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Abstract

Transforming growth factor-b (TGFb) promotes glomerular hypertrophy and matrix expansion, leading to glomeruloscle-
rosis. MicroRNAs are well suited to promote fibrosis because they can repress gene expression, which negatively regulate
the fibrotic process. Recent cellular and animal studies have revealed enhanced expression of microRNA, miR-21, in renal
cells in response to TGFb. Specific miR-21 targets downstream of TGFb receptor activation that control cell hypertrophy and
matrix protein expression have not been studied. Using 39UTR-driven luciferase reporter, we identified the tumor
suppressor protein PTEN as a target of TGFb-stimulated miR-21 in glomerular mesangial cells. Expression of miR-21 Sponge,
which quenches endogenous miR-21 levels, reversed TGFb-induced suppression of PTEN. Additionally, miR-21 Sponge
inhibited TGFb-stimulated phosphorylation of Akt kinase, resulting in attenuation of phosphorylation of its substrate GSK3b.
Tuberin and PRAS40, two other Akt substrates, and endogenous inhibitors of mTORC1, regulate mesangial cell hypertrophy.
Neutralization of endogenous miR-21 abrogated TGFb-stimulated phosphorylation of tuberin and PRAS40, leading to
inhibition of phosphorylation of S6 kinase, mTOR and 4EBP-1. Moreover, downregulation of miR-21 significantly suppressed
TGFb-induced protein synthesis and hypertrophy, which were reversed by siRNA-targeted inhibition of PTEN expression.
Similarly, expression of constitutively active Akt kinase reversed the miR-21 Sponge-mediated inhibition of TGFb-induced
protein synthesis and hypertrophy. Furthermore, expression of constitutively active mTORC1 prevented the miR-21 Sponge-
induced suppression of mesangial cell protein synthesis and hypertrophy by TGFb. Finally, we show that miR-21 Sponge
inhibited TGFb-stimulated fibronectin and collagen expression. Suppression of PTEN expression and expression of both
constitutively active Akt kinase and mTORC1 independently reversed this miR-21-mediated inhibition of TGFb-induced
fibronectin and collagen expression. Our results uncover an essential role of TGFb-induced expression of miR-21, which
targets PTEN to initiate a non-canonical signaling circuit involving Akt/mTORC1 axis for mesangial cell hypertrophy and
matrix protein synthesis.
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Introduction

Accumulation of extracellular matrix in chronic kidney disease

is preceded by renal hypertrophy especially glomerular mesangial

hypertrophy. Mesangial cell among the three cell types in the

glomerulus acts as the predominant site for the synthesis of

extracellular matrix proteins, which contribute to glomerular

hypertrophy and renal fibrosis found in progressive chronic kidney

diseases [1]. Various growth factors and cytokines produced by the

infiltrating cells during the disease process and by the local kidney

cells participate in the fibrotic process [2]. Among these, TGFb
produced by the kidney cells and by the infiltrating macrophages

plays a significant role in the pathogenesis of mesangial matrix

expansion [3]. Increased glomerular expression of TGFb has been

reported in both experimental and human kidney disease [3,4].

Mice with increased plasma TGFb1 levels displayed enhanced

renal fibrosis [5]. On the other hand, blockage of TGFb1

prevented renal especially glomerular hypertrophy and fibrosis in

mouse with diabetes [6,7].

TGFb initiates its signal transduction by binding to the type

II receptor, which forms the oligomeric complex containing the

type I receptor. In the tetrameric receptor complex, type II

receptor phosphorylates type I receptor in the GS domain,

which releases FKBP12 from the receptor, resulting in
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activation of the type I receptor serine threonine kinase. L45

loop of receptor kinase domain located immediately downstream

of the GS segment interacts with the L3 loop of receptor-

specific Smad 3 and 2 followed by phosphorylation of serine

residues in the C-terminus of Smad protein [8,9]. This binding

of the receptor to Smads is also facilitated by SARA, a FYVE

domain containing protein, which immobilizes receptor-specific

Smads to the plasma membrane [10]. Phosphorylated Smad

dissociates from the receptor resulting in exposure of the nuclear

import sequence and heterodimerization with the common

Smad, Smad 4. The heteromeric Smad complex then translo-

cates to the nucleus, recruits transcriptional co-activators or co-

repressors and regulates target gene expression [9,11,12]. Both

in human and animal models of kidney fibrosis, TGFb-specific

Smads are activated, which increases transcription of various

collagens [13]. Deletion of Smad 3 in mice protects from

fibrotic disorders of kidney [14,15,16]. Although both Smad 3

and Smad 2 act downstream of TGFb, unexpectedly, specific

deletion of Smad 2 in kidney significantly enhanced Smad 3

activity, collagen matrix expansion and fibrosis, indicating that

Smad 2 functions as a negative regulator of TGFb-driven renal

fibrosis [17]. Along with this canonical signal transduction

pathway, TGFb stimulates non-canonical signaling which

includes activation of the tyrosine and serine threonine kinases,

such as c-Src, Erk1/2, JNK and p38 MAP kinases [18,19,20].

Also, TGFb activates PI 3 kinase/Akt signaling [21,22]. More

recently we and others have shown that TGFb regulates PI 3

kinase-dependent mTOR to increase cellular hypertrophy

including mesangial cell hypertrophy [23,24,25].

miRNAs regulate expression of genes via post-transcriptional

mechanism [26]. miRNAs are transcribed by RNA polymerase II

similar to mRNAs and contain a 59 CAP and a 39 poly A tail

[26,27,28]. In the nucleus primary transcripts of the miRNAs are

processed by Drosha RNase III activity to produce stem-loop

containing pre-miR, which are exported to the cytoplasm and

further processed by Dicer in a complex containing TRBP.

