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Abstract

Background: The salt marsh beetle Pogonus chalceus represents a unique opportunity to understand and study the origin
and evolution of dispersal polymorphisms as remarkable inter-population divergence in dispersal related traits (e.g. wing
development, body size and metabolism) has been shown to persist in face of strong homogenizing gene flow. Sequencing
and assembling the transcriptome of P. chalceus is a first step in developing large scale genetic information that will allow us
to further study the recurrent phenotypic evolution in dispersal traits in these natural populations.

Methodology/Results: We used the Illumina HiSeq2000 to sequence 37 Gbases of the transcriptome and performed de
novo transcriptome assembly with the Trinity short read assembler. This resulted in 65,766 contigs, clustering into 39,393
unique transcripts (unigenes). A subset of 12,987 show similarity (BLAST) to known proteins in the NCBI database and 7,589
are assigned Gene Ontology (GO). Using homology searches we identified all reported genes involved in wing
development, juvenile- and ecdysteroid hormone pathways in Tribolium castaneum. About half (56.7%) of the unique
assembled genes are shared among three life stages (third-instar larva, pupa, and imago). We identified 38,141 single
nucleotide polymorphisms (SNPs) in these unigenes. Of these SNPs, 26,823 (70.3%) were found in a predicted open reading
frame (ORF) and 6,998 (18.3%) were nonsynonymous.

Conclusions: The assembled transcriptome and SNP data are essential genomic resources for further study of the
developmental pathways, genetic mechanisms and metabolic consequences of adaptive divergence in dispersal power in
natural populations.
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Introduction

A vast number of insect species are characterized by remarkable

and often discontinuous morphological variation in traits related to

dispersal capacity [1,2]. As variation in such traits determines the

ability of populations and species to persist in both patchy and

changing landscapes [3,4,5,6], research on the ultimate and

proximate causes of dispersal is a central theme in both

evolutionary ecology and conservation biology [7,8]. Theoretical

and empirical research on the ultimate cause of dispersal

demonstrated that such dispersal polymorphisms are the result

of disruptive selection in heterogeneous landscapes in response to

habitat persistence [5,9,10] and fitness homogenization under

spatiotemporal population fluctuations [11,12,13,14](Hendrickx et

al. under rev.).

Still, only little is known about the molecular basis of this

profound phenotypic variation. For instance, it is unclear whether

(i) divergence in dispersal traits is caused by a small set genes that

exert large effects or by many genes with moderate to small effect,

and in which order they are involved in adaptive differentiation

[15,16,17], (ii) whether adaptations and the evolution of distinct

dispersal phenotypes are mainly the result of mutations in coding

regions of the genome or rather due to differences in gene

expression (i.e. regulatory changes) [18,19,20,21], (iii) if the

recurrent appearance of this trait is caused by independent

mutations or rather by introgression of standing genetic variation

[22,23] or the release of cryptic genetic variation by changes in

epistatic interactions [24,25], and (iv) how disruptive selection in

dispersal traits affects metabolic pathways resulting in genetically

correlated changes in other life history traits [26]. Such

information is particularly crucial to link the proximate and

ultimate mechanisms underlying the recurrent intra- and inter-

specific evolution of dispersal phenotypes.

The endangered halobiontic ground beetle Pogonus chalceus

(Marsham, 1802) is a most suitable system to study the molecular

mechanisms behind adaptive divergence in dispersal traits. The

species exhibits a clear wing polymorphism with both short-winged

individuals (brachypterous), long-winged individuals (macropter-
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ous), as well as intermediate forms [27]. These differences in

dispersal power have been shown to be related to differences in

habitat stability and persistence, with long winged individuals

occurring primarily in unstable and relatively recent salt marsh

areas. The determination of wing size in this species is polygenic as

crosses between brachy- and macropterous populations result in

the production of individuals with intermediate wing sizes [28].

Divergent selection on wing size likely results in simultaneous

selection in other life history traits, as suggested by a strong

correlation among populations between average wing size and

frequencies of the metabolic enzyme isoforms of the isocitrate

dehydrogenase 2 (IDH2) protein [6,29]. Moreover, within a salt

marsh situated at the Atlantic coast in the Guérande region in

France, individuals of P. chalceus occur chiefly in two habitat types

interlaced at a very small scale, i.e. ponds and canals [29]. Salt

extraction ponds are mostly occupied by long winged individuals

with larger body size and the IDH2-B allozyme. The borders of

tidal canals that lead sea water to these ponds are occupied by

smaller short winged individuals with the IDH2-D allozyme.

While signals of strong divergent natural selection are observed

between the ecotypes for the IDH2 allozymes, dispersal power and

body size, no differentiation could be detected for neutral markers,

suggesting high levels of gene flow among both ecotypes [6,29,30].

These findings and the incipient stage of divergence make the salt

marsh beetle P. chalceus attractive for genetic studies of selection,

adaptation, and gene flow.

It has been shown that portions of the wing development gene

network are largely conserved among holometabolous insect

orders [31,32]. A number of genes involved in the patterning,

growth and differentiation of the wing in Drosophila have been

identified [33] and characterized in T. castaneum [34]. Further-

more, genes involved in the juvenile hormone (JH) and ecdysteroid

(ECD) pathway have also been shown to be relevant for the study

of insect polymorphisms, including wing polymorphisms

[35,36,37,38,39]. However, little genomic resources are available

to study the genetic architecture of dispersal polymorphisms in

natural populations of ground beetles, in which intraspecific

dispersal polymorphisms can be found abundantly [40,41,42].

