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Abstract

The highly conserved polo-like kinases (Plks) are potent regulators of multiple functions in the cell cycle before and during
mitotic cell division. We investigated the expression pattern of Plk genes and their potential role(s) in the rat ovary during
the periovulatory period. Plk2 and Plk3 were highly induced both in intact ovaries and granulosa cells in vivo after treatment
with the luteinizing hormone (LH) agonist, human chorionic gonadotropin (hCG). In vitro, hCG stimulated the expression of
Plk2 in granulosa cells, but not Plk3. This induction of Plk2 expression was mimicked by both forskolin and phorbol 12
myristate 13-acetate (PMA). Moreover, Plk2 expression was reduced by inhibitors of prostaglandin synthesis or the EGF
pathway, but not by progesterone receptor antagonist (RU486) treatment. At the promoter level, mutation of the Sp1
binding sequence abolished the transcriptional activity of the Plk2 gene. ChIP assays also revealed the interaction of
endogenous Sp1 protein in the Plk2 promoter region. Functionally, the over-expression of Plk2 and Plk3 arrested granulosa
cells at the G0/G1 phase of the cell cycle. In contrast, the knockdown of Plk2 expression in granulosa cells decreased the
number of cells in the G0/G1 stage of the cell cycle, but increased granulosa cell viability. In summary, hCG induced Plk2 and
Plk3 expression in the rat ovary. Prostaglandins and the EGF signaling pathway are involved in regulating Plk2 expression.
The transcription factor Sp1 is important for Plk2 transcriptional up-regulation. Our findings suggest that the increase in Plk2
and Plk3 expression contributes to the cell cycle arrest of granulosa cells which is important for the luteinization of
granulosa cells during the periovulatory period.
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Received December 2, 2011; Accepted June 29, 2012; Published August 1, 2012

Copyright: � 2012 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The present study was supported by the National Natural Science Foundation of China (21007056 to J.L., and 31100845 to F.L.), Scientific Research
Foundation of Hangzhou Normal University (2011QPL15 to F.L.), and National Institutes of Health grants (HD057446 to M.J.). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jliue@zju.edu.cn

Introduction

In females, an acute rise of luteinizing hormone (LH) released

from the pituitary (called the LH surge) triggers ovulation and

induces terminal differentiation of preovulatory granulosa cells to

become luteal cells. The LH surge terminates granulosa cell

proliferation and initiates a program of luteinization in which the

cells stop their division and differentiate into luteal cells [1]. The

cell cycle progression of periovulatory granulosa cells is controlled

by a delicate balance between positive and negative regulators.

Members of the family of polo-like kinases (Plks) were reported to

be major cell cycle regulators in differentiated cells [2]. Plk1 was

first reported to associate with mitotic spindle poles in the

Drosophila melanogaster polo mutation [3]. So far five mammalian

Plks family members have been characterized in murine and

human, including Plk1 (Xenopus Plx1), Plk2/Snk (Xenopus Plx2),

Plk3/Prk/FnK (Xenopus Plx3), Plk4/Sak and Plk5 [4].

Among the five members in the mammalian Plks family, Plk1

has been most thoroughly studied. The major function of Plk1 is

promoting mitotic entry by phosphorylation of Cdc25C [5,6]. In

contrast to Plk1, Plk3 is an inhibitor of Cdc25C and G2/M

transition and its over-expression results in rapid cell cycle arrest

and apoptosis [7,8]. The role of Plk2 in the cell cycle remains

unclear. Plk2 is not required for cell division but seems to influence

the G1 progression [9]. Burns et al. reported an anti-proliferative

impact of Plk2 such that induction of Plk2 in a p53-dependent

manner contributed to cell cycle arrest in the G2 phase and/or

mitosis [10]. The fourth member, Plk4 is required for late mitotic

progression and maintenance of chromosomal stability [11]. More

recently, a new member of mammalian Plk family, Plk5, has been

identified in murine and human cells [12,13]. Due to lack of the

kinase domain in human, Plk5 does not seem to have a role in cell

cycle progression but retains important functions in neuron

biology [12].

Considering the roles of Plk1-4 in regulating cytokinesis, we

hypothesized that the LH surge induces these Plks and that their

induction is involved in the transition of granulosa cells to luteal

cells. In the present study, we investigated the periovulatory

expression patterns of the Plk family members. We found that the

in vivo expression of Plk2 and Plk3 was dramatically increased after

treatment with hCG which was used to mimic the preovulatory

LH surge. Moreover, hCG stimulated the expression of Plk2, but

not Plk3, in granulosa cell cultures. Given the similar and dramatic

induction of Plk2 by hCG both in vivo and in vitro, we further

explored the regulatory mechanism of Plk2 expression and the
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potential role of Plk2 in periovulatory granulosa cells using an in

vitro model.