Recently, MCPIP1, an antagonist of Dicer, has been shown to

act on the terminal loop of pre-miR to block Dicer activity [29].

Thus a concerted action of both these proteins produces , 22

nucleotide long double stranded RNAs. The miRNA guide strand

is produced from this duplex, which then binds to Argonaute 2 in

the RISC to interact with the specific miRNA recognition element

present in the 39 UTR of target mRNAs [26,27]. This binding

destabilizes the target mRNA and predominantly suppresses the

translation of mRNA although degradation of mRNAs can also

occur [26,27,28]. Conditional deletion of Dicer in the nephron

progenitors showed that global loss of miRNAs induced a

significant loss of nephron number [30,31]. Deletion of either

Dicer or Drosha in the mouse glomerular podocytes showed loss of

renal function with glomerulosclerosis, foot process effacement and

proteinuria [31,32,33,34]. Interestingly, deletion of Dicer in

proximal tubules protected mice from ischemia reperfusion injury

[35]. The expression of myriad of miRNAs is altered in various

kidney diseases [13,36,37,38]. Recently, a role of miR-21 in

diabetes-induced pancreatic b cell death has been demonstrated

[39]. Also, TGFb-mediated increase in miR-21 levels has been

linked to the progression of disease in mouse models of fibrosis

[40,41,42]. In the proximal tubular epithelial cells, TGFb-

stimulated matrix protein expression was linked to expression of

miR-21 [41]. However, the signaling pathway miR-21 utilizes for

fibrotic protein expression is poorly understood. Here we

demonstrate that TGFb-stimulated expression of miR-21 in

glomerular mesangial cells inhibits PTEN protein levels, which

results in activation of Akt and mTORC1. Furthermore, we show

that TGFb forces miR-21-targeted PTEN to upregulate protein

synthesis and hypertrophy that is controlled by Akt/TORC1

signaling. Finally, we depict that miR-21-induced increase in two

fibrotic matrix proteins fibronectin and collagen I (a2) uses

PTEN/Akt/TORC1 pathway.

Results

miR-21 Regulates PTEN-mediated Akt Activation in
Human Glomerular Mesangial Cells

Recently, TGFb has been shown to enhance the expression of

miR-21 in rodent glomerular mesangial cells in culture; however,

the signaling role of miR-21 in TGFb-induced cellular hypertro-

phy and matrix protein expression has not been studied [40]. We

confirmed the expression of mature miR-21 as well as pre-miR-21

in human mesangial cells (Fig. S1). The miR-21 target that

mediates pathologic consequences of TGFb has not been

identified in renal cells. We and others have recently identified

the tumor suppressor protein PTEN as a regulator of TGFb-

induced glomerular mesangial cell hypertrophy and matrix protein

expression [25,43]. The 39UTR of PTEN mRNA has been

experimentally validated as a target of miR-21 [44,45]. Therefore,

to initiate studies involving miR-21 and PTEN, we tested the effect

of TGFb on the reporter activity of a plasmid in which the firefly

luciferase cDNA is fused to 39UTR of PTEN (PTEN 39UTR-Luc).

Transient transfection assay using this plasmid in human

mesangial cells showed significant repression of reporter activity

in response to TGFb (Fig. 1A). Since miR-21 is increased in

TGFb-stimulated mesangial cells (Fig. S1), we examined the effect

of this miRNA. Plasmid-derived expression of miR-21 significantly

inhibited the reporter activity of PTEN 39UTR-Luc (Fig. 1B, Fig.

S2A). Also, expression of miR-21 suppressed PTEN protein levels

(Fig. 1C and Fig. S2B) To confirm the role of miR-21, we used a

plasmid vector called ‘miR-21 Sponge’, which contains 7 copies of

bulged miR-21 binding site fused to the 39 end of GFP mRNA

(Fig. S3A). Expression of this construct neutralizes miR-21 in cells

[46]. Human mesangial cells were transiently transfected with

PTEN 39UTR-Luc and miR-21 Sponge. Expression of miR-21

Sponge significantly increased the luciferase activity (Fig. 1D).

Concomitantly, miR-21 Sponge increased PTEN protein expres-

sion (Fig. 1E). Expression of GFP mRNA was used as a surrogate

for miR-21 Sponge expression (Fig. S3B and S3C). These results

suggest that miR-21 targets PTEN in mesangial cells.

To elucidate the role of miR-21-in TGFb-mediated signal

transduction, we used miR-21 Sponge. As expected TGFb
inhibited the expression of PTEN protein in mesangial cells

(Fig. 2A) [25,43]. Expression of miR-21 Sponge significantly

prevented TGFb-mediated decrease in PTEN levels (Fig. 2A and

Fig. S4A). PTEN is an endogenous inhibitor of PI 3 kinase-

dependent Akt activation [47,48]; it inhibits phosphorylation of

Akt as we have previously shown in mesangial cells [25]. Thus,

downregulation of PTEN in response to TGFb increased

phosphorylation of Akt at both catalytic loop and hydrophobic

motifs (Fig. 2B). Expression of miR-21 Sponge blocked TGFb-

stimulated phosphorylation of Akt (Fig. 2B and Fig. S4B). Since

both these phosphorylations of Akt regulate its enzymatic activity,

we tested the phosphorylation of one of the endogenous substrates

of this kinase, GSK3b as an index of Akt kinase activity.