Considering ground beetles (Carabidae), NCBI reports 306 ESTs

from a study comparing seven coleopteran species [43] and a

mitochondrial genome of a Calosoma species [44]. Other genomic

resources comprise mostly single bar-coding gene sequences, such

as cytochrome oxidase and ribosomal RNA, used for phylogenetic

studies. The only coleopteran species for which the genome has

been sequenced is the red flour beetle Tribolium castaneum [34],

belonging to the Polyphaga suborder. The evolutionary distance of

this suborder to the Adephaga suborder, comprising Carabidae

species, is estimated to be more than 200 Ma [45].

Short read de novo transcriptome analysis has proven to be a

valuable first step to study genetic characteristics and allowed

researchers to obtain sequence information and expression levels

of genes involved in developmental and metabolic pathways,

insecticide resistance, candidate transcripts for diapauses prepara-

tion based on homology with related organisms and to discover

single nucleotide polymorphism (SNP) in all kinds of model and

non-model organisms [46,47,48,49].

In this study, we used Illumina short read sequencing for de novo

transcriptome assembly and analysis of the salt marsh beetle P.

chalceus. We constructed three libraries covering three life stages,

one third-instar larva, one pupa and one adult male beetle. We

matched these sequences in a BLAST search to known proteins of

the NCBI database and aligned the sequences to the genome of T.

castaneum. Matches include a number of genes relevant to the study

of wing development and dispersal polymorphism. Furthermore,

we screened the transcriptome for both conservative SNPs and

SNPs resulting in amino acid changes, which will allow genome

wide screening of variation between different ecotypes. The

resulting assembled and annotated transcriptome sequences

constitute comprehensive genomic resources, available for further

studies and may provide a fast approach for identifying genes

involved in developmental pathways (i.e. wing development, JH,

and ECD) relevant to adaptive divergence in this species.

Materials and Methods

Tissue material and nucleic acid isolation
The geographical distribution of P. chalceus extends along the

Atlantic coasts from Denmark up to and including the major part

of the Mediterranean coasts [50]. Beetles were captured in the

Guérande region, France. No specific permits were required for

the described field study. Eggs were obtained from the canal

ecotype (short-winged) and raised in a common environment. A

larva (third-instar), pupa and imago (male) resulting from the same

mother were frozen in liquid nitrogen and subsequently used for

sequencing. The sex determination is probably of the XY type

[51].

Total RNA was isolated from a complete larva (third-instar),

pupa and newly emerged male imago. RNA was extracted using

the SV Total RNA isolation System (Promega, Madison, USA)

according to manufacturer’s instructions and genomic DNA was

removed by on-column digest with DNase I. RNA was quantified

by measuring the absorbance at 260 nm using a NanoDrop

spectrophotometer (Thermo Fisher Scientific, Inc.). The purity of

the RNA samples was assessed at an absorbance ratio of OD260/

280 and OD260/230 and the integrity was confirmed on an Agilent

2100 Bioanalyzer (Agilent Technologies, Inc.).

Illumina paired-end cDNA library construction and
sequencing

The cDNA libraries were constructed for the larva, pupa and

imago using the TruSeqTM RNA Sample Preparation Kit

(Illumina, Inc.) according to the manufacturer’s instructions.

Poly-A containing mRNA was purified from 2 mg of total RNA

using oligo(dT) magnetic beads and fragmented into 200–500 bp

pieces using divalent cations at 94uC for 5 min. The cleaved RNA

fragments were copied into first strand cDNA using SuperScript II

reverse transcriptase (Life Technologies, Inc.) and random

primers. After second strand cDNA synthesis, fragments were

end repaired, a-tailed and indexed adapters were ligated. The

products were purified and enriched with PCR to create the final

cDNA library. The tagged cDNA libraries were pooled in equal

ratios and used for 26100 bp paired-end sequencing on a single

lane of the Illumina HiSeq2000 (Genomics Core, UZ Leuven,

Belgium). After sequencing, the samples were demultiplexed and

the indexed adapter sequences were trimmed using the CASAVA

v1.8.2 software (Illumina, Inc.).

De novo transcriptome assembly
The transcriptome reads were de novo assembled using Trinity

(release 20111126) [52] on the STEVIN Supercomputer Infra-

structure at Ghent University (48 cores, 350 G of memory). The

three samples (i.e. larva, pupa, and imago) were assembled and

analyzed as a pooled dataset. As the Trinity assembler discards low

coverage k-mers, no quality trimming of the reads was performed

prior to the assembly. Trinity was run on the paired-end sequences

with the fixed default k-mer size of 25, minimum contig length of

200, paired fragment length of 500, 12 CPUs, and a butterfly

HeapSpace of 25G (i.e. allocated memory). Prior to submission of

Transcriptomics of a Wing Polymorphic Beetle

PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42605



the data to the Transcriptome Shotgun Assembly Sequence

Database (TSA), assembled transcripts were blasted to NCBI’s

UniVec database (http://www.ncbi.nlm.nih.gov/VecScreen/

UniVec.html) to identify segments with adapter contamination

and trimmed when significant hits were found. This adapter

contamination may result from sequencing into the 39 ligated

adapter of small fragments (,100 bp). Human and bacterial

sequence contamination was investigated using the web-based

version of DeconSeq [53], with a query coverage and sequence

identity threshold of 90%.