Results

hCG induced the expression of Plks in periovulatory rat
ovaries
The gonadotropin-primed immature female rat is a well

accepted experimental model to examine ovulation as well as

ovarian granulosa cell function [14,15,16–18]. Because LH and

hCG share numerous functional homologies and act through the

same receptor, hCG has been widely used as an effective substitute

for LH to induce periovulatory processes. Therefore, in the

present study, we used hCG to mimic the LH surge in vivo and the

action of LH in preovulatory granulosa cell cultures.

The expression patterns of Plk1, Plk2, Plk3 and Plk4 mRNA

and protein were analyzed in ovaries collected at different times

after hCG administration (Fig. 1). Both Plk2 and Plk3 gene

expression increased after hCG although their expression pattern

differed from each other. Plk2 mRNA expression increased

between 4 and 8 h after hCG to the levels approximately 16-

fold higher than that of the 0 h and returned to control levels by

12 h (Fig. 1A). Plk3 mRNA expression increased 7-fold at 4 h after

hCG and remained high until 24 h (Fig. 1A). In contrast, the

expression of Plk1 and Plk4 did not change after hCG treatment

(Fig. 1A). Because Plk2 and Plk3, but not Plk1 and Plk4, are

stimulated by hCG, we subsequently examined the protein levels

of Plk2 and Plk3 in vivo. Both Plk2 and Plk3 protein levels increased

at 4 h after hCG in the intact ovary (Fig. 1B).

Effects of hCG on granulosa cell expression of Plk2 and
Plk3 mRNA in vivo and in vitro
Among the Plk family members, Plk2 and Plk3 expression

prominently increased in the intact ovary. Therefore, their relative

expression in the granulosa cell compartment was also assessed.

Granulosa cells were isolated from ovaries at various times after

hCG administration. The levels of Plk2 mRNA were highest at 8 h

after hCG (Fig. 2A), similar to the peak levels observed in the

whole ovary. Plk3 mRNA expression increased within 4 h after

hCG and continued to increase until 12 h (Fig. 2B). Both Plk2 and

Plk3 protein levels were increased at 4 h, reached peak levels at

8 h and 12 h, and declined at 24 h after hCG treatment (Fig. 2C).

We further determined whether the induction of Plk2 and Plk3

in granulosa cells in vivo can be mimicked in vitro by the hCG

treatment. The results showed that hCG induced a similar pattern

of Plk2 mRNA expression in cultured granulosa cells (Fig. 3A)

comparable to its expression in vivo (Fig. 2A), with the exception

that the highest expression was observed at 4 h after hCG in vitro.

The increase of Plk2 protein was observed at 4 h and 8 h after

hCG treatment (Fig. 3C). Interestingly, the Plk3 expression pattern

in cultured granulosa cells was different from its in vivo expression

pattern. The expression of Plk3 mRNA increased 2-fold at 4 h by

hCG treatment compared to control (Fig. 3B), but quickly declined

to the 0 h value by 8 h in the culture. Moreover, Plk3 protein

levels were not increased by hCG (Fig. 3C).

Regulation of Plk2 mRNA expression
The fact that Plk2 expression was dramatically increased by

hCG suggests that it may play an important role in periovulatory

granulosa cells. Thus, we further investigated the regulation of

Plk2 expression. It is well known that LH/hCG activates both

protein kinase A (PKA) and protein kinase C (PKC) signaling

pathways in preovulatory granulosa cells [19]. To determine

which signaling pathway(s) is involved in the up-regulation of Plk2

mRNA expression in response to hCG stimulation, granulosa cells

from rat preovulatory ovaries (48 h post-PMSG) were cultured

with hCG, forskolin (FSK) which is an activator of adenylate

cyclase, or an activator of PKC, phorbol 12 myristate 13-acetate

(PMA) for 4 h. The treatments of FSK, PMA, or FSK+ PMA

increased Plk2 mRNA and protein levels in preovulatory

granulosa cell cultures (Fig 4A and B). Both PKA and PKC

pathway inhibitors (H89 and GF109203X) could block hCG-

dependent Plk2 mRNA induction at 4 h (Fig. 4A). These results

suggested that both PKA and PKC signaling pathways are

involved in hCG-induced Plk2 expression.

hCG also sets in motion a number of steps which are crucial for

follicular rupture and oocyte release including activation of

epidermal growth factor (EGF) signaling and induction of

progesterone receptors (PGR) and prostaglandin-endoperoxide

synthase 2 (PTGS2) [20]. We tested whether the up-regulation of

Plk2 mRNA is mediated by the hCG-induced activation of these

signaling pathways using RU486 to block PGR action, NS398 to

inhibit PTGS2, and AG1478 to prevent EGF signaling. AG1478

and NS398 reduced the hCG-stimulated expression of Plk2 by

hCG (Fig. 4A and B), whereas RU486 treatment had no effect on

Plk2 mRNA induction (Fig. 4A and B).