Concomitant with Akt phosphorylation, TGFb increased phos-

phorylation of GSK3b, which was prevented by expression of

miR-21 Sponge (Fig. 2C and Fig. S4C).

MicroRNA Regulation of Renal Cell Fibrosis
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TGFb-stimulated mTORC1 Activation is Mediated by
miR- 21

We and others have recently shown activation of mTOR by

TGFb [23,24]. Furthermore, role of mTORC1 has been

established in rodent models of fibrosis where TGFb plays

important role [49,50,51,52]. Therefore, we tested the effect of

miR-21-driven PTEN expression in TGFb-stimulated mTORC1

activation. Two proteins, tuberin and PRAS40, act as suppressors

of mTORC1 activity [23,53,54,55]. Phosphorylation of both these

proteins by Akt inactivates them, resulting in activation of

mTORC1 [53,54,56]. We first examined the role of miR-21 in

TGFb-induced phosphorylation of tuberin. Expression of miR-21

Sponge inhibited TGFb-stimulated phosphorylation of tuberin

(Fig. 3A and Fig. S5A). Similarly, phosphorylation of PRAS40 by

TGFb was blocked by expression of miR-21 Sponge (Fig. 3B and

Fig. S5B). Next, we determined activation of mTORC1. We used

Thr-389 phosphorylation of S6 kinase, which is a known substrate

of mTORC1, as a surrogate for mTORC1 activation [57]. TGFb
increased phosphorylation of S6 kinase (Fig. 4A). Expression of

miR-21 Sponge inhibited TGFb-induced phosphorylation of S6

kinase (Fig. 4A and Fig. S6A). Recently, it has been shown that

activated S6 kinase phosphorylates mTOR at Ser-2448 [58].

Therefore, we examined the effect of mir-21 Sponge on

phosphorylation of mTOR. Expression of miR-21 Sponge

attenuated TGFb-stimulated phosphorylation of mTOR (Fig. 4B

and Fig. S6B). Activated mTORC1 phosphorylates the mRNA

translation initiation factors. One such protein is 4EBP-1, which

undergoes phosphorylation at Thr-37/46 and Ser-65 residues

[59]. TGFb increased phosphorylation at all these residues

(Fig. 4C). Expression of miR-21 Sponge inhibited phosphorylation

of 4EBP-1 at these sites (Fig. 4C and Fig. S6C). These results

Figure 1. TGFb-stimulated miR-21 targets PTEN 39UTR to inhibit PTEN expression. (A) Human glomerular mesangial cells were transfected
with PTEN 39UTR-containing luciferase (PTEN 39UTR-Luc) reporter plasmid PTEN 39UTR-Luc. Transfected cells were serum-starved for 16 hours
followed by incubation with 2 ng/ml TGFb for 24 hours. The cell lysates were assayed for luciferase activity as described in the Materials and Methods
[62,82,102]. Mean 6 SE of six measurements is shown. *p = 0.018 vs control. (B and C) Mesangial cells were cotransfected with PTEN 39UTR-Luc and
CMV-miR-21 (expressing mature miR-21). The cell lysates were assayed for luciferase activity as described (panel B) [62,82,102]. Mean 6 SE of triplicate
measurements is shown; *p = 0.003 vs vector. For panel C, the cell lysates were immunoblotted with PTEN and actin antibodies. (D and E) Mesangial
cells were transfected with PTEN 39UTR-Luc plus miR-21 Sponge. For panel D the cell lysates were assayed for luciferase activity as described
[62,82,102]. Mean 6 SE of 12 measurements is shown; *p = 0.0001 vs vector. For panel E, the cell lysates were immunoblotted with PTEN and actin
antibodies.
doi:10.1371/journal.pone.0042316.g001
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indicate that miR-21 regulates TGFb-induced mTORC1 activa-

tion in mesangial cells.

miR-21 Regulates TGFb-stimulated Mesangial Cell
Hypertrophy by PTEN/Akt/mTORC1 Signal Transduction

We and others have recently reported a role of PTEN in

mesangial cell hypertrophy. Furthermore, TGFb promoted

protein synthesis and mesangial cell hypertrophy [23,25,43]. We

tested the involvement of miR-21-targeted PTEN in this process.

As expected, TGFb increased protein synthesis due to reduced

PTEN expression (Fig. 5A) [25]. Expression of miR-21 Sponge

reversed TGFb-inhibited PTEN expression (Fig. 2A) and signif-

icantly attenuated TGFb-induced protein synthesis (Fig. 5A and

Fig. S7A). To specifically investigate the requirement of PTEN for

the effect of miR-21 Sponge, we used siRNAs against PTEN

mRNA. Expression of PTEN siRNAs significantly reversed the

Figure 2. miR-21 targets PTEN to regulate activation of Akt kinase in response to TGFb. Mesangial cells were transfected with miR-21
Sponge or vector followed by incubation with 2 ng/ml TGFb for 24 hours. Cell lysates were immunoblotted with PTEN, actin (panel A), phospho-Akt
(Ser-473), phospho-Akt (Thr-308), Akt (panel B), phospho-GSK3b and GSK3b (panel C) antibodies as indicated.
doi:10.1371/journal.pone.0042316.g002

Figure 3. miR-21 Sponge inhibits TGFb-stimulated phosphorylations of tuberin and PRAS40. Glomerular mesangial cells were transfected
with miR-21 Sponge or vector. The serum-starved cells were incubated with 2 ng/ml TGFb for 24 hours. The cell lysates were immunoblotted with
phospho-tuberin (Thr-1462), tuberin (panel A), phospho-PRAS40 (Thr-246) and PRAS40 (panel B) antibodies as indicated.
doi:10.1371/journal.pone.0042316.g003
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miR-21 Sponge-mediated inhibition of TGFb-induced protein

synthesis (Fig. 5A and Fig. S7A). Similarly, expression of miR-21

Sponge significantly inhibited TGFb-stimulated hypertrophy of

mesangial cells (Fig. 5B and Fig. S7B). Downregulation of PTEN

using siRNAs markedly prevented the inhibitory effect of miR-21

Sponge on TGFb-induced hypertrophy (Fig. 5B and Fig. S7B).

