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A heterodimer consisting of two or more different kinds of proteins can display an enormous num-
ber of distinct molecular architectures. The conformational entropy is an essential ingredient in the
Helmholtz free energy and, consequently, these heterodimers can have a very complex phase struc-
ture. Here, it is proposed that there is a state of proteins, in which the different components of a het-
erodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have
been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with
their protein components coexisting in different phases have been identified. An example is the PDB
structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the
intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the
other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of
gyration that neither of the two components in this dimer is in its own collapsed phase, correspond-
ing to a biologically active protein. The UNRES energy function has been utilized to confirm that,
if the two components are separated from each other, each of them collapses. The results presented
in this work show that heterodimers whose protein components coexist in different phases, can have
intriguing physical properties with potentially important biological consequences. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4734019]

I. INTRODUCTION

Protein oligomers constitute the majority of functional
units in living cells as, e.g., the mitochondrial complex III
(Ref. 1) or complex I.2 The mutual interactions usually in-
fluence the structure of each of the components substantially.
Natively-unfolded proteins,3 which attain a defined structure
only when bound to a protein counterpart,4 are an extreme
example. This process resembles the transition from a liq-
uid to a solid phase. Furthermore, protein aggregation into
large β-sheet fibrils can cause conformational diseases termed
amyloidoses.5, 6 The carcinogenic outcome of aberrant ex-
pression of some proteins is also a result of a change of the
pattern of the interactions with their partner proteins.7

The problem of protein oligomerization and aggregation
has received great attention,8–10 starting from the very begin-
ning of research on protein structure, and there now exists
an enormous body of experimental11–14 and theoretical15–18

research on the subject. Different oligomers/aggregates are
mainly treated from the point of view of the type of fold8, 9

or specific interactions that stabilize them,19, 20 rather than in
terms of the identification of their universal, more quantitative
features.
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On the other hand, the thermodynamic and spectroscopic
data of proteins in solution are often interpreted in terms of
the two-state model, according to which the ensemble of pro-
tein molecules is a superposition of the folded and the un-
folded phase.21 Thus, a protein in solution can be regarded
as two coexistent phases, a concept quite familiar in poly-
mer research. Protein heterodimers can thus be treated by the
conventional mean-field Flory-Huggins theory,22–25 which en-
ables one to compute the fraction of each monomer in the
collapsed (folded) phase. The conventional Flory-Huggins
theory,22, 23 however, assumes that individual protein chains
can be modeled in terms of random walks. But biologically
active proteins are mainly in a collapsed phase. Moreover,
the description in terms of volume fraction of the folded and
the unfolded conformation cannot account for the difference
in the stability of different protein segments. Thus, a mean-
field approach22, 23 is not appropriate to describe individual
proteins or protein oligomers at a detailed level.

The phase structure of a system in thermal equilibrium is
determined by the minima of the thermodynamic Helmholtz
free energy F, which is a sum of the internal energy U and the
entropy S [Eq. (1)]. For a protein, this general principle has
been formulated by Anfinsen26 as the thermodynamic hypoth-
esis, according to which the native structure of a protein is the
global minimum of its Helmholtz free energy under physio-
logical conditions.

F = U − T S. (1)
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The entropy is a measure of conformational complexity. In
general, an increase in the volume of the conformational
space also leads to an increased phase complexity.24, 27 Con-
sequently, macromolecular complexes such as protein het-
erodimers should have a much richer phase structure than
an ensemble of essentially structureless point-like molecules.
Various factors can influence the volume of the available con-
formational space, such as protein architecture and the degree
of polymerization. Even for a pair of two distinct proteins, the
number of all possible conformations can be enormous.24, 27

In this work, the structures of protein heterodimers are
analyzed in terms of coexisting polymer phases. Instead of a
conventional description, based on the notions of collapsed
or not collapsed states, a more refined analysis is performed.
For this the dependence of the radius of gyration on chain
length to distinguish different phases, which differ by chain
compactness, is utilized as the order parameter. The statis-
tics of oligomeric proteins in the protein data bank (PDB)
(Ref. 28) is analyzed first and then, as a concrete example, fo-
cus is placed on the behavior of a dimer that originates from
the transmembrane amyloid precursor protein (APP) by pro-
teolytic cleavages.29, 30 The APP has several isoforms that can
be present in many organs; however, its exact physiological
function remains under debate.30–32 Full understanding of the
proteolytic processing of APP is also lacking.30–32 But there
appears to be two different pathways for proteolytic cleavage,
a nonamyloidogenic, and an amyloidogenic one. The latter
gives rise to the extracellular Aβ42 peptides that may be in-
volved in Alzheimer’s disease.30, 33 Both pathways also give
rise to an isoform of the intracellular APP (AICD).34 In iso-
lation, AICD is presumed to be an intrinsically unstructured
protein.30–32 There are no structural data available in the pro-
tein data bank that could be used to elucidate its physical
properties. But it can bind with the Fe65 family of nuclear
multidomain adaptor proteins.30, 34–37 Upon binding, AICD
assumes a regular form that can be analyzed by x-ray crystal-
lography. In the present article, the x-ray structure that is de-
scribed in the PDB under the code 3DXC (Ref. 38) is treated.
It is a complex of a 28-residue segment of AICD with Fe65,
that has 130 residues. The closely related 3DXD and 3DXE
complexes, also exist. These can be analyzed similarly and
with similar conclusions. It is found that the 3DXC complex
has very interesting physical properties that sets it apart from
all but a very few protein complexes. This AICD/Fe65 com-
plex is an example of an apparently previously unrecorded but
seemingly systematic phenomenon in the context of protein
research that is termed protein phase coexistence in this work:
Like ice together with water, the two proteins in this com-
plex are apparently in two different phases. An oligomer that
displays this phenomenon of phase coexistence under physi-
ological conditions is for sure an interesting object for future
research. But since the AICD/Fe65 complex has the supple-
mentary potential of being an important piece in the puzzle to
understand Alzheimer’s disease, there are many good reasons
to investigate its physical properties.

This paper is organized as follows: In Subsection II A,
the use of the radius of gyration and its variation with the
number of residues as a measure of compactness is re-
viewed. Subsections II B–II D develop the mathematical for-

malism to study the structure and dynamics of proteins: In
Subsection II B, it is explained how the Cα backbone can be
described in terms of its virtual-bond and virtual-torsion an-
gles. In Subsection II C, the description of protein geometry
in the collapsed phase in terms of a soliton solution of the
discretized nonlinear Schrödinger equation (DNLS) is out-
lined. Finally, in Subsection II D, the coarse-grained UN-
RES model39–42 of polypeptide chains is described briefly.
Use of this coarse-grained approach elongates the time scale
by over three orders of magnitude with respect to all-atom
simulations,43, 44 thus enabling us to observe significant con-
formational changes in comparatively short simulation time.