Functional annotation
The assembled transcripts were subjected to similarity search

against NCBI’s non-redundant (nr) database using the BLASTx

algorithm [54], with a cut-off E-value of #1023 and a HSP (high-

scoring segment pairs) length cut-off of 33. The publicly available

platform independent java implementation of the Blast2GO

software [55] was used for blasting and to retrieve associated

gene ontology (GO) terms describing biological processes,

molecular functions, and cellular components [56]. Top 20 blast

hits with a cut-off E-value of #1026 and similarity cut-off of 55%

were considered for GO annotation. Next, to get an idea of the

amount of genes of the T. castaneum transcriptome are covered by

P. chalceus transcripts, assembled transcripts were aligned to the

Tribolium Official Gene Set [34,57] using the PROmer pipeline

of the MUMmer 3.0 software [58] with default parameters. The

presence of open reading frames (ORFs) was investigated using the

ORF-predictor server with an ORF cut-off length of 200 bp [59].

Genes of interest
To guide our search for wing development genes, we used a

previously generated list of Tribolium castaneum (Table S13b

Richards et al. 2008 [34]). To find P. chalceus wing development

orthologs, we used T. castaneum protein sequences in a local

BLAST search (tBLASTn) querying the assembled P. chalceus

transcriptome sequences. Hits with an E-value less than 1e-15

were examined. The most significant hit was considered to be the

putative P. chalceus orthologue of the wing development gene in T.

castaneum. Subsequently, the P. chalceus transcript sequence was

used in a reciprocal blast to the NCBI nr database. If the BLAST

and reciprocal BLAST matched, we assigned orthology to that

sequence. For the apterous gene, we extracted sequences of D.

melanogaster, T. castaneum, A. mellifera and A.pisum from GenBank and

constructed a neighbor-joining tree of the protein sequences with

MEGA 5.0 [60], bootstrapped 1000 times. The methodology used

is similar to that of Brisson et al. 2010 [61].

Next, genes involved in the juvenile hormone (JH) [62] and

ecdysteroid (ECD) [63] pathway in T. castaneum were extracted

from the KEGG pathway database [64] and the same procedure

for orthologue discovery for wing development genes was followed.

The assembled transcriptome was also investigated for the

presence of the isocitrate dehydrogenase 2 (IDH2) gene, which

has been shown to be strongly correlated with dispersal power in P.

chalceus [6,29]. For this; the T. castaneum protein sequence of the

gene homologues to IDH2 (XP_970446) was blasted to the P.

chalceus transcript.

Mapping reads to reference transcriptome
To align the reads back to the assembled reference transcrip-

tome the Burrows—Wheeler Aligner (BWA) program [65] and the

Bowtie aligner [66] were used. BWA was used for variant analysis.

Reads were mapped for each sample (i.e. larva, pupa, and imago)

separately to the assembled transcriptome based on the pooled

read data. The BWA default values for mapping were used, except

for number of threads (-t) = 8 and maximum number of alignments

(sampe -n) = 40. Under these settings, read pairs mapping to

multiple equally best positions are placed randomly. Properly

paired reads with a mapping quality of at least 20 (-q = 20) were

extracted from the resulting BAM file using SAMtools [67] for

further analyses. Properly paired is defined as both left and right

reads mapped in opposite directions on the same transcript at a

distance compatible with the expected mean size of the fragments.

The high mapping quality ensures reliable (unique) mapping of the

reads, which important for variant calling.

As reads can map to multiple genes or isoforms and we have no

available reference genome, we used the RSEM software [68] to

assign reads to genes and isoforms and to count transcript

abundances. RSEM requires gap-free alignments and therefore

the Bowtie aligner (older version, not Bowtie 2) was used and

properly paired reads were extracted. RSEM and Bowtie were

used as implemented in the Trinity software package [52]. Bowtie

mapping parameters were set as follows: maximum number of

mismatches allowed (-v) = 2, number of valid alignments per read

pair (-k) = 40. Setting the –k parameter allows reads to align

against up to 40 different locations. The old version of Bowtie does

not report mapping quality and, hence, does not enable filtering

on this parameter. We compared the three developmental stages

for transcript composition. Uniquely expressed genes for each life

stage were counted and investigated for Gene Ontology (GO)

composition.

Variant analysis
Only reliable properly paired BWA mapped reads were

considered for Single Nucleotide Polymorphism (SNP) calling.

Indels were not considered because alternative splicing impedes

reliable indel discovery. SNPs were called using the SAMtools

software package [67]. Genotype likelihoods were computed using

the SAMtools utilities and variable positions in the aligned reads

compared to the reference were called with the BCFtools utilities

[69]. Using the varFilter command, SNPs were called only for

positions with a minimal mapping quality (-Q) and coverage (-d) of

25. The maximum read depth (-D) was set at 200. The reference is

based on all three samples combined. Therefore, to compare the

variational composition of the samples, we extracted only

heterozygous SNP positions (i.e. Max-likelihood estimate of the

site allele frequency<0.5) from each sample for the unigenes.

Unique and shared SNPs were extracted with the VCFtools

software [70]. SNPs located in an open reading frame (ORF)

$200 bp were extracted. A custom perl script was used to test

whether these SNPs resulted in an amino acid change in the

predicted ORF.