Next, we determined whether the miR-21-targeted PTEN uses

Akt kinase for these processes. We used a plasmid vector

containing Gag-Akt, which behaves as a constitutively active

kinase [60]. Expression of Gag-Akt significantly reversed the

inhibitory effect of miR-21 Sponge on TGFb-stimulated protein

synthesis and hypertrophy (Fig. 5C and 5D; Fig. S7C and S7D).

These results suggest that TGFb-induced expression of miR-21

uses PTEN/Akt signaling in regulating mesangial cell protein

synthesis necessary for hypertrophy.

The results described in Figure 4 demonstrate that miR-21

regulates mTORC1 activity, which phosphorylates 4EBP-1.

mTORC1-mediated phosphorylation of 4EBP-1 results in its

inactivation and initiation of protein synthesis, necessary for cellular

hypertrophy including mesangial cell hypertrophy [23,55,57,59].

Therefore, we tested the role of mTORC1 in the action of miR-21 in

TGFb-induced protein synthesis. We used a vector expressing a

mutant mTOR that has constitutive mTORC1 activity [61,62].

Expression of the constitutively active (CA) mTOR along with miR-

21 Sponge significantly reversed the suppressive effect of miR-21

Sponge on both TGFb-induced protein synthesis and hypertrophy of

mesangial cells (Fig. 6A and 6B; Fig. S8A and S8B). Thus, our results

demonstrate involvement of mTORC1 in the action of miR-21 in

mesangial cell hypertrophy.

miR-21 uses PTEN/Akt/mTORC1 Signaling for TGFb-
induced Matrix Protein Expression

TGFb contributes to renal fibrosis by stimulating the synthesis of

matrix proteins such as fibronectin and collagen I (a2) [3]. TGFb
stimulates expression of both these proteins in mesangial cells, which

contribute to glomerulosclerosis [1]. We examined the role of miR-

21-regulated PTEN in the expression of these proteins. As expected,

incubation of mesangial cells with TGFb increased the expression of

fibronectin and collagen I (a2) (Fig. 7). Expression of miR-21 Sponge

blocked both fibronectin and collagen I(a2) expression in response to

TGFb (Fig.7andFig.S9).Totest ifPTENis involved inthis inhibition

by miR-21 Sponge, we used siRNAs against PTEN. Downregulation

Figure 4. miR-21 Sponge blocks mTORC1 activity in response to TGFb. Mesangial cells were transfected with miR-21 Sponge or vector. The
serum-starved cells were incubated with 2 ng/ml TGFb for 24 hours. The cell lysates were immunoblotted with phospho-S6 kinase (Thr-389), S6
kinase (panel A), phospho-mTOR (Ser-2448), mTOR (panel B), phospho-4EBP-1 (Thr-34/46), phospho-4EBP-1 (Ser-65) and 4EBP-1 (panel C) antibodies
as indicated.
doi:10.1371/journal.pone.0042316.g004
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Figure 5. miR-21/PTEN/Akt axis regulates mesangial cell protein synthesis and hypertrophy in response to TGFb. Mesangial cells were
cotransfected with miR-21 Sponge and siRNAs targeting PTEN mRNA (siPTEN) or scrambled RNA (Scr) (panels A and B). Mesangial cells were
cotransfected with miR-21 Sponge and constitutively active Gag-Akt as indicated (panels C and D). The transfected cells were starved for 16 hours
prior to incubation with 2 ng/ml TGFb for 24 hours. Protein synthesis (panels A and C) and hypertrophy (panels B and D) were determined as
described in the Materials and Methods [23,25,55]. Mean 6 SE of 3 measurements is shown. For panel A, *p,0.01 vs control; **p,0.01 vs TGFb;
#p,0.05 vs miR-21 Sponge plus TGFb. For panel B, *p,0.05 vs control; **p,0.05 vs TGFb; #p,0.05 vs miR-21 Sponge plus TGFb. For panel C,

MicroRNA Regulation of Renal Cell Fibrosis
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of PTEN by siPTEN reversed the inhibition of both TGFb-

stimulated fibronectin and collagen expression by miR-21 Sponge

(Fig. 7A and 7B and Fig. S9A and S9B). Since PTEN regulates

activation of Akt kinase, we tested the involvement of Akt in miR-21

action. Expression of the constitutively active Gag-Akt prevented the

miR-21 Sponge-induced suppression of TGFb-stimulated fibronec-

tin and collagen I (a2) expression (Fig. 7C and 7D and Fig. S9C and

S9D). We have shown above that miR-21 controls TGFb-stimulated

mTORC1 activity. We examined the involvement of this kinase in

fibronectin and collagen expression. Expression of CA mTOR,

which acts as constitutively active mTORC1 [62], reversed the miR-

21 Sponge-mediated inhibition of both fibronectin and collagen

expression in response to TGFb (Fig. 8A and 8B and Fig. S10A and

S10B). Together these results indicate that miR-21-stimulated

PTEN-Akt-mTORC1 signaling is required for TGFb-stimulated

fibrotic protein expression in mesangial cells.