Reduction of Plk2 promoter activity by mutation of Sp1
binding sequences in preovulatory granulosa cells
To investigate which transcription factors are important for Plk2

transcription, three Plk2 promoter reporter constructs (2884/+37,
2126/+37, and 248/+37 bp) were transfected into granulosa

cells isolated from PMSG-primed immature rats. The transfected

granulosa cells were treated with FSK+PMA which mimics the

action of an ovulatory dose of LH/hCG [15,16–18]. Luciferase

activity of 2884/+37 and 2126/+37 bp Plk2 construct was

stimulated by FSK+PMA, whereas FSK+PMA did not stimulate

luciferase activity of the 248/+37 bp construct (Fig. 5A). This

observation suggested that the -126 bp/248 bp region was

important for FSK+PMA-stimulated Plk2 promoter activity. In

granulosa cells, Sp1 was found to be activated to promote the

transcription of genes involved in ovulation or luteinization after

an hCG stimulus [21]. As there is one Sp1 binding site in the

2126 bp/248 bp region of the rat Plk2 promoter, we determined

whether Plk2 mRNA expression is regulated by the Sp1

transcription factor. Mutation of the Sp1 binding site in 2126/

+37 bp Plk2 promoter construct resulted in reduced agonist-

stimulated transcription activity, suggesting that Sp1 is involved in

Plk2 transcriptional regulation (Fig. 5A). The mutation of Sp1 also

decreased the basal activity of Plk2 promoter construct, suggesting

that Sp1 is important for Plk2 basal transcription (Fig. 5A).

Endogenous Sp1 binds to the Plk2 promoter region in
periovulatory granulosa cells
To further determine the interaction between Sp1 protein and

Sp1 binding motifs in the Plk2 promoter in vivo, ChIP assays were

performed on chromatin samples extracted from periovulatory

granulosa cells. PCR analysis revealed that immunoprecipitation

of endogenous Sp1 enriched chromatin fragments containing the

Sp1 binding sequence in the promoter region compared to that of

normal rabbit IgG at 8 h post-hCG (Fig. 5B). This result indicated

that endogenous Sp1 protein was associated with the Plk2

promoter in periovulatory granulosa cells.

Ovarian Plks
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Cell cycle analysis of granulosa cells after over-expression
or knockdown of Plk2
To investigate the potential function of Plk2 in granulosa cells,

we used over-expression or siRNA approaches. In the over-

expression experiment, granulosa cells from preovulatory ovaries

were infected with either a recombinant Ad-GFP or Ad-Plk2

adenovirus. Western blot results confirmed that Plk2 was highly

expressed in the granulosa cells (Fig. 6A). The over-expression of

Plk2 resulted in an alteration in the population of granulosa cells

entering the cell cycle (Fig. 6B). The percentage of cells in the G0/

G1 phase increased from 79.6% to 95.4% in granulosa cells over-

expressing Plk2, whereas the percentage of cells in the S phase

markedly decreased from 20.4% to 4.6% (Fig. 6B). In the siRNA

experiment, Plk2 protein knockdown was observed in granulosa

cells transfected with Plk2 siRNA in the presence of hCG

treatment (Fig. 6A). In contrast to the data from the over-

expression study, Plk2 siRNA reduced the percentage of cells in

the G0/G1 phase from 93.9% to 75.4%, increased the percentage

of cells in the G2 phase from 0 to 1.5% and S phase from 6.1% to

23.1% (Fig. 6C). An MTS assay was also used to determine the

effect of Plk2 on the viability of granulosa cells. The results of MTS

assay showed that the viability of granulosa cells increased

significantly after Plk2 siRNA treatment (Fig. 6D), which suggested

that the number of viable granulosa cells increased after Plk2

siRNA treatment. These findings suggest that Plk2 expression

blocks granulosa cell proliferation.

Cell cycle analysis of granulosa cells after over-expression
of Plk3
To investigate the effects of Plk3 on cytokinesis of granulosa

cells, Plk3 over-expression adenovirus vector Ad-Plk3 was also

constructed. The over-expression of Plk3 resulted in a similar

alteration in the population of granulosa cells entering the cell

cycle as observed for overexpression of Plk2 (Fig. 6E). The

percentage of cells in the G0/G1 phase increased from 83.3% to

92.6% after over-expressing of Plk3, whereas the percentage of

cells in the S phase markedly decreased from 16.7% to 7.4%

(Fig. 6E).

