Streptavidin-based conjugates

(blue) containing either IV9-HLA-A2 (A) or A6-HLA-A2 (B) or

IV9-HLA-A2mut (C) to 68A62 CTL. The conjugates were added

to the extracellular medium (25 nM) at time zero. Aliquots were

taken at indicated time points and MFI associated with the CTL

was measured by flow cytometry. The dependence of the MFI vs

time is shown.

(TIF)

Figure S4 Kinetics of TCR-mediated Ca2+ signaling in
68A62 CTL induced by IV9-HLA-A2/QD(520) or IV9-
HLA-A2/QD/Streptavidin oligomers at various concen-
trations. IV9-HLA-A2/QD(520) (A) or IV9-HLA-A2/QD/

Streptavidin (B) oligomers were added to the extracellular medium

of Fluo-3 labeled 68A62 CTL at indicated concentration, and

changes in the fluorescent intensity of Fluo-3 as a function of time

were measured by flow cytometry. The data were analyzed with

FlowJo software. From the initial increase of intracellular Ca2+, we

have determined slope for each kinetic curve. The dependence of

the slope upon concentration for both oligomers is presented on

panel C.

(TIF)

Figure S5 The influence of the density of cognate pMHC
displayed on QD of different sizes on the Ca2+ signaling
kinetics induced in 68A62 CTL. Kinetics of intracellular Ca2+

accumulation in Fluo-3 labeled 68A62 CD8+ CTL stimulated with

cognate IV9-HLA-A2 ligands assembled on a smaller QD(520)

(red trace) or a larger QD(620) (green trace) scaffolds with the

same geometry. Left: the density of IV9-HLA-A2 proteins (red) on

the 2 probes was similar, while the valency on the 2 probes differed

by a factor of 4, i.e., 10/dot and 40/dot, respectively. Right:

cognate IV9-HLA-A2 (red) on QD(620) were diluted by inactive

Tax-HLA-A2mut molecules (grey) to decrease the density of the

cognate ligands by 4-fold, but keeping their valency similar to that

on QD(520), i.e., 10/dot. Representative results are shown.

(TIF)

Figure S6 Quantification of the number of pMHC
molecules per dot in pMHC/QD conjugates. His6-

terminated IV9-HLA-A2 proteins were combined with QD at
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10:1 molar ratio in 10 mM sodium tetraborate buffer, 25 mM

NaCl, pH 8.0 to allow self-assembly of IV9-HLA-A2/QD

conjugates [8]. The conjugates were loaded on Superdex

200 HR column in the same buffer and the optical density at

280 nm was measured in the eluted fractions. The first peak of the

elution profile represents pMHC/QD conjugates while the second

peak corresponds to the unbound pMHC protein. At protein-to-

QD ratio 10:1, essentially all IV9-HLA-A2 molecules were bound

to QD resulting in IV9-HLA-A2/QD conjugates containing 10

IV9-HLA-A2 molecules per dot (B). When protein-to-QD ratio

was increased to 16:1, the peak of unbound protein (C)

corresponding to the position of soluble IV9-HLA-A2 protein

(A) eluted in the absence of QD was substantially larger. Relative

adsorption of QD and pMHC protein at 280 nm, which were

determined prior to the conjugate formation, and the integrated

peak area were used for quantitative analysis of SEC chromato-

gram. Increase of IV9-HLA-A2-to-QD ratio did not result in a

notably higher number of conjugated IV9-HLA-A2 molecules

(10–12.5) per dot suggesting that the IV9-HLA-A2 molecules on

the surface of QD were very closely positioned to each other. The

same approach was used to evaluate the number of pHLA-A2

molecules per dot in pHLA-A2/QD conjugates assemble on a

larger QD(620), which were found approximately equal to 40

molecule pMHC per dot (not shown). The results of this analysis

are in a good agreement with previously published data based on

FRET measurements between the center of the core of QD

(donor) and fluorescent-labeled IV9-HLA-A2 (acceptor) displayed

on the QD surface [8].

(TIF)
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