Discussion

We demonstrate that increased miR-21 uses the tumor

suppressor protein PTEN as its downstream target to regulate

Akt/mTORC1 signaling in response to TGFb in renal mesangial

cells. We show that miR-21-targeted PTEN regulates TGFb-

induced protein synthesis required for mesangial cell hypertrophy.

miR-21-stimulated Akt/mTORC1 cascade forces expression of

two fibrotic proteins, fibronectin and collagen, for induction of

glomerulosclerosis (Fig. 9).

Recently we and others have shown a role of PTEN in TGFb-

forced diabetic renal glomerular hypertrophy in rats and mouse

[25,43]. Downregulation of PTEN in renal glomeruli and in

cultured mesangial cells in response to TGFb contributes to renal

hypertrophy and matrix protein expression [25,43]. Abundance of

PTEN is regulated at the levels of transcription, ubiquitination,

phosphorylation, protein-protein interaction and oxidation [63].

More recently post-transcriptional control of expression of PTEN

involving specific miRNAs has been elucidated. The miRNA,

miR-192, regulates the expression of miR-216a and miR-217,

both of which directly target the PTEN 39UTR [43]. Upregula-

tion of these three miRNAs has been reported in renal glomeruli of

diabetic mice and in mesangial cells incubated with high glucose

or TGFb [43,64]. They induced mesangial cell hypertrophy and

matrix protein collagen expression. In contrast to this observation,

a recent study demonstrated decreased expression of miR-192 in

mesangial and proximal tubular epithelial cells and in mouse

diabetic kidney cortex [65]. This observation was confirmed in a

human study where a microRNA expression profiling in renal

*p,0.05 vs control; **p,0.05 vs TGFb; #p,0.05 vs miR-21 Sponge plus TGFb. For panel D, *p,0.01 vs control; **p,0.05 vs TGFb; #p,0.05 vs miR-
21 Sponge plus TGFb. Bottom panels show expression of PTEN and Akt in representative samples. Actin expression was used as a control for
immunoblotting.
doi:10.1371/journal.pone.0042316.g005

Figure 6. Expression of constitutively active mTORC1 blocks the inhibitory effect of miR-21 Sponge on TGFb-induced mesangial
cell protein synthesis and hypertrophy. Glomerular mesangial cells were cotransfected with miR-21 Sponge and CA mTOR as indicated. The
cells were incubated with 2 ng/ml TGFb for 24 hours. Protein synthesis (panel A) and hypertrophy (panel B) were determined as described [23,25,55].
For panel A, mean 6 SE of triplicate measurements is shown; *p,0.05 vs control; **p,0.05 vs TGFb; #p,0.05 vs miR-21 Sponge in the presence of
TGFb. For panel B, mean 6 SE of triplicate measurements is shown; p,0.01 vs control; **p,0.01 vs TGFb; #p,0.05 vs miR-21 Sponge in the presence
of TGFb. Bottom panels show expression of mTOR and actin in the representative samples.
doi:10.1371/journal.pone.0042316.g006

MicroRNA Regulation of Renal Cell Fibrosis

PLoS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42316



Figure 7. miR-21/PTEN/Akt axis regulates mesangial cell matrix protein expression in response to TGFb. Mesangial cells were
transfected with miR-21 Sponge and siPTEN or scrambled RNA as indicated in panels A and B. Similarly, mesangial cells were transfected with miR-21
Sponge and Gag-Akt as indicated in panels C and D. The transfected cells were incubated with 2 ng/ml TGFb for 24 hours. The cell lysates were
immunoblotted with fibronectin, PTEN, actin (panel A), collagen I (a2), PTEN, actin (panel B), fibronectin, Akt, actin (panel C) and collagen I (a2), Akt,
actin (panel D) antibodies as indicated.
doi:10.1371/journal.pone.0042316.g007

Figure 8. Constitutively active mTORC1 prevents the inhibition of miR-21 Sponge on TGFb-stimulated fibronectin and collagen
expression. Glomerular mesangial cells were transfected with miR-21 Sponge and CA mTOR plasmids as indicated. The cells were incubated with
TGFb for 24 hours. The cell lysates were immunoblotted with fibronectin (panel A) and collagen I (a2) (panel B) antibodies. Immunoblots of mTOR
and actin are shown at the bottom.
doi:10.1371/journal.pone.0042316.g008
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biopsies of patients with established diabetic nephropathy showed

significantly reduced expression of miR-192, which correlated with

low glomerular filtration rate and tubular fibrosis [66]. More

recently, same investigators showed reduction in miR-192 in renal

cells in response to TGFb1 [67]. Interestingly, Putta et al recently

showed amelioration of renal fibrosis by administration of anti-

miR-192 in a mouse model of diabetes, which involves TGFb
action [68]. Several other miRNAs including miR-93, miR-29,

miR-214, miR-377 and mir-200 have been shown to play

important role in TGFb-driven renal fibrosis [13,36,40,69,70,71].