Figure 1. The expression of Plks in the rat ovary after hCG treatment. Rats were injected with PMSG for 48 h, treated with hCG, and ovaries
collected at 0, 4, 8, 12, or 24 h after treatment. The data are expressed relative to the 0 h. (A) Real-time PCR was used to analyze the expression of
Plk1, Plk2, Plk3 and Plk4 in intact preovulatory ovaries. Relative levels of mRNA for Plk1, Plk2, Plk3 and Plk4 were normalized to L32 in each sample
(mean 6 SEM; n = 3 independent experiments). (B) Plk2 and Plk3 protein levels in rat ovary were analyzed using western blot. Bars with no common
superscripts are significantly different (r ,0.05).
doi:10.1371/journal.pone.0041844.g001

Ovarian Plks
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Discussion

In response to the LH surge, proliferating granulosa cells

undergo an irreversible exit from the cell cycle and differentiate to

luteal cells. Numerous signals and regulators have been reported to

be involved in the process. In this study, we demonstrated that

Figure 2. Plk2 and Plk3 expression increased in rat granulosa
cells in vivo after hCG administration. Rat granulosa/luteal cells
obtained from PMSG primed rat preovulatory ovaries were collected at
0, 4, 8, 12, or 24 h after hCG administration. (A-B) The expression of Plk2
(A) and Plk3 (B) mRNA was analyzed using real-time PCR. Relative levels
of mRNA for Plk2 and Plk3 were normalized to L32 in each sample
(mean 6 SEM; n = 3 independent experiments). (C) Western blot shows
Plk2 and Plk3 protein levels at different time points after hCG treatment.
Bars with no common superscripts are significantly different (r ,0.05).
doi:10.1371/journal.pone.0041844.g002

Figure 3. Stimulation of Plk2 and Plk3 expression by hCG in
cultured rat granulosa cells in vitro. Granulosa cells obtained from
rat preovulatory ovaries (48 h post-PMSG) were cultured in medium
alone (Control) or with hCG (1 IU/ml) for different time points. (A-B)
Real-time PCR analysis shows the expression of Plk2 (A) and Plk3 (B)
mRNA. Relative levels of Plk2 and Plk3 mRNA were normalized to L32 in
each sample (mean 6 SEM; n = 3 independent culture experiments). (C)
Western blot shows Plk2 and Plk3 protein levels at 4 and 8 h after hCG
treatment in rat granulosa cells in vitro. Bars with no common
superscripts are significantly different (r ,0.05).
doi:10.1371/journal.pone.0041844.g003

Ovarian Plks
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both Plk2 and Plk3 expression are induced prior to ovulation and

that manipulation of Plk2 or Plk3 expression impacts the cell cycle

kinetics of rat granulosa cells.

There are limited reports on the expression and localization of

the mammalian Plk family in the ovary. Plk1 mRNA was detected

in mouse ovarian tissue [22], and it was detected in the mouse

oocyte where it was required for oocyte meiotic maturation [23].

Gene screening of ovaries from gonadotropin-primed immature

rats revealed that Plk2 was highly induced by hCG [24]. In situ

hybridization analysis showed that Plk2 was localized to granulosa

cells of preovulatory follicles [24]. In the surveys of various tissues,

relatively high levels of Plk3 mRNA were detected in the mouse

and human ovary [25,26]. The mRNA expression for Plk4 was

almost undetectable in the mouse and human ovarian tissues

[27,28]. In the present study, mRNA expression for Plk1 and Plk4

did not change in periovulatory ovaries or isolated granulosa cells

in response to hCG, suggesting that they may not be involved in

the transition of granulosa to luteal cells.

Figure 4. Regulation of Plk2 expression in granulosa cells in vitro. (A) Real-time PCR analysis shows the expression of Plk2 in rat granulosa
cells cultured in medium alone (Ctrl) or with hCG (1 IU/ml), forskolin (FSK, 10 mM), phorbol 12 myristate 13-acetate (PMA, 20 nM) or FSK+PMA for 4 h.
The expression of Plk2 was also analyzed in granulosa cells cultured with hCG in the absence or presence of the inhibitor of PKA (H89, 10 mM),
inhibitor of PKC (GF109203X, 1 mM), EGF receptor tyrosine kinase selective inhibitor (AG1478, 1mM), the PGR antagonist (RU486, 1mM), or the PTGS2
inhibitor (NS-398, 1mM) for 4 h. Relative levels of mRNA for Plk2 were normalized to L32 in each sample (mean 6 SEM; n = 3 independent culture
experiments). (B) Western blot shows Plk2 protein levels in rat granulosa cells after different treatments. GF, GF109203X; AG, AG1478; RU, RU486; NS,
NS-398. Bars with no common superscripts are significantly different (r ,0.05).
doi:10.1371/journal.pone.0041844.g004