In Subsection III A, oligomers in the PDB are analyzed.
Two general classes of phase coexistent oligomers are iden-
tified. It is observed that the Alzheimer’s disease related
AICD/Fe65 dimer is an interesting example, with neither of
the two component chains in the collapsed phase.

In Subsection III B, the structure of AICD in the
AICD/Fe65 dimer with PDB code 3DXC is analyzed on gen-
eral grounds. It is shown that, despite being composed of two
solitons of the DNLS equation, the AICD is in a linear rod-
like phase. It is found that there are two natural positions for
the first soliton, and it is suggested that this could lead to a
genetic switch.

Finally, in Subsection III C, Langevin dynamics simula-
tions with the UNRES energy function39–42 are used to con-
firm that, in isolation, both AICD and Fe65 of the 3DXC
dimer collapse into the space-filling phase of biologically ac-
tive proteins.

A brief overview of the results in Sec. IV concludes the
article.

II. METHODS

A. Radius of gyration as an order parameter

It has been known for a long time22, 23, 25 that a linear
polymer chain such as a single-chain protein has a non-trivial
phase structure that depends both on the chemical proper-
ties and on the temperature of the polymer-solvent system.
In a good solvent environment, such as aqueous denaturating
agents, the interactions between the polymer segments and the
solvent molecules cause the polymer to expand and the poly-
mer behaves like a self-avoiding random walk. In a poor sol-
vent environment, such as water, the polymer-polymer self-
interactions dominate, and the polymer collapses into a space-
filling conformation. These two regimes are separated by the
�-point, at which the polymer can be modeled by an ideal
chain. Moreover, in the thermodynamical limit where the
number N of amino-acid residues is very large, certain aspects
of the phase structure become universal .45–48 An example of
a universal quantity is the compactness index ν. To define this
quantity, the radius of gyration Rg (Refs. 22–25) is introduced.

R2
g = 1

2N2

∑
i,j

(ri − rj )2, (2)

where ri are the coordinates of the atoms in the polymer.
For a protein, for simplicity, ri may be restricted to run
over the coordinates of only the backbone Cα atoms. The
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compactness index ν governs the large-N asymptotic form of
Eq. (2). When the number N of amino-acid residues becomes
very large, then49

R2
g

N large−−→ R2
0N

2ν(1 + R1N
−δ1 + · · ·), (3)

where R0 is the form factor that characterizes the length scale
(in ångstrøms) in the large-N limit, δ1, etc. are critical ex-
ponents, R1, etc. are the amplitudes; the terms with δ1, etc.
and R1, etc., account for finite-size corrections. Besides the
compactness index ν, the critical exponents δ1, etc., are uni-
versal quantities,49 but the amplitudes R0, R1, etc., are not
universal.49

As a universal quantity, ν is independent of the detailed
atomic structure. Different values of ν correspond to the dif-
ferent phases of the protein.22–25, 27 The four mean-field values
of ν are given by Eq. (4)22–25, 27, 49, 50

ν =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/3

1/2

3/5

1

. (4)

Under physiological, i.e., poor solvent conditions, in
which a single-chain protein collapses into the space-filling
conformation,22, 23 the mean field exponent ν = 1/3. For an
ordinary random-walk chain, the mean field value is ν = 1/2.
This phase appears at the �-point22, 23 that separates the col-
lapsed phase from the high-temperature self-avoiding random
walk phase for which the Flory value ν = 3/5 is found. Finally,
when ν = 1, the protein loses its inherently fractal structure
and scales like a rigid rod.23, 51 Examples of polypeptide struc-
tures that can represent this phase are monotonic α-helices or
polyproline II helices.

The mean-field values of the critical exponents ν, δ1, etc.,
in Eq. (3) are usually modified by fluctuations. For example,
in the universality class of the self-avoiding random walk, the
modified values are52, 53

ν = 0.5880 ± 0.0015,

δ1 = 0.47 ± 0.03.
(5)

A subsequent numerical Monte Carlo evaluation of the critical
exponents of Eq. (5), gave very similar values,49

ν = 0.5877 ± 0.0006,

δ1 = 0.56 ± 0.03.
(6)

In the case of the collapsed phase where ν ≈ 1/3 the value
of δ1 is not known to us. But from (5) and (6) one can estimate
that even in the case of a relatively short polypeptide chain,
such as the 28-residue segment of AICD considered here, the
finite-size correction to the radius of gyration can not be very
large. With (6), one estimates that in the ν ≈ 1/3 phase when
N = 28

Rg ≈ R0 · 281/3

(
1 + 1

2
R1 · 28−0.56

)
≈ 3.03 · R0 (1 + 0.08 · R1). (7)

Consequently, with R1 ∼ O(1), only the leading term needs to
be retained, even for protein chains with not more than around
28 or so residues.

The pre-factor R0 and the finite-size correction coefficient
R1 can, in principle, be computed for a protein. These fac-
tors contain all the effects of temperature and chemical mi-
crostructure, and all the atomic level details of the protein.
Consequently, for a protein, relation, Eq. (3) becomes valu-
able only when the numerical value of R0 is either unique or
can assume no more than a small number of clearly identifi-
able different values. It is found that this is indeed the case,
i.e., for proteins, the values of R0 are very restricted, but dif-
ferent, for collapsed proteins and for proteins that are not in
the collapsed phase. Moreover, it appears that, when N in-
creases, the detailed amino acid structure of a protein be-
comes increasingly irrelevant in determining the value of the
radius of gyration, i.e., for long protein chains, any inhomo-
geneity of the amino-acid sequence can be treated essentially
as a finite size correction in Eq. (3).

In detailed studies of proteins, the radius of gyration has
until now been utilized only sparsely.50, 54–57 It appears to us
that, commonly, the value of Rg has been viewed as nothing
more than a rough measure, with a systematic change in its
value indicating that protein collapse has taken place. In the
present article, another point of view is presented. It is pro-
posed that the seemingly quite small diversity in the values
that R0 assumes for proteins, both in the collapsed and in the
other available phases, suggests that Eq. (3) could assume a
much wider rôle in protein research. The goal sought here is
to scrutinize this potential usefulness of the radius of gyration
as a quantitative order parameter. It is aimed to develop both ν

and R0 here into practical tools to understand protein confor-
mations and phase structure, not only for monomers but also
for heterodimers.