Results and Discussion

Sequencing, transcriptome assembly and validation
Three developmental stages (one third-instar larva, pupa and

male adult beetle) were barcode tagged and sequenced on one lane

of an Illumina HiSeq2000 sequencer. Sequencing of cDNA

libraries generated a total of 184,749,261 raw paired end reads

with a length of 101 bp, resulting in a total of 37.32 giga bases.

The raw sequence reads were of good quality ($20 Phred score). A

summary of sequencing, assembly and annotation results for the

three samples and the pooled reads dataset is presented in Table 1.

For the pupa sample, remarkably less reads were sequenced.

Reads were assembled using the RNAseq de novo assembler Trinity

[52]. The complete read dataset assembled into 65,766 contigs,

clustering into 39,393 isoform clusters (i.e. unigenes). We selected

the longest transcript as the representative for each cluster. The

Transcriptomics of a Wing Polymorphic Beetle
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size of the contigs ranged from 200 (minimum contig length) up to

19,606 bp, with a mean length of 1,046 bp and totaling

68,799,644 bp for all contigs (Figure 1) and a mean length of

869 bp totaling 34,249,556 bp for the unigenes. The top longest

(.16,000 bp) assembled sequences were inspected for correctness.

Overall these extremely long transcripts matched long gene

sequences present in NCBI’s nr database, indicating that these

sequences are not the result of chimerical assembly errors due to

repeat regions in the genes. The longest transcript (19,606 bp) also

matches the D. melanogaster dumpy gene, a gigantic extracellular

protein required to maintain tension at epidermal cuticle

attachment sites [71].

Bacterial and human transcriptome contamination was negli-

gible. Fifty and fifty-seven unigenes were identified by DeconSeq

[53] as bacterial and human contaminant sequences, respectively.

However, these sequences were short in length (289 bp (SD = 148)

and 251 bp (SD = 60) for bacterial and human contaminants,

respectively) and most likely represent conserved protein regions.

All sequencing reads were deposited into the Short Read

Archive (SRA) of the National Center for Biotechnology

Information (NCBI), and can be accessed under the accession

number SRA050429. The assembled transcriptome was submitted

to the Transcriptome Shotgun Assembly Sequence Database

(TSA) and can be accessed through the GenBank accession

numbers JU404687–JU470452.

Functional annotation
From the assembled unigenes, 12,987 (33.0%) showed signifi-

cant similarity (E value,1e23) to proteins in NCBI’s non-

redundant (nr) database, with an average best-hit amino acid

identity of 70.5% (SD = 14.2). As expected, the majority of the

sequences had top hits to T. castaneum proteins (54.5%) (Figure 2),

the only Coleoptera species for which a complete genome is

available. Other insects resembling P. chalceus sequences are

divided across different insect orders, the most relevant being

Hymenoptera (Nasonia vitripennis (2.85%), Camponotus floridanus

(2.41%), Apis mellifera (2.15%), Harpagnathos saltator (1.86%)),

Lepidoptera (Danaus plexippus (2.48%)), Hemiptera (Acyrthosiphon

pisum (2.24%)), and Diptera (Aedes aegipty (1.88%)). The only non-

Arthropoda species with top blast hits worth mentioning is Hydra

magnipapillata (0.53%).In total 7,589 (19.3%) P. chalceus unigenes

were assigned Gene Ontology (GO) terms based on BLAST

matches to sequences with known function. The functional

classification based on biological process, molecular function and

cellular component is depicted in Figure 3. Among the biological

process terms, a significant percentage of genes were assigned to

cellular (22.1%) and metabolic (18.0%) processes. Molecular

functions were for a high percentage assigned to binding (44.8%)

and catalytic activity (36.4%), whereas many genes were assigned

to cell part (48.2%) and organelle (27.5%) for the functional class

cellular component. These observations are in accordance with

observations of metabolic processes in other transcriptomic studies

on insects [47,48,72,73,74].Redundancy is expected in the

Table 1. P. chalceus transcriptome sequencing, assembly and annotation summary.

Stage Larva Pupa Imago ALL

Sequencing Sequencing reads (101 bp paired end) 66,595,267 48,251,298 69,902,696 184,749,261

Bases (Gbp) 13.45 9.75 14.12 37.32

Assembly Trinity assembly (Transcripts) 65,766

Unigenes (Isoform clusters) 39,393

N50 length (bp) (Unigenes)* 1,904

Max length (bp) (Transcripts) 19,606

Max length (bp) (Unigenes) 19,606

Mean length (bp) (Transcripts) 1,044

Mean length (bp) (Unigenes) 868

Median length (bp) (Transcripts) 422

Median length (bp) (Unigenes) 365

Annotation Transcripts with BLAST results 29,358

Unigenes with BLAST results 12,987

Transcripts annotated with GO terms 17,756

Unigenes annotated with GO terms 7,589

Mapping Read mappings (properly paired) 83,539,754 53,814,547 85,597,567

(BWA)** Properly paired reads (%) 92.6 90.4 93.1

Mean coverage (properly paired) 93.7 55.2 111.6

Median coverage (properly paired) 0.93 0.91 2.27

Mapping Read mappings 143,056,584 97,896,830 156,747,118

(Bowtie)** Properly paired reads (%) 86.8 87.2 87.7

Mean coverage (properly paired) 132.98 78.54 150.71

Median coverage (properly paired) 1.95 2.21 4.67

*Contig length for which half of all bases in the assembled sequences are in a sequence equal or longer than this contig length.
**Reads of each sample were mapped to the assembled transcriptome of the pooled data (ALL).
doi:10.1371/journal.pone.0042605.t001
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assembled transcriptome due to the stochastic process of

sequencing and the heuristic nature of the assembly process,

which can result in the fragmented assembly of genes. To assess

how many actual unique genes we have found in our data, we

aligned the obtained unigenes to the 16,645 official genes reported

for T. castaneum. Of these Tribolium genes, 6,883 were covered by P.