Figure 5. Sp1 binds to the Plk2 promoter and regulates the transcriptional activity of the Plk2 promoter reporter construct. (A) Plk2
promoter reporter constructs (2884/+37,2126/+37, and248/+37 bp) or empty luciferase reporter vector (LUC) were transfected into granulosa cells
isolated from PMSG-primed immature rats. Granulosa cells were then treated with or without FSK (10 mM) +PMA (20 nM) for 8 h. Firefly luciferase
activities were normalized to Renilla luciferase activities. (B) ChIP detection of Sp1 transcription factor binding to the rat Plk2 promoter region in
granulosa cells. A DNA fragment (2129 to +31 bp) containing the Sp1 binding site was enriched in chromatin samples immunoprecipitated with Sp1
antibody. Each experiment was performed in triplicate and the experiment was repeated at least three times. Bars with no common superscripts are
significantly different (r ,0.05).
doi:10.1371/journal.pone.0041844.g005

Ovarian Plks
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The expression of Plk2 and Plk3 was highly induced in

granulosa cells in vivo after hCG treatment. The induction of

Plk2 mRNA in granulosa cells in vivo is much higher than that in

whole ovary suggesting that Plk2 is predominately expressed in the

granulosa cell compartment. However, previous reports have also

demonstrated Plk2 in the theca interstitial cells [29]. For example,

in situ hybridization revealed that there is substantial signal in the

theca interstitial cells at 1 and 3 h after hCG [29]. In contrast to

Plk2 mRNA expression, the induction of Plk3 mRNA expression

was similar between the granulosa cell compartment and intact

ovary implying that other ovarian compartments contribute to the

overall Plk3 mRNA expression. Interestingly, the expression

profiles of Plk3 differ between in vitro and in vivo. We would

propose that this difference in response to hCG relates to the

Figure 6. Cell cycle analysis of granulosa cells after over-expression of rat Plk2 and Plk3 or knockdown of rat Plk2. (A) Western blot
shows that Plk2 is either highly expressed or silenced in granulosa cells which were treated with Ad-Plk2 adenovirus or Plk2 siRNA, respectively. Plk3
is highly expressed in granulosa cells which were treated with Ad-Plk3 adenovirus. (B) Granulosa cells infected with the Ad-Plk2 or Ad-GFP (control)
adenovirus vector for 48 h were analyzed for cell cycle kinetics. (C) Granulosa cells treated with Plk2 siRNA or scrambled siRNA (control) for 48 h were
analyzed for cell cycle kinetics. The cells at each stage of cell cycle, G1, S, and G2 are depicted. (D) Granulosa cells were treated with Plk2 siRNA or
negative siRNA (control) in the presence of hCG for 24 h. Granulosa cell viability was measured using the MTS assay. (E) Granulosa cells infected with
the Ad-Plk3 or Ad-GFP (control) adenovirus vector for 48 h were analyzed for cell cycle kinetics. The experiments were repeated at least three times
and analyzed by paired t tests. *, r ,0.05.
doi:10.1371/journal.pone.0041844.g006

Ovarian Plks

PLoS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e41844



isolation procedure of the rat granulosa cells including a loss of

cell-cell contact, a disruption of the cell matrix interaction, and/or

a loss of communication with the thecal cell compartment. The

up-regulation of Plk2 and Plk3 after hCG led us to hypothesize

that they may be involved in the process of granulosa cell

luteinization.

Both the PKA and PKC signaling pathways are known to be

activated by LH/hCG in preovulatory granulosa cells [19]. In the

present study, both PKA and PKC pathways appear to be

involved in the regulation of Plk2 as either FSK or PMA can

mimic hCG induction of the Plk2 expression. In the ovary, the LH

surge stimulates a number of steps that include the activation of

progesterone, prostaglandin, and the EGF signaling pathways

[20]. The expression pattern of PTGS2, PGR, and EGF-related

peptides proceeds or is parallel to that of Plk2 expression. Various

specific inhibitors were used to test whether the hCG-stimulated

up-regulation of Plk2 is mediated by the action of progesterone,

prostaglandins, or EGF-related peptides. The results indicate that

prostaglandins and the EGF signaling pathway, but not pro-

gesterone, play important roles in regulating hCG-dependent Plk2

expression.

Sp1 as a transcription factor has been reported to enhance or

repress transcription of genes involved in differentiation, cell cycle

progression, and oncogenesis [30]. The expression of Sp1 is

constitutive in granulosa cells [31]. It is well recognized that Sp1 is

activated to promote the transcription of target genes which are

involved in ovulation and luteinization after the LH surge [21].