B. Protein backbone geometry

We set the stage by explaining how protein geometry is
described in terms of the Cα backbone. For this purpose, the
positions ri of the backbone Cα atoms in Eq. (2) are utilized
to introduce the unit tangent vectors

ti = ri+1 − ri

|ri+1 − ri | , (8)

the unit binormal vectors

bi = ti−1 × ti
|ti−1 × ti | , (9)

and the unit normal vectors

ni = bi × ti . (10)

The orthogonal triplet (ni , bi , ti) determines a frame at the
positions ri of the backbone. The discrete virtual-bond an-
gles and the discrete virtual-torsion angles are defined by
Eqs. (11) and (12), respectively.

θi ≡ θi+1,i = arccos (ti+1 · ti) , (11)

γi ≡ γi+1,i = σ × arccos (bi+1 · bi) , (12)

with

σ = sgn[(bi−1 × bi) · ti]. (13)
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FIG. 1. Definitions of the variables of the UNRES model. The virtual-bond
angle θ i is determined by the three Cα carbons at sites i, i + 1, i + 2 and
is defined as the angle between the Cα

i · · · Cα
i+1 virtual-bond vector and the

Cα
i+1 · · · Cα

i+2 virtual-bond vector [Eq. (11)]. It should be noted that, for con-
sistency with the notation of Sec. II B, the angles θ used in this work are
complements of the original angles θ , i.e., π − θ (see, e.g. Ref. 39). The
Cα carbon atoms are represented by small open circles. The virtual-bond-
dihedral angle γ i it the angle between the two planes, determined by the
Cα at sites (i, i + 1, i + 2) and (i + 1, i + 2, i + 3) [Eqs. (12) and (13)].
In addition, the UNRES energy function [Eqs. (32)–(35)] involves the fol-
lowing structure, shown in the Figure: The interaction sites are peptide-bond
centers (p), and side-chain ellipsoids of different sizes (SC) attached to the
corresponding α-carbons with different virtual-bond lengths bSC. The UN-
RES energy is also a function of the coordinates of the SC and p sites which
are functions of (θ , γ , α, β) and also contains terms that depend explicitly on
these angles.

A graphic definition of these angles, and all the other ge-
ometric quantities that are used in this paper, is given in
Figure 1.

Conversely, if the angles (θ i, γ i) are known, Eq. (14) can
be used to construct the frame at position i + 1 iteratively
from the frame at position i. Once all the frames are com-
puted, the Cartesian coordinates of the entire Cα-trace can be
calculated from Eq. (15).⎛
⎜⎝

ni+1

bi+1

ti+1

⎞
⎟⎠ =

⎛
⎜⎝

cos θ cos γ cos θ sin γ − sin θ

− sin γ cos γ 0

sin θ cos γ sin θ sin γ cos θ

⎞
⎟⎠

i+1,i

⎛
⎜⎝

ni

bi

ti

⎞
⎟⎠

≡ Ri+1,i

⎛
⎝ ni

bi

ti

⎞
⎠ , (14)

rk =
k−1∑
i=0

|ri+1 − ri | · ti , (15)

where rk is the vector of the Cartesian coordinates of the kth
Cα atom. With no loss of generality r0 = 0 and t0 can be set
to point into the direction of the positive z-axis.

It should be noted that Eq. (15) does not involve the vec-
tors ni and bi . Consequently, any linear combination of these
two vectors can be selected in constructing the backbone. For
this, the frame (ni , bi) is rotated by an angle �i leaving ti

intact,⎛
⎜⎝

n

b

t

⎞
⎟⎠

i

→e�iT
3

⎛
⎜⎝

n

b

t

⎞
⎟⎠

i

=

⎛
⎜⎝

cos �i sin �i 0

− sin �i cos �i 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

n

b

t

⎞
⎟⎠

i

,

(16)
where the tensor (T i)jk is defined by Eq. (17).

(T i)jk = εijk,

[T i, T j ] = εijkT
k, i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3,

(17)

with

εijk =
{

1 if {ijk} is an even permutation of {1, 2, 3},
−1 if {ijk} is an odd permutation of {1, 2, 3}.

(18)

If the vectors n and b are combined into the complex vec-
tor

n + ib

Equation (16) can be recast into Eq. (19).

ni + ibi → ei�i (ni + ibi) ≡ e1
i + ie2

i . (19)

A direct computation shows that the frame rotation of Eq. (16)
induces the following transformations in Eq. (14),

θi T 2 → e�iT
3
(θiT

2) e−�iT
3
, (20)

γi → γi + �i−1 − �i. (21)

In what follows, Eqs. (20) and (21) are utilized to extend the
fundamental range [0, π ] of the virtual-bond angle θ i into
[−π , π ] mod(2π ), and the range of γ i to [−π , π ) mod(2π ).
This extension is compensated for in the fundamental range
of θ i by introducing the following transformation

θk → − θk for all k ≥ i

γi → γi − π.
(22)

It should be noted that regular protein secondary structures
correspond to definite values of (θ i, γ i). For example, for the
standard α-helix

α − helix :

{
θ ≈ π

2

γ ≈ 1
, (23)

and for the standard β-strand

β − strand :

{
θ ≈ 1

γ ≈ π
(24)

with the angles in radians. All the other regular secondary
structures such as 3/10 helices, left-handed helices, etc., can
be described in a similar way.

For the protein backbone with all peptide groups in a pla-
nar trans conformation, the following can be set:

|ri+1 − ri | = d ≈ 3.8 Å. (25)

For the present purposes, deviations from the value of Eq. (25)
are negligible even if the peptide bond involves proline,58 if
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only the trans peptide groups are considered. The excluded-
volume (steric) constraint [Eq. (26)] can also be imposed.

|ri − rk| ≥ 3.8 Å for |i − k| ≥ 2. (26)

C. Soliton description of protein-backbone geometry

Despite the apparent complexity of interactions that are
described by the various molecular dynamics force fields and
realistic coarse-grained energy functions, collapsed proteins
display a surprisingly small variety in their shapes. There
seems to be a self-organizing principle at work, that strongly
limits the diversity among the biologically active protein
structures. This is also reflected in Figure 2(a) that the values
of the a priori highly variable R0 in Eq. (3) are very restricted.
Indeed, the presence of a universal self-organizing principle
in protein folding is manifested in the PDB structures.28 For
example, thus far the structural classification scheme SCOP
(Ref. 59) has identified around 1.400 unique folds in the PDB
while, in CATH,60 there are currently around 1.300 topolo-
gies. These numbers have remained largely unchanged dur-