chalceus transcripts based on the PROmer alignments [58], with a

mean percent similarity of 76.2% (SD = 10.4). Next, mining the

alignments shows that 764 of these Tribolium gene hits have more

than one hit by unique P. chalceus transcripts (comprising 1,837

unigenes). For the transcripts with a PROmer alignment to a

Tribolium gene this corresponds to a maximal redundancy of

15.6% ((1,837-764)/6,883). However, further investigating these

multiple hits showed that most comprise genes that belong to the

same gene family (i.e. paralogs). Only 272 Tribolium genes are

matched by multiple non-overlapping P. chalceus contigs (compris-

ing 649 unigenes) and align to different portions of the same gene.

This reduces the redundancy to 5.5% ((649-272)/6,883). Hence,

the contig sets that are different portions of the same gene do

inflate the gene counts for P. chalceus to only a minor extent.

We calculated the ‘‘ortholog hit ratio’’ as described in O’Neil et

al. 2010 [75] by dividing the length of the putative coding region of

a unigene by the length of the ortholog found for that unigene. For

this, each unigene and its best BLASTx hit were considered

orthologs and the hit region in the unigene is considered to be a

conservative estimator of the ‘‘putative coding region’’. In this

way, the ortholog hit ratio gives an estimate on the amount of a

transcript that is represented by each unigene. Ratios greater than

1.0 can indicate insertions in unigenes. Figure 4(A) shows that the

completeness of the assembled transcripts decreases for very long

genes. However, for genes with a length ,12,000 bp this

relationship disappears, which shows that the sequencing design

and Trinity assembler succeed well in assembling both short and

long transcripts. The distribution of ortholog hit ratios is

represented in Figure 4(B). Overall, unigenes with BLASTx results

have high ratios, indicating high completeness of these transcripts.

Of the 12,987 transcripts with BLASTx results, 4,567 genes have a

ratio $0.9 and 8,300 have a ratio $0.5.

A high percentage of unigenes (31,804; 80.7%) could not be

assigned a GO term. Examining the length and coverage

distribution of these annotated and unannotated unique tran-

scripts shows that most reads (68.8%) are, however, mapped to

annotated transcripts. Furthermore, a major portion of the

unannotated transcripts consist of assembled transcripts with very

low coverage values and short length (Figure 5). For instance,

23,497 (59.6% of all unigenes) of these unannotated transcripts

have a length shorter than 500 bp and only 3.1% of all reads map

to these transcripts. These short low coverage transcripts may

represent chimeric sequences resulting from assembly errors,

fragmented transcripts corresponding to lowly expressed genes, as

well as untranslated regions. The remaining 8,427 unannotated

sequences are more likely to represent true gene sequences, which

may represent novel genes or less conserved genes for which no

annotation is found. 15,765 (40.0%) of the unigenes had an ORF

(open reading frame) $200 bp, with an average length of 1,040 bp

and a median length of 659 bp. 7,203 (45.7%) of these unique

sequences with ORFs were assigned GO annotations. The

remaining sequences with an ORF $200 bp that lack annotation

results might represent true gene sequences. From the daphnia

genome sequence it was discovered that significant genomic

regions without assigned open reading frames are actively

transcribed [76]. The functional significance of these regions

remains to be elucidated, but such transcripts may also be present

in the Pogonus transcriptome, which cannot be functionally

analyzed. Furthermore, high numbers of unannotated contigs

are frequently found in other transcriptome sequencing projects

[72,73,74,77] and may give some indication of the limitation of

inferring the relevant functions of transcripts assembled from

sequence data from species with very limited genomic resources or

with long evolutionary distances to model species. On the other

hand, Trinity succeeds in assembling a reasonable set of annotated

genes despite low coverage values (Figure 5).

Figure 1. Contig length distribution of Trinity assembly for Pogonus chalceus. All assembled contigs were included.
doi:10.1371/journal.pone.0042605.g001

Transcriptomics of a Wing Polymorphic Beetle

PLoS ONE | www.plosone.org 5 August 2012 | Volume 7 | Issue 8 | e42605



Figure 2. Species distribution of top BLASTx results. The pie chart shows the species distribution of unigenes top BLASTx results against the nr
protein database with a cutoff E value,1e23.
doi:10.1371/journal.pone.0042605.g002

Figure 3. Gene Ontology (GO) categories of the unigenes. Distribution of the GO categories assigned to the Pogonus chalceus transcriptome.
Unique transcripts (unigenes) were annotated in three categories: cellular components, molecular functions, biological process.
doi:10.1371/journal.pone.0042605.g003
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Genes of interest
As we are interested in the adaptive divergence of wing length in

populations of P. chalceus, we began our investigation by searching

the assembled transcriptome for orthologous genes known to be

involved in wing development in the fruit fly Drosophila melanogaster.