These genes include serum/glucocorticoid inducible-protein

kinase (Sgk) [32], early growth response protein-1 (Egr-1) [33],

cholesterol side-chain cleavage cytochrome P450 (CYP11A;

P450scc) [34], and progesterone receptor [30]. As one Sp1

binding site was found in rat Plk2 promoter, we determined

whether Plk2 mRNA transcription is also regulated by Sp1. The

mutation of the Sp1 binding site on the Plk2 promoter markedly

reduced the basal and FSK+PMA-induced transcriptional activity

in granulosa cells. The direct binding of Sp1 to the Plk2 promoter

was also observed in vivo by ChIP analysis. These findings suggest

that Sp1 is important for hCG mediated Plk2 transcriptional

induction as well as its basal transcription.

In response to the LH surge granulosa cells of preovulatory

follicles stop proliferation and begin to differentiate into luteal

cells. Many cell cycle regulators have been reported to play roles in

the process of luteinization, such as p27 Kip1, CyclinD2 and B cell

translocation gene (BTG) [16,35,36]. In the present study, in the

periovulatory granulosa cells undergoing differentiation to luteal

cells, LH/hCG dramatically induced the expression of Plk2 and

Plk3, which are supposed to be negative regulators of the cell cycle.

In mice embryos lacking Plk2, Plk2 was not required for cell

division but seemed to influence the G1 progression of embryonic

fibroblasts [9]. Plk2 deficient tumors grew much larger than

control tumors suggesting a tumor suppressor function for Plk2

[37]. The loss of Plk2 as a result of methylation dependent

silencing of the Plk2 gene has been discovered in patients with

Burkitt’s lymphoma [38]. These observations indicate an anti-

proliferative impact of Plk2 during mitosis. It has been shown that

Plk3 regulated M phase functions through direct regulation of

Cdc25C and over-expression of active Plk3 induced apparent cell

cycle G2/M arrest followed by apoptosis [7,8]. Thus, we further

investigated the effect of Plk2 and Plk3 on granulosa cell

proliferation. Over-expression of Plk2 and Plk3 in granulosa cells

resulted in a significant increase in the number of cells in the G0/

G1 stage of the cell cycle. In contrast, silencing Plk2 expression in

granulosa cells decreased the number of cells in the G0/G1 stage

of the cell cycle. In the mean time, the viability of granulosa cells

increased significantly after Plk2 siRNA treatment which may be

due to the increase of proliferation. Our results suggest that both

Plk2 and Plk3 contribute to the cell cycle arrest of granulosa cells

after LH surge.

In summary, the present study demonstrates that both Plk2 and

Plk3 are highly expressed in granulosa cells in vivo after hCG

administration, but only Plk2 is induced by hCG in vitro. The

induction of Plk2 is mediated by the PKA and PKC pathways, as

well as the hCG-induced activation of EGF signaling pathway and

prostaglandins. The transcription factor Sp1 is important for Plk2

transcription. Our novel findings suggest Plk2 and Plk3 may

regulate the cell cycle arrest of granulosa cells after the LH surge

which is critical for granulosa cell luteinization.

Materials and Methods

Ethics statement
The experimental protocol was approved by the University of

Kentucky Institutional Animal Care and Use Committee and

Institutional Animal Care and Use Committee at Zhejiang

University and complied with the principles of laboratory animal

care.

Materials and reagents
Molecular biological enzymes and molecular size markers were

purchased from Toyobo (Osaka, Japan). TrizolTM and pCRII-

TOPO Vector were purchased from InvitrogenTM Life Technol-

ogies, Inc. (Carlsbad, CA). Chemicals and reagents (PMSG, hCG,

FSK, PMA, H89, GF109203X, RU486, NS398, and AG1478)

were all purchased from Sigma Chemical Co. (St. Louis, MO)

unless mentioned.

Tissue collection
Immature female Sprague-Dawley rats were provided by

Harlan, Inc.(Indianapolis, IN) and Zhejiang University Laboratory

Animal Center and maintained on a 12L:12D cycle as described

previously [39,40]. On the morning of day 22–23 rats were

injected with pregnant mare’s serum gonadotropin (PMSG, 10 IU)

s.c to stimulate ovarian follicle development. Forty eight hours

later animals were injected with hCG (5 IU) s.c. to induce

ovulation. Ovaries were collected at 0 h (i.e. time of hCG

administration) or defined times after hCG administration (n = 3–5

animals/time point). Ovaries were stored at 280uC for later

isolation of total RNA or protein.

Isolation and culture of rat granulosa cells
Ovaries were collected 48 h after PMSG administration and

processed as described previously [39,40]. The cells were pooled,

filtered, pelleted by centrifugation at 2006 g for 5 min, and

resuspended in HyQ MEM-RS (ThermoFisher Scientific, Wal-

tham, MA, USA) media supplemented with 0.05 mg/ml genta-

micin and 16 insulin, transferrin, and selenium. The granulosa

cells were seeded in 10cm plates at 16106/well and cultured at

37uC in a humidified atmosphere of 5% CO2. The cells were

treated with various reagents (hCG, FSK, PMA, H89,

GF109203X, RU486, NS398, and AG1478) for time points

outlined below for each experiment. Each experiment was

performed at least three times.