N
210 310

)
Å

 (
g

R

10

(a)

=0.37νÅ=2.290R

=3/5
ν

N
210 310

)
Å

 (
g

R

10

(b)

=0.94νÅ=1.020R

=0.97νÅ=0.480R

=3/5
ν

FIG. 2. (a) The (N, Rg) distribution of all individual single-chain PDB pro-
teins with resolution less than 2.0 Å and with less than 30% homology. The
lower line (ν = 0.37) describes mostly α-helical proteins and the top line
is a ν = 3/5 Flory line. There are practically no single-chain proteins above
the Flory line. (b) The (N, Rg) distribution for all multi-chain proteins from
the current PDB that are above the Flory line. The two clusters given by
equation (38), are clearly visible. The values of R0 and ν shown in the graphs
were determined by linear regression.

ing the last 3–4 years, suggesting that the number of different
protein folds is quite limited, and probably most of them have
already been found.59–62 The success of SCOP and CATH
and other approaches such as FSSP (Ref. 63) in classifying
proteins confirms that proteins are built in a modular fashion,
from a relatively small number of elemental components.

In Ref. 64, it has been observed that the self-similar mod-
ular structure of proteins can be described mathematically in
terms of a soliton solution65, 66 to a discrete version of the non-
linear Schrödinger (DNLS) equation.67–70 The original DNLS
equation already shares a long history with protein research. It
was introduced by Davydov67 who also showed that the equa-
tion supports a soliton solution. He proposed that the soliton
explains how a localized deformation (and its energy exci-
tation) propagates without dissipation along the α-helix. He
also argued that a soliton that becomes trapped could evoke a
deformation of the protein shape.

A soliton is the archetype structural self-organizer.65, 66

A soliton arises when non-linear interactions merge elemen-
tary constituents such as atoms into a localized collective ex-
citation that is stable against small perturbations and cannot
decay, unwrap, or disentangle. Solitons are extremely widely
studied objects that can appear in many practical and theo-
retical scenarios. For example, solitons can be deployed for
data transmission in transoceanic cables, for conducting elec-
tricity in organic polymers and describing chemical energy
transportation in proteins.66 Many phenomena such as the
formation of the morning glory cloud in the atmosphere, the
Meissner effect in superconductivity and dislocations in liq-
uid crystals65, 66 can be explained in terms of solitons. Solitons
also model hadronic particles, cosmic strings, and magnetic
monopoles in high energy physics.65

Following the justification in Ref. 71, a soliton, which is a
solution to the equation of motion of the backbone Helmholtz
free energy of Eq. (27) for the virtual-bond and virtual-torsion
angles, is considered.

F = −
N−1∑
i=1

2 θi+1θi +
N∑

i=1

{
2θ2

i + q · (
θ2
i − m2

)2 + d

2
θ2
i γ 2

i

− aγi + c

2
γ 2

i

}
, (27)

where θ i is ith virtual-bond angle, γ i is ith virtual-
bond-dihedral (torsion) angle, and a, c, d, q, and m are
parameters.64, 71–77 Equation (27) has been derived and moti-
vated in detail in Refs. 64 and 71–77. Here it suffices to state
that Eq. (27) can be shown to bethe long-distance limit that
describes the full microscopic energy of a folded protein in
the universal sense of Refs. 45–48. As such, it does not ex-
plain the details of the (sub)atomic level mechanisms that give
rise to protein folding.

The soliton solution is constructed by seeking the min-
imum of Eq. (27).64, 71, 75, 76 The necessary condition for the
minimum is finding the zero of the gradient of F in the virtual-
bond angles θ and in the virtual-bond dihedral angles γ . The
solution of this problem is the solution of a system of 2N
− 5 nonlinear equations in 2N − 5 unknowns (where N is
the number of residues). In order to obtain this solution, the
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virtual-bond-dihedral angles γ are first expressed as functions
of the virtual-bond angles θ , as given by Eq. (28).64, 71, 75, 76

γi[θ ] = a

c + d θ2
i

≡ u

1 + v θ2
i

(28)

with u = a/c and v = d/c. By inserting Eq. (28) into Eq. (27),
the virtual-bond-dihedral angles γ are eliminated and a sys-
tem of Eqs. (29) for the motion of the virtual-bond angles θ is
obtained.

θi+1 = 2θi − θi−1 + dVpot [θ ]

dθ2
i

θi (i = 1, . . . , N ), (29)

where θ0 = θN + 1 = 0 and

Vpot [θ ] = a

c + d θ2
+ 2(1 − qm2)θ2 + q θ4. (30)

Here the familiar structure of the DNLS equation is
recognized.67, 68 The only difference is in the first term on
the right-hand side in Eq. (30). However, because this term
contains θ in the denominator, its variation with θ is not that
pronounced as the variation of the other two terms, which are
proportional to the second and the fourth power of θ , respec-
tively. Moreover, because |θ | > 1 radian for proteins, it turns
out that the first term is small in value compared to the other
terms.

The profile of the so-called dark soliton solution67–70 to
Eq. (29) can be constructed numerically by following the iter-
ative procedure of Ref. 71. But its explicit form until now has
not been found in terms of elementary functions. However,
an excellent approximation is obtained by naively discretizing
the continuum dark nonlinear Schrödinger equation (NLSE)
soliton76

θi = (μ1 + 2πM1) · exp [σ1(i − s)] − (μ2 + 2πM2) · exp [−σ2(i − s)]

exp [σ1(i − s)] + exp [−σ2(i − s)]
, (31)

where s is a parameter that determines the center of the soli-
ton. Equation (31), together with Eq. (28), represents a profile
of θ and γ that is variable from site to site, as characterized by
a loop in a protein. The μ1, 2 ∈ [0, π ] are parameters, whose
values are determined by the adjacent helices and strands. M1

and M2 constitute the integer parts of μ1, 2, and for simplicity
M1 = M2 ≡ M is taken. To satisfy the monotonic character
of the profile of Eq. (31), the experimental values of θ i have
to vary monotonically along the amino-acid sequence. Other-
wise, a multiple of 2π is added to the experimental values.
This does not affect the backbone geometry because θ i

′s are
defined mod (2π ). The integer M determines how many times
θ i covers its fundamental domain [−π , π ) when the soliton
is traversed once. It should be noted that negative values of θ i

are related to positive values of θ i by Eq. (22). Finally, only σ 1

and σ 2 are intrinsically specific parameters for a given loop.
But they specify only the length of the loop, not its shape
which is determined by the functional form of Eq. (31) and,
as in the case of μ1, 2, they are combinations of the parameters
in Eq. (30).