In particular, we used a previously generated list of the wing

development genes reported in the genome of the red flour beetle

Tribolium castaneum (Table S13b of Richards et al. 2008 [34]), which

was based on Drosophila wing development studies. We found

orthologous genes for every wing development gene that we

looked for in the assembled P. chalceus transcriptome with high

confidence (Table 2). Engrailed (en) and invected (inv) blasted to

the same P. chalceus transcript and reciprocal blast of this

component returned engrailed. This is not surprising considering

their similarity in sequences and function [78]. Retrieving

orthologous genes for the apterous (ap) gene was problematic as

this gene exhibits a duplication in T. castaneum and Acyrthosiphon

pisum [61,79]. Therefore, we aligned the amino acid sequences of

Figure 4. Relationship between ortholog hit ratio and ortholog length (A) and distribution of ortholog hit ratios (B). Ortholog hit
ratios were calculated for contigs with BLASTx results. A ratio of 1.0 indicates the gene is likely fully assembled.
doi:10.1371/journal.pone.0042605.g004

Figure 5. Contour plot of length and coverage distribution of annotated (left) and unannotated (right) unigenes. Transcripts were
annotated using Blast2GO. Reads were mapped using BWA. For the annotated transcripts, mean length and coverage was 2,139 and 932,
respectively. For the unannotated transcripts, mean length and coverage was 567 and 224, respectively. The color bar shows the log10 transformed
count values.
doi:10.1371/journal.pone.0042605.g005
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apterous genes from D. melanogaster (NP_724428), T. castaneum (apA:

NP_001139341, apB: ACN43342), Apis mellifera (XP_392622) and

A. pisum (apA: XP_001946004, apB: XP_001949543) with those

retrieved from BLAST hits to the P. chalceus transcriptome

(Figure 6). The apterous gene is a hox transcription factor and

contains two conserved domains; the homeo domain and the LIM-

containing region [80]. As we did not retrieve the homeo domain

for apB of P. chalceus, we only compared the conserved LIM

domain region of the apterous genes as reported in [61]. To root the

tree, we added the closely related LIM-containing gene tailup (tup)

of A. pisum (XP_001944557) and T. castaneum (XP_001815525).

The phylogenetic inference indicates that P. chalceus exhibits both

apterous paralogs that are present in T. castaneum and A. pisum

genome, which were lost in the holometabolous insects Drosophila

and Apis. The relationships are similar as the ones reported by

[61].

Subsequently, we performed similar similarity analyses for genes

involved in the Juvenile hormone and ecdysteroid pathway. We

found orthologous candidates with high certainty for each gene

reported in the KEGG insect hormone biosynthesis pathway

(Table 3). The length of the ORF of the P. chalceus match,

compared to the ORF length in T. castaneum is also reported.

Finally we identified the full coding sequence of the isocitrate

dehydrogenase 2 (IDH2) gene (Pc_comp1560_c0_seq1) based on

homology to the T. castaneum protein sequence (EFA04299; E-

value = 0, bit score = 760). The blast result also identified the

isocitrate dehydrogenase 1 (IDH1) gene (Pc_comp296_c0_seq1),

but with less support (E-value = e-172, bit score = 602).

Table 2. List of wing development genes found in P. chalceus orthologous to T. castaneum.

Function Gene Accession P. chalceus
Amino acid
identity (%)