Quantification of mRNA for Plk genes
Real-time PCR was used to measure expression of Plk1, Plk2,

Plk3 and Plk4 mRNA in vitro and in vivo. Oligonucleotide primers

for rat L32 (Forward 59-GAA GCC CAA GAT CGT CAA AA-

39, Reverse 59-AGG ATC TGG CCC TTG AAT CT -39 ), rat
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Plk1 (Forward 59-CCT ATT ACC TGC CTC ACC ATC C-39,

Reverse 59-CCT CAT TTG TCT CCC GAA CC-39 ), rat Plk2

(Forward 59- GAA TCC TGC ACC ATA AGC-39, Reverse 59-

TCT GCC TGA GGT AGT ATC G-39), rat Plk3 (Forward 59-

GAT AAC ATG GAA CTG AAG G-39, Reverse 59- TAC ATG

ACA CAA CCA AGG-39 ) and rat Plk4 (Forward 59- AAG CAT

CTC TTC AAG TCT TCC-39, Reverse 59-CTC CAT ACC

TAG TTG TCT GAC C-39 ) were designed using OMIGA 2.0

software (Oxford Molecular Ltd, Madison, WI, USA) and

synthesized by Shanghai Sangon Biological Engineering Technol-

ogy & Services (Shanghai, China). The specificity for each primer

set was confirmed by electrophoresis of the PCR products on

a 2.0% agarose gel. The PCR products were sequenced before

using. The melting (dissociation) curve was analyzed using a 7300

Real-Time PCR System (Applied Biosystems, Foster City, CA,

USA) after each real-time PCR. The real-time PCRs were carried

out as previously described [41,42]. The relative amount of each

Plk gene transcript was calculated using the 22DDCT method and

normalized to the endogenous reference gene L32.

Western blot analysis
Western blotting was performed as described previously [16,17].

Total protein was isolated from intact ovarian tissues and

granulosa cells. Thirty microgams of protein was separated on

a 10% SDS-PAGE gel and transferred to a nitrocellulose

membrane (Whatman, Sanford, ME). Blots were incubated with

the primary antibodies for Plk2 (1:200, Sigma-Aldrich, St Louis,

MO), Plk3 (1:100, Sigma-Aldrich) or actin (1:2000, Cell Signaling

Technology, Danvers, MA) overnight at 4uC. Blots were analyzed
using an enhanced chemiluminescence detection system (Pierce,

Rockford, IL) and exposed to x-ray film.

Generation of rat Plk2 promoter constructs and
granulosa cell transfection
Genomic DNA was isolated from rat tail samples using an easy-

DNA kit (Invitrogen). 921-bp (2884/+37), 163-bp (2126/+37)
and 85-bp (248/+37) fragment of the Plk2 gene were amplified

using the primers attached with restriction enzyme sites (KpnI and

NheI). Fragments of Plk2 promoter were cloned into the pGL3

basic vector (Promega, Madison, WI). Site-directed point muta-

tions of the Plk2 promoter were generated using a QuickChange II

site-directed mutagenesis kit according to the manufacturer’s

protocol (Stratagene). The sequences of the oligonucleotide

primers used to generate Plk2 promoter containing mutation

(shown in lowercase) are following: mutant (59- TGA CGT CAC

GAG GCC CaattC CAC CCA GCA GGC GCG -39).

Granulosa cells isolated from immature rats (48 h after PMSG)

were seeded into 96 well plates at 16105/well. Granulosa cells

were transfected with respective firefly luciferase reporter plasmids

(pGL3-basic vector or pGL3-Plk2 promoter constructs, 0.2mg/
well) and Renilla luciferase vector (pRL-TK vector) using

a Lipofectamine 2000 reagent (Invitrogen). The next day, cells

were treated with forskolin (FSK; 10 mM) and phorbol 12-

myristate 13-acetate (PMA; 20 nM) for 4 h. The cells were then

harvested to measure firefly and Renilla luciferase activities using

a dual-luciferase reporter assay system (Promega). Firefly luciferase

activities were normalized by Renilla luciferase activities and each

experiment was performed in triplicate at least three times.

Chromatin immunoprecipitation (ChIP) analysis
ChIP assay was performed on Sp1 in the Plk2 promoter region

using a ChIP kit (Upstate Biotechnology, Inc., Lake Placid, NY) as

described previously [18]. Granulosa cells were collected from

PMSG-primed immature rat ovaries at 0 and 8 h after hCG

injection. The nuclei of cells were released in lysis buffer and

sonicated to obtain DNA fragments (approximately 100–500bp).