The virtual-torsion angles γ i, i = 1, 2, . . . , N − 3 are com-
puted by substituting Eq. (31) into Eq. (28). Since there are
only two independent parameters u and v in Eq. (28), the pro-
file of γ i is dependent entirely on θ i, and on the structure of
the adjacent regular secondary structures.

D. UNRES model of polypeptide chains

In the UNRES model,39–42 a polypeptide chain is repre-
sented as a sequence of α-carbon atoms (Cαs) with attached
side chains (SCs) and peptide groups positioned halfway be-
tween the consecutive Cαs. Only the side chains and the pep-
tide groups are interaction sites, while the Cαs assist in ge-
ometry definition. The side chains are represented by ellip-
soids of revolution, each with dimensions that characterize

the amino acid in question. All definitions are summarized in
the legend of Figure 1: The center of the ith side-chain ellip-
soid is located a distance bSC(i) from the corresponding Cα ,
in the direction [αSC(i), βSC(i)] where αSC(i) and βSC(i) are
the positional and torsional angles in a spherical coordinate
system that is centered at the corresponding Cα . Among the
dynamical variables that are not accounted for explicitly are
the solvent degrees of freedom, the angles of rotation about
side-chain bonds, the angles of rotation of the peptide groups
about the Cα · · · Cα virtual bonds etc. These are all included
effectively, in the numerical values of the various parameters.

Schematically, the UNRES energy can be grouped into a
sum of three terms,

EUNRES = E1 + E2 + E3 (32)

E1 itself is a sum of three terms that involve only the backbone
virtual-bond and virtual-torsion angles,

E1 = wb

∑
i

Ub(θi) + wtor · f2(T )
∑

i

Utor (γi)

+wtord · f3(T )
∑

i

Utord (γi, γi+1), (33)

where f2(T) and f3(T) are temperature-dependent multipliers.
The first term models virtual-bond-angle bending, the other
two are torsional and double-torsional energies. Next,

E2 = wSC

∑
i<j

USCiSCj
+ wSCp

∑
i 	=i

USCipj

+wppf2(T )
∑

i<j−1

Upipj + wrot

∑
i

Urot (αSCi
, βSCi

θi)

+wbond

∑
i

Ubond (di). (34)

These are terms that describe the following interac-
tions, respectively: Side-chain-side-chain, side-chain-peptide,
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peptide-peptide, side-chain-local, and virtual-bond distortion.
Finally,

E3 =
6∑

m=3

w(m)
corrfm(T ) U (m)

corr + wSS

∑
i

USS;i (35)

is included. These two terms describe multi-body (correla-
tion) interactions and the formation of disulfide bonds, respec-
tively. The temperature-dependent multipliers are Bolzmann-
like,

fm(T ) = ln(e + e−1)

ln

{
exp

[(
T
T0

)m−1
]

+ exp

[
−

(
T
T0

)m−1
]} (36)

with T0 = 300K. The ws are the weights of the respective
effective energy terms, which are determined by force-field
calibration to reproduce the structure and folding thermo-
dynamics of selected training protein(s). Langevin dynamics
was implemented43, 44 with UNRES to study protein folding
pathways; later,78, 79 the replica-exchange80 and multiplexed
replica exchange81 algorithms were implemented to simulate
ensembles of the proteins under study. In this work, the treat-
ment is restricted to canonical Langevin simulations with the
use of the force field calibrated with the 1GAB protein.40

III. RESULTS AND DISCUSSION

A. Phase co-existence in protein oligomers

We now proceed to inspect the phases of some protein
oligomers, the structures of which are available from the PDB,
in terms of the radius of gyration, with the compactness index
ν in Eq. (3) as the order parameter. The possibility of a phase
co-existence in oligomers is of particular interest.

The following line of arguments proposes that it does
indeed make sense to employ Eq. (3) to study the phase
structure of individual proteins: The data in SCOP (Ref. 59)
and CATH (Ref. 60) and the results reported in Ref. 64 es-
tablish that most proteins have a self-similar structure over
macromolecular distance scales. Since R0 is the only relevant
length scale in the limit of long proteins, the large scale self-
similarity implies that R0 can have only very restricted values.
It is found that these different values are characteristics of the
different fold types, such as mostly-α, mostly-βetc.

In Figure 2(a), the radius of gyration Rg is plotted as
a function of the number of residues for all those individ-
ual single-chain proteins in the PDB that have resolution less
than 2.0 Å and sequence homology less than 30%. With a
few exceptions, the values of Rg assemble around a line de-
scribed by Eq. (3) with ν ≈ 1/3 for a collapsed protein. In
Figure 2(a), the line along which the mostly-α structures are
clustered (that are dominant in the PDB data) is colored red.
This line is given by

Rα
g ≈ R0 · Nν ≈ 2.29 · N0.37 (Å). (37)

For the other subclasses such as α-and-β, mostly-β etc., the
numerical values of R0 and ν are slightly different. In the limit
N → ∞, it is expected that ν converges towards a unique
value, while R0 may assume a small number of different
values that are determined by the corresponding subclasses.

Similar results were obtained by Dewey50 and by Dima and
Thirumalai,56 see also Ref. 57.

It is notable that in the PDB data displayed in Figure 2(a)
the non-linear, finite size corrections in Eq. (7) are not visible.
This confirms that the numerical value of the coefficient R1 is
small.

When the analysis is extended to include individual
chains in protein oligomers, two clearly visible line-like clus-
ters are found in the PDB that to our knowledge have not been
reported previously. These two line-like clusters are identified
in Figure 2(b) by using a clusterwise linear regression, as

R(2)
g ≈ 0.48 · N0.973

R(3)
g ≈ 1.02 · N0.94

(Å). (38)

In both clusters, the value of ν is very close to 1. Conse-
quently these two clusters are in the same ν = 1 universality
class, the slight difference in the values of ν being a finite size
effect.82

The line-like cluster R(2)
g includes several membrane pro-

teins and viral capsomers. An example of the latter is the HIV
envelope glycoprotein with PDB code 1AIK. The cluster R(3)

g

is populated mainly by collagen proteins like 2CUO in the
PDB. In both clusters, mostly oligomers that consist of sev-
eral similar or nearly similar subchains are found, and each
subchain is located in the same cluster in Eq. (38). Appar-
ently, the interactions between the different subchains over-
ride the effects of the poor solvent environment, preventing
the individual subchains from collapsing into the ν ≈ 1/3
cluster.