Ortholog hit
ratio

Anterior/Posterior Engrailed (en) Pc_comp5821_c0_seq1 62 1.27

Invected (inv) Pc_comp5821_c0_seq1 56 1.31

Hedgehog (hh) Pc_comp8905_c0_seq1 76 0.96

Cubitus interruptus (ci) Pc_comp4719_c0_seq1 60 1.12

Patched (ptc) Pc_comp7372_c1_seq1 78 0.62

Decapentaplegic (dpp) Pc_comp8429_c0_seq2 64 0.85

Daughters against (dad) Pc_comp5722_c0_seq1 63 1.08

Brinker (brk) Pc_comp8966_c0_seq1 78 0.29

Optomotor-blind-like (omb) Pc_comp6103_c0_seq1 77 0.68

Spalt-like protein (sal) Pc_comp7794_c0_seq1 73 0.87

Dorsal/Ventral Apterous a (ap A) Pc_comp9155_c1_seq1 77 0.76

Apterous b (ap B) Pc_comp10531_c0_seq1 89 0.69

Notch (N) Pc_comp3149_c0_seq1 81 1.02

Serrate (Ser) Pc_comp6451_c0_seq1 80 1.00

Wingless (wg) Pc_comp9580_c0_seq1 96 0.74

Distal-less (Dll) Pc_comp7089_c0_seq1 77 1.08

Vein and sensory Serum response factor (srf) Pc_comp3744_c0_seq2 96 0.36

Rhomboid (rho) Pc_comp9713_c0_seq1 96 0.72

Knirps (kni) Pc_comp8029_c0_seq2 74 0.83

Knot transcription factor (knot) Pc_comp14479_c0_seq1 84 0.61

Iiroquois (iro) Pc_comp4855_c0_seq2 74 1.04

Abrupt (ab) Pc_comp3738_c0_seq3 85 1.00

Noradrenaline transporter (net) Pc_comp9252_c0_seq1 85 0.94

Delta (DI) Pc_comp8811_c0_seq1 70 0.95

Extramacrochaetae (emc) Pc_comp778_c0_seq1 86 1.04

Achaete-scute (ASH) Pc_comp5966_c0_seq1 67 1.09

Asense (ase) Pc_comp12489_c0_seq1 54 1.07

Bodywall/wing Teashirt (tsh) Pc_comp7294_c0_seq1 69 1.13

Homothorax (hth) Pc_comp2739_c0_seq1 87 1.04

Nubbin (nub) Pc_comp7766_c0_seq1 93 0.36

Ventral vein lacking (vvl) Pc_comp4049_c0_seq1 91 1.05

Vestigial (vg) Pc_comp7899_c0_seq1 69 0.74

Hox Sex combs reduced Scr (Cx) Pc_comp5657_c0_seq1 73 1.07

Prothoraxless (ptl) Pc_comp8727_c0_seq1 100 0.31

Ultrabithorax (Ubx) Pc_comp6090_c0_seq1 84 0.97

doi:10.1371/journal.pone.0042605.t002
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Mapping
Reads for each sample (i.e. larva, pupa, adult) were mapped

back to the assembled reference transcriptome based on the

pooled data and properly paired reads were extracted (Table 1;

Figure 7). Based on the BWA mappings [65], 92.6%, 90.4% and

93.1% of the mapped reads were aligned properly paired when

aligning the reads of the larva, pupa and adult sample,

respectively, to the assembled reference transcriptome. The mean

coverage depth (reads covering each base pair) for the larva, pupa

and adult sample is respectively 93.7, 55.2 and 111.6. The Bowtie

aligner resulted in a higher mean coverage, owing to reads being

mapped to multiple positions. The pupa sample has less mean

coverage depth resulting from less sequenced reads.

Some transcripts were represented by many reads. Moreover,

50% of the reads mapped to only 146 transcript sequences and

90% mapped to 2,971 transcripts. Mapping of the reads shows

that read coverage is very high. However, the fact that only 149

transcripts consume 50% of all reads may indicate that normal-

ization can be useful for transcriptome assembling. The top twenty

of these were investigated and are shown in Table 4. Amongst

these transcripts, several are associated with energy metabolism

(cytochrome c oxidase subunit II and III, succinate and NADH

dehydrogenase and ADP/ATP translocase), locomotion (actin and

Figure 6. Phylogenetic analysis of the LIM domain of the apterous gene. (A) Alignment of protein sequences of the LIM domain region of the
apterous (ap) orthologs and paralogs of Tribolium castaneum (Tc), Acirthosyphon pisum (Ap), Drosophila melanogaster (Dm), Apis mellifera (Am) with
the presumed paralogs found in the Pogonus chalceus (Pc_apA and Pc_apB) transcriptome. (B) Neigbour-joining tree of ap protein sequences, rooted
with tailup (tup). Bootstrap support values are given at each node.
doi:10.1371/journal.pone.0042605.g006

Table 3. List of insect hormone biosynthesis genes.

Function Gene
NCBI geneID T.
castaneum Accession P. chalceus

Amino acid
identity (%)

Ortholog hit
ratio

Juvenile hormone juvenile-hormone esterase (JHE) 658208 Pc_comp7235_c0_seq1 62 0.97

juvenile hormone acid
methyltransferase

(JHAMT) 662961 Pc_comp8820_c0_seq1 65 1.01

juvenile hormone epoxide
hydrolase

(JHEH) 659305 Pc_comp841_c0_seq1 74 0.98

cytochrome P450, family 15 (CYP15A1) 658858 Pc_comp2578_c2_seq2 77 0.95

Molting hormone ecdysteroid 25-hydroxylase (PHM) 656884 Pc_comp6141_c0_seq1 72 0.98

(ecdysone) ecdysteroid 22-hydroxylase (DIB) 663098 Pc_comp7215_c0_seq2 73 0.70

ecdysteroid 2-hydroxylase (SAD) 658665 Pc_comp5946_c0_seq1 64 0.75

ecdysone 20-monooxygenase (SHD) 661451 Pc_comp8625_c0_seq2 73 0.69

cytochrome P450, family 307 (Spo/spok) 658081 Pc_comp9046_c0_seq1 79 0.93

cytochrome P450, family 18 (CYP18A1) 656794 Pc_comp3811_c0_seq1 86 0.52

Note: Genes were extracted from T. castaneum through the KEGG pathway database.
doi:10.1371/journal.pone.0042605.t003

Transcriptomics of a Wing Polymorphic Beetle

PLoS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42605



myosin light chain), transcription (DNA topoisomerase 1) and

translation (elongation factor 1 and 2). Ferritin is a protein that

stores and buffers iron [81] and its high abundance may resemble

an accommodation to high reduced iron concentrations and high

oxidative stress in salt marshes [82,83] or a stress response.