Role of the miRNA miR-21 in various diseases including

fibrosis has been extensively studied. A recent study has shown

increased expression of miR-21 in patients with acute kidney

injury and chronic allograft dysfunction both of which exhibit

fibrosis of the kidney [72]. Furthermore, positive and negative role

of miR-21 has been reported in cardiomyocyte hypertrophy in vitro

[73,74]. Moreover, tissue-specific action of miR-21 on PTEN

expression is also reported. For example, miR-21 suppresses

PTEN 39UTR in hepatic cancer cells. In contrast, it did not inhibit

PTEN 39UTR in COS cells [45,75]. However, in renal mesangial

cells we demonstrate suppression of PTEN 39UTR-driven reporter

activity by miR-21, which regulates PTEN protein expression and

its downstream Akt activation, resulting in phosphorylation of

negative regulators of mTORC1 signaling (Figs. 1, 2, and 3).

miR-21 is significantly upregulated in rodent models of diabetic

nephropathy, glomerulonephritis, ischemia reperfusion injury

(IRI) and ureteral obstruction (UUO) [40,41,42,72]. In IRI and

UUO, increased expression of miR-21 was observed throughout

the kidney especially in the glomerular cells. Less prominent

expression was detected in the proximal epithelial compartment

[72]. TGFb is involved in pathologies observed in these models in

which increased expression of miR-21 was evident in proximal

tubular epithelial and glomerular mesangial cells [40,41,42,72]. In

concurrence, we found increased expression of miR-21 in human

glomerular mesangial cells in response to TGFb (Fig. S1).

Although many direct targets of miR-21 exist, the specific

proteins, which may mediate the effect of miR-21 on kidney

fibrosis, have not been identified. Recently, Chau et al identified

PPARa, as a significant target that mediates the fibrotic disease

process in the kidney [72]. In the present study, we demonstrate

another target of miR-21 in TGFb-stimulated mesangial cells,

PTEN, which regulates cellular hypertrophy and matrix protein

expression.

TGFb-induced mTORC1 regulates renal cell hypertrophy

[23,24,25,49,50,51]. Along with mTOR, this complex contains

four more protein subunits: raptor, mLST8, deptor and PRAS40

[54,57,76]. All these proteins but mLST8 contribute to the activity

of mTORC1 [57,76,77]. Nutrients and growth factors utilize

independent mechanisms to activate mTORC1 [78]. For exam-

ple, amino acids promote formation of GTP-bound Rag proteins.

Rag-GTP binds to the lysozomal protein Ragulator to activate

mTORC1 via binding to raptor [79,80]. In growth factor

stimulated cells, Akt kinase phosphorylates PRAS40, a raptor

binding protein, which inhibits recruitment of substrate to the

mTORC1 [54,81]. Previously, it was shown that phosphorylated

PRAS40 undergoes dissociation from this complex, resulting in

increased mTORC1 activity [54,55]. Similar to PRAS40 another

inhibitor of mTORC1 is an upstream regulator tuberin. Tuberin

heterodimerizes with hamartin and acts as a GTPase-activating

protein for the mTORC1 activator Rheb [53]. Phosphorylation of

tuberin by Akt kinase promotes its dissociation from hamartin,

resulting in the formation of Rheb-GTP, which activates

mTORC1 [53,57,76]. Results presented in Figure 3 show that

miR-21 regulates phosphorylation of both tuberin and PRAS40 in

response to TGFb. Furthermore, we demonstrate that inhibition

of miR-21 blocks TGFb-stimulated activation of mTORC1

(Fig. 4). Thus our results provide a mechanism for TGFb-induced

activation of mTORC1 involving miR-21.

We have previously reported that PI 3 kinase-activated Akt

controls TGFb-stimulated hypertrophy and expression of plas-

minogen activator inhibitor-1, which contributes to the abundance

of several matrix proteins in kidney tissues [23,82]. In mesangial

cells TGFb-mediated expression of fibrotic proteins such as

fibronectin and collagen is regulated by PI 3 kinase/Akt signal

transduction and involves PTEN [22,25,83]. More recently Kato

et al showed a role of PTEN in regulation of hypertrophy and,

collagen and fibronectin by miR-216a [43]. In line with this

observation, we now demonstrate a direct contribution of another

miRNA, miR-21, which by targeting PTEN regulates mesangial

cell hypertrophy and, expression of fibronectin and collagen in

response to TGFb (Figs. 5, 7A and 7B). In fact our data support

the notion that miR-21 regulates expression of both these fibrotic

proteins by downregulation of PTEN to activate Akt kinase

(Fig. 7C and 7D).

The results from our laboratory and other have established a

role of mTORC1 in cellular hypertrophy especially in renal cell

hypertrophy [23,24,52,84,85]. Activation of mTORC1 involving

miRNAs has been reported. Along with PRAS40 regulation of

raptor, AMP-activated protein kinase (AMPK) phosphorylates

raptor, resulting in inhibition of mTORC1 [86]. Binding of

AMPK-phosphorylated raptor to 14-3-3f is necessary for inhibi-

tion of mTORC1 activity [86]. miR-451 directly targets 14-3-3f to

induce unrestrained mTORC1 activity [87]. Additionally, miR-

451 reduces the levels of AMPK-activating LKB1 kinase cofactor

CAB39 (calcium binding protein 39) by binding to the 39UTR of

its mRNA [88,89]. Similarly, miR-17-92 cluster-coded miR-19

directly targets the AMPK a1 catalytic subunit to inhibit its

activity, thus promotes mTORC1 activation [90]. More recently

miR-221 has been shown to downregulate REDD1, which

activates tuberin by dissociating it from 14-3-3 and thus inhibiting

mTORC1 activity [91,92]. In many cancer cells, downregulation

of miR-100, miR-101 and miR-199-3p, which bind to the 39UTR

of mTOR mRNA to block its protein levels, has been shown

Figure 9. Schematic showing the results described in the
paper. TGFb-stimulated miR-21 decreases PTEN to activate Akt-
dependent mTORC1, leading to hypertrophy of mesangial cells and
matrix protein expression.
doi:10.1371/journal.pone.0042316.g009
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[93,94,95]. However, the role of these miRNAs in kidney cells and