In Figure 3, the spectrum of the virtual-bond and virtual-
torsion angles defined by Eqs. (11) and (12), respectively, is
shown as an example, for both 1AIK and 2CUO. The self-
similar structure, which is consistent with a rigid rod-like ge-
ometry, is clearly visible in both spectra (i.e., the values of
the virtual-bond angles θ and the virtual-bond-dihedral an-
gles γ vary little along the sequence). It should be noted that,
for 1AIK, the (θ , γ ) spectrum coincides with that of the α-
helix [Eq. (23)]. For 2CUO, the virtual-bond angle has the
β-strand value [Eq. (24)], while the virtual-torsion angle re-
peats a pattern in which two values are in the vicinity around
–1.4–1.5 radians, followed by one value which is about –2.0
radians. This corresponds to the Gly-Pro-X backbone struc-
ture which is characteristic of a collagen.

Remarkably, it is found that there are also protein com-
plexes in the clusters of Figure 2(b) that do not follow the
structural patterns of membrane proteins, namely viral cap-
somers and collagens. In particular, a small number of hetero-
oligomers that are composed of two or more proteins are iden-
tified, each on a different cluster defined by Eq. (3). Moreover,
a number of dimers, in which one of the subchains is in the
�-point cluster ν ≈ 1/2 with

Rθ
g ≈ 1.23 · N0.508 (Å), (39)

while another subchain is in the R(2)
g cluster [Eq. (38)] of

Figure 2(b), have been found here. To the extent that ν can be
interpreted as an order parameter that characterizes different
phases of a single polymer chain, the present observation
suggests that these dimers are examples of proteins that
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FIG. 3. The spectrum of the virtual-bond and virtual-torsion angles for 1AIK
(top) and 2CUO (bottom), using PDB indexing. The black lines and symbols
correspond to the virtual-bond angles θ and the red lines and symbols corre-
spond to the virtual-bond dihedral angles γ , respectively.

display phase coexistence. As demonstrated by the emer-
gence of two clearly visible separate line-like clusters in
Figure 2(b), with a sparsely populated intervening region,
there is indeed a sharp cross-over transition between the
different classes. The cross-over is reminiscent of a phase
transition, in the thermodynamical limit.

Two different families of such phase coexistent het-
erodimers in the set of PDB data used here have been found.
The first family consists of proteins whose multiple subchains
are in different phases, and are stable only in oligomeric state.
The PDB codes for the 11 proteins of this family are listed in
Table I. The second family consists of oligomers whose mul-
tiple subchains can also exist as stable proteins independently
of each other. There are 16 different complexes in this data set
and their PDB codes are listed in Table II.

TABLE I. First class of phase co-existent heterodimers. Single proteins but
with multiple subchains that are in different phases.

1WDC 1G72 1GOT 1HTR 1LTS 2FP7
2RIV 3ABK 3ARC 3CX5 3DBO

TABLE II. Second class of phase co-existent heterodimers; more than one
protein with subchains in different phases.

1L2W 1JDH 1TH1 2F8X
2EPV 2PRR 2BFX 2D7C
2VGO 2K8F 2QKH 3EGG
3HTU 3HPW 3IXS 3DXC

In each of these phase coexistent proteins, there is a dif-
ference in the lengths of the subchains. The subchains in the ν

≈ 1 cluster R(2)
g are systematically shorter than the subchains

in the ν ≈ 1/2 cluster, reflecting the respective loss of confor-
mational entropy in complex formation.

It is possible that there are also heterodimers with other
combinations of phase coexistence. For example one long
subchain component could remain in the collapsed ν ≈ 1/3
phase while a more restrained short subchain is in one of the
phases with ν ≈ 1/2, ν ≈ 3/5, or ν ≈ 1. However, no clear
examples of these patterns are found in the present PDB data.

In Figure 4, the distribution of the individual subchains in
the second class of phase coexistent complexes in the (N, Rg)
plane is shown. The figure clearly displays how the longer
subchains are located around the ν ≈ 1/2 cluster while the
shorter chains are located on the R(2)

g cluster in Eq. (38).83, 84

From a biological point of view, there are two notable
hetero-oligomers in this second class. They are 2K8F and
3DXC (with the identical structures 3DXD, 3DXE). The
first is the “molecular interpreter”85 p300 in the cluster R(2)

g

and the tumor suppressing protein p53 in the ν ≈ 1/2 clus-
ter. The second is the Alzheimer disease related AICD/Fe65
complex30, 34–37 with the 28-residue AICD in the cluster R(2)

g

and the Fe65 with 130 residues in the ν ≈ 1/2 cluster. In
Sec. III A the apparently exceptional physical properties of
the AICD/Fe65 complex 3DXC are considered.

B. Structure of AICD in the AICD/Fe65 dimer

The structure of the shorter AICD subchain of the
AICD/Fe65 dimer is analyzed here in detail. Its crystal
structure is shown in Figure 5. The spectrum of the

N
210 310

)
Å

 (
g

R

10

=0.97ν

=1/2ν

FIG. 4. The distribution of individual chains on the (N, Rg) plane in the sec-
ond class of phase coexistent hetero-oligomers found here. The data clearly
accumulate around the top line that describes the cluster R

(2)
g and the bottom

line, the latter describing a �-point cluster with best-fit values R0 = 1.234
and ν = 0.508.
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FIG. 5. Cartoon representation of the experimental structure of the
AICD/Fe65 complex (PDB: 3DXC). Green: The Fe65 (longer) chain. Red:
The AICD (shorter) chain. The first and the last residues of each chain are
marked. Residue numbers have been taken from the 3DXC structure.

virtual-bond and virtual-torsion angles that describe its back-
bone are first inspected. The Cα coordinates ri in the PDB
structure 3DXC, in combination with Eqs. (8)–(12), are used
to arrive at a (θ i, γ i) profile that is displayed in Figure 6(a).
The AICD is located in the cluster R(2)

g with ν ≈ 1. However,
in contrast to the spectra in Figure 3, its (θ i, γ i) profile does
not display any self-similar structure. Instead, there appears to
be a highly irregular behavior, in particular in γ i, between the
sites 678–685. In order to examine this behavior, the transfor-
mation defined by Eq. (22) is implemented to arrive at the pro-
file shown in Figure 6(b). The profile for θ suggests that it can
be considered as two successive hyperbolic-tangent-like pro-
files such as Eq. (31), i.e., as two consecutive solitons. This
figure reveals that AICD appears to consist of a pair of two
very closely located loops which are both preceded and fol-
lowed by α-helices.