Comparison of the samples
Reads were mapped with Bowtie [66] and assigned to genes and

isoforms with the RSEM software [68]. Shared and unique

presence of genes and isoforms is shown in Figure 6. 30,200

(45.8%) and 18,462 (56.7%) of the isoforms and unigenes

respectively were shared among life stages. 1,879 (4.8%), 1,403

(3.5%) and 7,086 (17.9%) of the unigenes are uniquely expressed

in the larva, pupa and adult stage, respectively. Of these uniquely

expressed unigenes, only 170, 106, and 243 respectively were

assigned GO terms (Figure 8). Overall, the GO term composition

of these uniquely expressed transcripts in each life stage

corresponds well to the GO term composition of the complete

transcriptome. No statistical differences in GO term composition

were found between these sets of uniquely expressed genes

(FDR,0.1). The higher amount of uniquely expressed genes in

the adult stage most likely resulted from more short transcripts

being assembled.

Variant calling
For SNP calling, BWA was used to map the reads of each

sample to the reference transcriptome. In total, SAMtools [67]

detected 38,141 different heterozygous SNP position in unique

transcript sequences using the stringent parameters (i.e. coverage

and mapping quality of 25) (Figure 9). This is about one SNP per

nine hundred bp of unique transcript sequence (1/898). Of these

SNPs, 26,823 (70.3%) were found in a predicted open reading

frame (ORF) $200 bp and 6,998 (18.3%) resulted in a amino acid

change (nonsynonymous SNP (nsSNP)) and are found in 2,907

different unigenes. This results in a percentage of nonsynonymous

changes in the coding region of 26.1%, which is lower compared

Table 4. Top twenty transcripts with most reads assigned.

Accession P. chalceus Nr. reads Length (bp) Annotation

Pc_comp0_c1_seq1 21905861 1,272 Unknown

Pc_comp5_c0_seq1 4116337 5,118 Succinate dehydrogenase*

Pc_comp18_c0_seq1 3016196 3,942 Melanization -related protein

Pc_comp23_c1_seq1 2836940 3,453 Unknown

Pc_comp7_c0_seq1 2585095 1,672 Myosin light chain 2**

Pc_comp32_c0_seq1 1912972 3,409 NADH dehydrogenase subunit 4*

Pc_comp4_c3_seq1 1842608 651 Unknown

Pc_comp30_c0_seq1 1823110 8,598 Alpha-tubulin

Pc_comp41_c0_seq1 1788846 1,961 Elongation factor 1-alpha***

Pc_comp1_c0_seq3 1511917 1,714 Actin**

Pc_comp39_c0_seq1 1501260 2,011 Unknown

Pc_comp14_c0_seq1 1505364 6,711 DNA topoisomerase 1***

Pc_comp16_c0_seq1 1501260 2,186 Muscular protein 20

Pc_comp58_c0_seq1 1419825 1,732 ADP/ATP translocase*

Pc_comp13_c0_seq1 1346169 759 Unknown

Pc_comp10_c4_seq1 1217481 1,679 Cytochrome c Oxidase subunit III (coxIII)*

Pc_comp26_c0_seq1 1178489 3,236 Elongation factor 2***

Pc_comp2_c0_seq1 1128159 634 Unknown

Pc_comp19_c1_seq1 1124751 821 Cytochrome c Oxidase subunit II (coxII)*

Pc_comp60_c0_seq1 1114040 2,504 Ferritin subunit

*Associated with mitochondria, energy metabolism and electron transport chain.
**Associated with muscles and movement.
***Associated with translation or transcription.
doi:10.1371/journal.pone.0042605.t004

Figure 7. Unique and shared transcript presence of the three
developmental stages. The venn diagram shows the unique and
shared transcript presence of the three developmental stages (larva,
pupa and adult), based on RSEM counts. Reads were assigned to
isoforms (Is) or unigenes (U). When RSEM reported a count of at least
one, the transcript was reported as present.
doi:10.1371/journal.pone.0042605.g007
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to studies reporting up to 57.3% nsSNPs in coding regions in a

single individual of Japanese native cattle [84] and 41 to 47% in

human individual resequencing studies [85,86], but comparable to

ratios found in other studies [87,88].

Conclusion

In the present study, we sequenced and characterized the

transcriptome in the wing polymorphic beetle P. chalceus. The

assembled sequence data comprising 39,393 unique transcripts

provides valuable resources to study wing polymorphism and the

Figure 9. Shared and unique SNPs. Only Heterozygous SNPs are considered from unigenes. The total amount of heterozygous SNPs called in the
three samples is 38,141. 70.3% (26,823) of these SNPs were found in an open reading frame (ORF) and 18.3% (6,998) resulted in an amino acid change
(nsSNP).
doi:10.1371/journal.pone.0042605.g009

Figure 8. Gene Ontology (GO) distribution assigned to unigenes that are found uniquely in each life stage. Reads were mapped with
Bowtie and assigned to genes and isoforms with the RSEM software.
doi:10.1371/journal.pone.0042605.g008
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adaptive divergence in the face of strong gene flow found in P.

chalceus. We characterized a large set of genes relevant to wing

development and dispersal polymorphism with high significance,

including paralogs, giving an indication of the integrity and

completeness of the assembled P. chalceus transcriptome resulting

from short read Illumina sequencing.

We found a high number of putative SNPs (37,492). The

combination of SNP calling with ORF prediction allowed us to

infer that a large part of the SNPs located in a coding fragment

(26,757) result in nonsynonymous nucleotide substitutions (23.2%).

The results show that it is possible to combine transcriptome

assembly and characterization with the discovery of both

synonymous and nonsynonymous SNPs, providing a framework

for further population genomic studies to indentify the molecular

basis underlying phenotypic variation of ecologically relevant traits

in a non-model species.
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