in the setting of renal fibrosis has not been investigated. We

present data showing involvement of the miRNA miR-21 in

activation of mTORC1 in response to the fibrotic cytokine TGFb
(Fig. 4). Our results demonstrate that TGFb-stimulated miR-21

regulates hypertrophy of mesangial cells by targeting PTEN via

activation of mTORC1 (Fig. 6). Furthermore, our results

demonstrate a role of miR-21 targeted mTORC1 in TGFb-

stimulated expression of both fibronectin and collagen (Fig. 8).

Although administration of anti-miR-21 has been shown to

block fibrosis in renal tissues, whether it derepresses any specific

target protein has not been examined [41,72]. Confirmation of

derepression of target proteins such as PTEN in the miR-21-

treated animal models of fibrosis will be necessary to establish the

specificity of the therapy. Furthermore, it is important to establish

a reciprocal correlation between expression of miR-21 and PTEN

in renal tissues of patients with renal fibrosis. It will be beneficial if

this correlation can be detected in subjects before the onset of the

disease such as in prediabetics.

Materials and Methods

Materials
Recombinant TGFb1 was purchased from R & D, Minne-

apolis, MN. Protease inhibitor cocktail, phenylmethylsulfonyl-

fluoride, NP-40, Na3VO4, and fibronectin and b-actin antibody

were obtained from Sigma, St Louis, MO. Phospho-Akt

(Ser473), phospho-Akt (thr-308), Akt, phospho-S6 kinase, S6

kinase, phospho-4EBP-1 (Thr-37/46) phospho-4EBP-1 (Ser-65)

4EBP-1, phospho-GSK3b, GSK3b, phospho-tuberin (Thr 1462),

tuberin, phospho-PRAS40 (Thr 246), PRAS40, phospho-mTOR

(Ser-2448) and mTOR antibodies were purchased from Cell

Signaling, Boston, MA. siRNA pool of three oligonucleotides

against PTEN mRNA, collagen II (a2) and PTEN antibodies

were obtained from Santacruz, Delaware, CA. RT2 real-time

SYBR green/ROX PCR mix, RT2 miRNA first strand

synthesis kit, primers for detecting mature miR-21 and GAPDH

primers were purchased from Superarray, Frederick, MD. U6

primers for normalization of miR-21 expression were obtained

from Ambion, Austin, TX. 35S-methione was purchased from

PerkinElmer, Boston, MA. FuGene HD transfection reagent was

purchased from Roche Molecular Biology, Indianapolis, IN.

TRIZol reagent for RNA preparation was obtained from

InVitrogen, Carlsbad CA. Luciferase reporter assay kit was

purchased from Promega, Madison, WI. CMV-miR-21 expres-

sion plasmid was a gift from Dr. A. Hata, Tufts University

School of Medicine, Boston, MA [96]. PTEN 39UTR-Luc

reporter plasmid was provided by Dr. T. Patel, Ohio University

[45]. miR-21 Sponge plasmid was kindly provided by Dr. P. A.

Sharp, MIT, Boston [46]. Constitutively active mTOR expres-

sion plasmid was provided by Dr. Tatsuya Maeda, The

University of Tokyo, Japan and has been described previously.

Cell Culture and Transfection
Preparation of human renal glomerular mesangial cells were

described previously [97]. Frozen cells were thawed and grown in

DMEM with 10% fetal bovine serum essentially as described

previously [98,99,100]. The cells were used between passages 8

and 12. The cells were transfected with indicated plasmids in 12-

well or 24 well culture plates using Fugene HD transfection

reagent as described previously [23,55,62,82].

Cell Lysis and Immunoblotting
For each experiment, cells were washed 2x with PBS and

radioimmunoprecipitation buffer (20 mM Tris-HCl, pH 7.5,

5 mM EDTA, 150 mM NaCl, 1% NP-40, 1 mM Na3VO4,

1 mM PMSF and 0.1% protease inhibitor cocktail) was added.

The cell monolayer was incubated at 4uC for 30 minutes. The

monolayer was scraped and centrifuged for 20 minutes at 4uC.

The supernatant was collected and protein was estimated. Equal

amounts of cell lysates were separated by SDS polyacrylamide gel

electrophoresis. The separated proteins were transferred to PVDF

membrane. Immunoblotting was carried out using indicated

antibodies. The protein bands were developed using HRP-

conjugated secondary antibodies with ECL chemiluminiscent

reagent as described previously [23,55,62,82].

Real Time Quantitative RT-PCR
Total RNA was prepared using TRIZol reagent as described

[101]. First strand cDNA was synthesized by RT2 kit according to

the instruction provided by the vendor. qRT-PCR was performed

in real-time PCR machine (7500, Applied Biosystems). U6 primers

were used for normalization. Each sample was analyzed in

duplicate. PCR conditions were as follows: 94uC for 10 minutes,

followed by 40 cycles at 94uC for 30 seconds, 56uC for 30 seconds,

72uC for 30 seconds. Primers used for detection of pre-miR-21

were: Forward, 59-TGTCGGGTAGCTTATCAGAC-39; Re-

verse, 59-TTCAGACAGCCCATCGACTG-39.