The (θ i, γ i) profile in Figure 6(b) is reminiscent of
the soliton profiles that have been studied extensively in
Ref. 64. There, the DNLS soliton is shown to describe
the modular building blocks of folded proteins that are in
the ν ≈ 1/3 universality class. It is found that over 92%
of the PDB proteins can be modeled in terms of the soli-
ton profile [Eqs. (28) and (31)] that has been introduced in
Ref. 71, in terms of no more than 200 different sets of numer-
ical parameters. Consequently, a question arises as to whether
the (θ i, γ i) profile that appears in Figure 6(b) could also be
described in terms of the parameters of the DNLS soliton.

For protein 3DXC, it is found that the profile of each
of the two loops in Figure 6(b) can be described by using
the Ansatz given by Eqs. (28) and (31). The parameter val-
ues are listed in Table III. The corresponding (θ i, γ i) profiles
computed from these equations describe the first loop at sites
676–683 (in terms of PDB indexing) with RMSD precision of
0.29 Å and the second loop at sites 681–688 with RMSD pre-
cision of 0.17 Å (see Figure 7). Both of these precisions are
substantially below the Debye-Waller fluctuation distances
that can be computed from the experimental B-factors in the
PDB data by using Eq. (40).

〈r2〉DW = B

8π2
(Å2). (40)
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FIG. 6. (a) The spectrum of backbone virtual-bond angles θ i (black line) and
virtual-torsion angles γ i (red line) for the AICD component of 3DXC (chain
B). (b) The same spectrum after application of the transformation of Eq. (22)
to reveal the soliton structure. The sites are indexed with residue numbers
from the PDB.

TABLE III. Parameter values for the two solitons implied in Figure 6(b).
For virtual-bond angles, Eq. (31) is used. For virtual-torsion angles Eq. (28)
is used. It should be noted that the values of both θ and γ in these two equa-
tions are defined mod (2π ). The large values of M enable us to describe the
irregular structures in Figure 6(b). These irregularities are due entirely to
multi-valuedness of the angular variables.

loop

Parameters of equation (31) 676–683 681–688

μ1 + 2πN 51.517 39.274
μ2 + 2πN 51.766 38.617
σ 1 2.984 3.327
σ 2 2.983 3.347
s 679.91 682.17

u × 10−4 345.9832942 0.4445445
v × 104 − 1.6625 − 6.3344

number of matches 177 896
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FIG. 7. The two solitons of 3DXC. Residues are indexed with the numbers
from the PDB structure. The black line denotes the residue-wise difference
between the coordinates computed from the soliton and those computed from
the PDB conformation. The red line denotes the Debye-Waller (one stan-
dard deviation) fluctuation distance, computed from the B-factors in the PDB.
The grey area describes the estimated 0.15 Å zero-point fluctuation distance
around the solitons.

Consequently, there is a very high quality description of the
backbone in terms of two DNLS solitons. In Figure 7, it is
shown how the soliton structures compare to the 3DXC back-
bone and experimental Debye-Waller fluctuations around it.

In Table III, the number of times each of the two loops
in 3DXC appears in the PDB are listed. From these, any
two loops are identified whenever the mutual RMSD distance
falls below 0.5 Å. This represents a typical value of the fluc-
tuation distance in very high resolution x-ray structures. It
should be noted that the Debye-Waller fluctuation distances
for every site in the two loop regions of 3DXC are all above
0.65 Å (Figure 7).

The analysis of 3DXC establishes that it is composed of
two solitons that are both abundant in the ν ≈ 1/3 cluster
of collapsed proteins. In particular, there is nothing, either
in the regular secondary structures or in the loop regions of
the AICD component in the 3DXC complex, that is a priori
unusual for a collapsed protein in the ν ≈ 1/3 phase. Never-
theless, this particular protein chain is located in the cluster
R(2)

g that describes linear rod-like ν ≈ 1 structures. No such
single-chain protein has been found in the PDB above the ν

= 3/5 Flory line in Figure 2. It is proposed that the reason
for this exceptional structure of AICD is a peculiarity of the
phase co-existence identified in Figure 4. The mutual interac-
tion between the AICD and Fe65 in the complex is so strong,
that it overcomes the poor solvent effect and prevents AICD
from collapsing into the ν ≈ 1/3 phase.

According to Davydov,67 a soliton is a localized carrier of
energy and propagates without dissipation along an α-helix.
This propagation evokes a deformation in the shape of the
protein. If the soliton becomes trapped along the chain, it
causes a change in the shape of the protein.67 The soliton pair
along AICD is preceded by a long α-helix, and there is a pro-
line at site 669. Since proline is an effective initiator of a loop
in an isolated protein, the propagation of the first soliton along
the α-helix until it becomes trapped by Pro(669) is proposed.
It should be noted that there is also another proline at site 685,
and it initiates the second soliton in its place.

Since the compactness index ν can have only discrete
values [Eq. (4)], it can not change when the soliton prop-
agates continuously as a localized deformation along the
α-helix. In particular, when the two solitons that are apart
from each other are continuously translated along the back-
bone by shifting the value of s in Eq. (31), a collapsed con-
formation with ν = 1/3 can never be reached. The AICD will
remain in the ν ≈ 1 phase [see the discussion under Eq. (4) in
Sec. II A].

The explicit profile of the angles defined by
Eqs. (11) and (12) is used to investigate what takes place
when the first soliton propagates along the backbone towards
Pro(669). To propagate a soliton, the value of the parameter
s in Eq. (31) is shifted. In Figure 8, it is shown how the
radius of gyration Rg of the AICD depends on the position
of the first soliton as it propagates towards Pro(669) while
the second soliton remains fixed by Pro(685). The shape
of the protein changes as the soliton propagates, and, in
particular, the α-helix becomes converted into a β-strand
by the soliton. The final (θ i, γ i) soliton profile is displayed
in Figure 9. In Figure 10, the three-dimensional shapes for
both the initial PDB conformation and the conformation
in which the first soliton has propagated to site 669 are
compared.
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FIG. 8. The evolution of the radius of gyration for AICD in 3DXC (chain B),
during the propagation of the first soliton from site 680 towards the proline
at site 669; see also Figure 6(b).
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FIG. 9. The (θ i, γ i) profile of the 3DXC (chain B) after propagation of the
first soliton onto the proline at site 669. See Figure 6 for the initial spectrum.
The black lines and symbols correspond to the virtual-bond angles θ and
the red lines and symbols correspond to the virtual-bond dihedral angles γ ,
respectively.