Chromatin was immunoprecipitated overnight at 4uC with Sp1

antibody (5 mg/reaction; Abcam) or normal rabbit IgG (5 mg/
reaction; Santa Cruz Biotechnology) as a negative control. The

input chromatin (1:10 dilution) and immunoprecipitated chroma-

tin were analyzed by PCR. The primers were designed to amplify

fragments spanning the Sp1 motif in the Plk2 promoter, forward:

59-ACC CCG CAT CTA TCC ACA GTG C-39, reverse: 59-

CTC CCT ACT CTC TAG TCC GAC G-39. PCR products

were run on a 2% agarose gel. Experiments were performed at

least three times.

Generation of recombinant adenovirus vector and
granulosa cell infection
The AdEasy XL adenoviral vector system kit (Stratagene) was

used to construct Plk2 and Plk3 recombinant adenovirus. The

processes for generating and propagating recombinant adeno-

viruses were described previously [17]. Briefly, the full length of rat

Plk2 and Plk3 genes were cloned into the pShuttle-CMV vector

and then a recombinant Ad-Plk2 and Ad-Plk3 plasmids were

generated by homologous recombination. Ad-Plk2 and Ad-Plk3

plasmids were transfected into AD-293 cells (Stratagene) where

viral particles were further amplified. Adenoviruses were collected

and titered using the AdEasy viral titer kit (Stratagene).

Rat granulosa cells collected at 48 h after PMSG priming were

cultured in HyQ MEM-RS medium for 4 h before addition of the

adenoviruses. The granulosa cells were exposed to Ad-Plk2, Ad-

Plk3 or Ad-GFP at a multiplicity of infection (MOI) of 50 pfu/cell

for 2 h. Then the medium was replaced with fresh HyQMEM-RS

medium. Approximately a 70% infection efficiency of GFP-

adenovirus in granulose cells was routinely observed. Granulosa

cells were collected for total RNA isolation, protein extraction, or

flow cytometric analysis after adenovirus exposure for 48 h.

Knockdown of Plk2 by small interfering RNA (siRNA) in
granulosa cells in vitro
Granulosa cells were collected from immature rats 48 h after

PMSG administration. Cells were transfected with the specific

siRNA against Plk2 (Invitrogen, Carlsbad, CA) or scrambled

siRNA (Invitrogen) using the Lipofectamine 2000 reagent

(Invitrogen) according to the manufacturer’s instructions. Four

hours later, transfection media were replaced with fresh culture

media and the cells were treated with hCG (1 IU/ml) for further

48 h. The cells were collected for flow cytometric analysis or

processed to prepare cell lysates for Western blot analyses.

Flow cytometric analysis of granulosa cells
To determine the impact of Plk2 and Plk3 on cell cycle kinetics,

granulosa cells treated with Ad-Plk2 and Ad-Plk3 adenovirus or

Plk2 siRNA as described above. Granulosa cells were suspended

using 3% trypsin after culture and then stained for DNA content.

Briefly, ribonuclease A was added to cells (16106) and incubated

at 37uC for 30 min. Then, granulosa cells were resuspended in

propidium iodide (50 mg/mL) and incubated for 15 min in the

dark at 4uC. A FACS Calibur flow cytometer (Becton Dickinson,

Franklin Lakes, NJ) at Zhejiang University was used to determine

the cell cycle distribution at an excitation wavelength of 488 nm.

Histograms of cell cycle were obtained from 3 determinations

(100,000 cells/treatment).
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MTS cell viability assay
Preovulatory granulosa cells were transfected with scrambled

siRNA and Plk2 siRNA using the Lipofectamine 2000 reagent

according to the manufacturer’s instructions. Four hours later,

transfection media were replaced with fresh culture media and the

cells were treated with hCG (1 IU/ml) for further 24 h. Cell

viability was measured using CellTiter 96 AQueous One Solution

Cell Proliferation Assay (MTS) according to the manufacturer’s

protocol (Promega) as described previously [18]. Briefly, at end of

culture, 20 ml of reagent were added into each well and cells were

then returned to the incubator for an additional 2 h. The

absorbance was measured at 492 nm in the Infinite M200 Pro

plate reader (Tecan USA) to determine the formazan concentra-

tion, which is proportional to the number of live cells.

Statistical analyses
All the results are presented as means 6 SEM. Two-way

ANOVA was used to test differences in Plk2 and Plk3 expression

across time of culture and treatment. One-way and t-test analysis

of variance (ANOVA) was used to test differences in Plks mRNA

levels among treatments. If the effects of time of culture or

treatment were revealed significant, the means were compared by

Duncan’s test, with r ,0.05 considered significant.
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