End Point RT-PCR
To determine the expression of miR-21 Sponge, we detected

the levels of GFP mRNA as a surrogate [46]. One mg of total RNA

from miR-21 Sponge-transected mesangial cells was reverse

transcribed and amplified to detect GFP mRNA. PCR conditions

were: 94uC for 10 minutes, followed by 40 cycles at 94uC for 30

seconds, 58uC for 30 seconds, 72uC for 30 seconds. The primers

used for detection of GFP mRNA are as follows: Forward primer:

59-ACGGCAAGCTGACCCTGAAG-39; Reverse primer: 59-

GGGTGCTCAGGTAGTGGTTG-39.

Luciferase Activity
Lysates from reporter-transfected mesangial cells were used to

measure luciferase activity using a kit as described previously

[62,82,102]. The data are presented as mean of luciferase activity

per microgram protein as arbitrary units 6 SE of indicated

measurements as described in the figure legends.

Protein Synthesis and Hypertrophy
Transfected mesangial cells were serum-starved 16 hours

followed by incubation with 2 ng/ml TGFb for 24 hours. Protein

synthesis was determined as 35S-methionine incorporation as

described previously [25,55]. For measurement of hypertrophy,

after incubation, the cells were trypsinized and counted in the

hemocytometer. The cells were then centrifuged at 4000xg for 5

minutes and the cell pellets were washed with PBS, lysed in RIPA

buffer and protein content was measured. Hypertrophy was

determined as increase in protein content per cell as described

previously [23,25,55].

Statistics
The data were analyzed by paired t-test. Where necessary the

significance of the data was determined by ANOVA followed by

Student-Newman-Keuls analysis as described previously

[23,25,55,62]. p value less than 0.05 was considered as significant.
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Supporting Information

Figure S1 Expression of miR-21 in response to TGFb in
human mesangial cells. Serum-starved mesangial cells were

incubated with 2 ng/ml TGFb for 24 hours. Total RNA from

these cells were used for detection of Pre-miR-21 (panel A) and

mature miR-21 (panel B) as described in the Materials and

Methods. For panel A, mean 6 SE of triplicate measurements is

shown. *p = 0.0005 vs control. For panel B, mean 6 SE of six

measurements is shown. *p = 0.0001 vs control.

(TIF)

Figure S2 Expression of CMV miR-21 for the results
described in Figure 1B and 1C. Mesangial cells were

transfected with CMV miR-21 as described in the legend of

Figure 1B and 1C. Total RNAs were used to detect mature miR-

21 levels by qRT-PCR as described in the Materials and Methods.

(TIF)

Figure S3 Expression of miR-21 Sponge for the results
described in Figure 1D and 1E. (A) Structure of the miR-21

Sponge plasmid. The sponge sequences are in the 39 end of the

GFP mRNA followed by poly (A) site under the control of

cytomegalovirus promoter. (B and C) Expression of GFP as a

measure of the Sponge expression. Total RNAs from miR-21

Sponge-transected cells described in Figure 1D and 1E were

tested for GFP mRNA expression as described in the Materials

and Methods. Expression of GAPDH was used as control.

(TIF)

Figure S4 Expression of miR-21 Sponge for the results
shown in Figure 2A–C. Mesangial cells were transfected with

miR-21 Sponge and treated with TGFb as described in the legend

of Figure 2A–C. Total RNAs were used to detect GFP and

GAPDH as indicated.

(TIF)

Figure S5 Expression of miR-21 Sponge for the results
shown in Figure 3A and 3B. Mesangial cells were transfected

with miR-21 Sponge and treated with TGFb as described in the

legend of Figure 3A and 3B. Total RNAs were used to detect

GFP and GAPDH as indicated.

(TIF)

Figure S6 Expression of miR-21 Sponge for the results
shown in Figure 4A–C. Mesangial cells were transfected with

miR-21 Sponge and treated with TGFb as described in the legend

of Figure 4A–C. Total RNAs were used to detect GFP and

GAPDH as indicated.

(TIF)

Figure S7 Expression of miR-21 Sponge for the results
shown in Figure 5A–D. Mesangial cells were transfected with

miR-21 Sponge and siPTEN (panels A and B) or miR-21 Sponge

plus Gag-Akt and treated with TGFb as described in the legend of

Figure 5A–D. Total RNAs were used to detect GFP and GAPDH

as indicated.

(TIF)

Figure S8 Expression of miR-21 Sponge for the results
shown in Figure 6A and 6B. Mesangial cells were transfected

with miR-21 Sponge and CA mTOR and treated with TGFb as

described in the legend of Figure 6A and 6B. Total RNAs were

used to detect GFP and GAPDH as indicated.

(TIF)

Figure S9 Expression of miR-21 Sponge for the results
shown in Figure 7A–D. Mesangial cells were transfected with

miR-21 Sponge and siPTEN (panels A and B) or miR-21 Sponge

plus Gag-Akt and treated with TGFb as described in the legend of

Figure 7A–D. Total RNAs were used to detect GFP and GAPDH

as indicated.

(TIF)

Figure S10 Expression of miR-21 Sponge for the results
shown in Figure 8A and 8B. Mesangial cells were transfected

with miR-21 Sponge and CA mTOR and treated with TGFb as

described in the legend of Figure 8A and 8B. Total RNAs were

used to detect GFP and GAPDH as indicated.

(TIF)
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