It is found that Rg increases monotonically as the first
soliton propagates. When it reaches the position where it be-
comes locked into Pro(669), the Rg value of the AICD has re-
located itself from the R(2)

g cluster to the R(3)
g cluster. Since

there are no other known ν ≈ 1 clusters in the PDB, it is
proposed that these are the only two possible trapped confor-
mations that AICD can have in the phase coexistent complex
with Fe65.

It is proposed that the presence of two natural but alter-
native soliton locations in AICD could give rise to a genetic
switch, with potentially interesting biological consequences
that deserve to be investigated. This should be particularly
interesting, since AICD is a product and Fe65 is a partici-
pant in the proteolytic cleavage processing of amyloid pre-
cursor protein (APP) into Aβ42 that relates to Alzheimer’s
disease.30, 34–38 It is interesting how the biological function of
the AICD/Fe65 complex could be influenced by the soliton
position, when the dimer translocates to the nucleus and par-
ticipates in gene transcription. It is proposed that the two pos-
sible AICD conformations corresponding to the two clusters
R(2)

g and R(3)
g might have quite different biological properties.

C. Collapse simulations of isolated AICD and Fe65

It is expected that, in isolation and under physiologi-
cal conditions, the two possible ν ≈ 1 conformations of the
AICD in 3DXC are unstable because they are not located

FIG. 10. The cartoon pictures of AICD. On the left, the PDB conformation
corresponding to the (θ , γ ) spectrum in Figure 6(b) and, on the right, the
conformation corresponding to the spectrum in Figure 9.

in the cluster of ν ≈ 1/3 which corresponds to compact
monomeric proteins in Figure 2. Indeed, no single-chain pro-
tein has been found in the PDB which is located above the
ν = 3/5 Flory line in Figure 2. On the other hand, the two soli-
tons that are the modular building blocks of AICD in 3DXC,
are both abundant among the collapsed ν ≈ 1/3 proteins. Con-
sequently, there are good reasons to expect that, in isolation,
the AICD chain becomes subject to a phase transition-like
changeover that takes it into the collapsed ν ≈ 1/3 cluster.
Because there are no monomers in the PDB with compactness
index ν ≈ 1/2, it can also be expected that Fe65 is similarly
unstable in isolation, and becomes subject to a transition to
the ν ≈ 1/3 cluster.

On general grounds, it can be expected that AICD can
collapse along various pathways. For example, there could be
a process in which the two solitons first annihilate each other
and a new soliton structure is formed to bring about the phase
transition from ν ≈ 1 to ν ≈ 1/3. Alternatively, there could
be formation of a new soliton pair near Pro(669), with the en-
suing collapse to ν ≈ 1/3. Other alternatives also exist; for
example, the first soliton could become locked by Pro(669)
and the relatively long β-strand could then buckle to form a
new soliton pair, separated, e.g., by a β-turn. It is proposed
here that detailed experiments should be designed to deter-
mine the structural properties of AICD under physiologically
relevant conditions.

In order to better understand what takes place both in
AICD and in Fe65 when they become removed from each
other, canonical Langevin-dynamics simulations of isolated
AICD and Fe65, respectively, have been performed using the
UNRES force field [Eq. (32)], starting from the conforma-
tions that AICD and Fe65 have in the 3DXC (heterodimer)
experimental structure. The plots of the radius of gyration
[computed from Eq. (2)] vs. simulation time are shown in
Figure 11 for both AICD and Fe65.

It should be noted that, in a living cell, such a sepa-
ration between AICD and Fe65 may take place, for exam-
ple, when the dimer becomes translocated to the nucleus.
Because of a relation between the AICD/Fe65 complex and
the amyloid precursor protein and the ensuing Alzheimer-
disease-causing Aβ42, the separation of the two subchains
from each other could somehow relate to Alzheimer’s disease
which makes the present UNRES investigation particularly
interesting.

For both separate AICD and Fe65, a rapid cross-over
transition in the value of the radius of gyration, followed by
a stabilization in the collapsed form is found. This transi-
tion is suggestive of a phase transition, from a non-compact
form that is present in the heterodimer to a globular compact
form.

For AICD, the mean value of the radius of gyration con-
verges to

Rg(AICD) ≈ 8.375 (Å) (41)

and for Fe65

Rg(Fe65) ≈ 13.33 (Å). (42)
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FIG. 11. Plots of the time evolution of the radius of gyration of isolated
AICD (top) and isolated Fe65 (bottom) during Langevin molecular dynamics
simulation with UNRES.

These are both very close to the collapsed ν = 1/3 values of
the mostly-α cluster [Eq. (37)] that are

Rg ≈
{

8.06 (Å) (AICD),

13.94 (Å) (Fe65).
(43)

It should be noted that, as stated in the discussion following
Eq. (37), the difference between the clusters for mostly-α and
other types of collapsed proteins is minuscule.

The remarkable observation in our simulations is that, for
both AICD and Fe65, the final values of the radius of gyration
fluctuate relatively strongly (Fig. 11). It is proposed here that
this reflects the experimental observation that both proteins
are unstructured,3 when they are in isolation and under in vivo
conditions.

IV. SUMMARY

In summary, by analyzing PDB structures, it has been
found that physiologically relevant protein oligomers can dis-
play a behavior reminiscent of phase coexistence, in which
the various subchains are in different phases. In particular, a
family of dimers, for which one of the two subchains is in the
same phase with a linear rod-like structure while the other is
in the phase of a fully flexible chain, has been found. How-
ever, despite the apparent phase coexistence, both chains dis-
play the soliton structure that is characteristic of a single chain
protein that is in the biologically active collapsed phase. It

appears that the mutual interaction between the chains is so
strong that it can overcome the effects of a poor solvent.

It has been proposed here that, if the two subchains are
detached, they collapse. To confirm this, as an example, a
detailed analysis of the potentially Alzheimer-disease related
AICD/Fe65 complex has been carried out. It has been found
that the AICD subchain can be described in terms of a two-
soliton state at a very high precision, that exceeds the accu-
racy of experimental data as characterized by the B-factors.
The soliton propagation along an α-helix of AICD has also
been inspected, and it is proposed that this could give rise
to a genetic-switch mechanism with potentially interesting
biological consequences. Simulations using the UNRES en-
ergy function have been performed, and have confirmed that,
in isolation, both AICD and Fe65 are indeed unstable and
amenable to a transition, akin to a phase collapse, into a folded
conformation. From a consideration of the results presented
here, it is proposed that the analysis of protein complexes that
display phase coexistence should be an interesting and bio-
logically relevant challenge for future theoretical and experi-
mental investigations.
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