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Abstract

Phlebotomine sand flies are vectors of Leishmania that are acquired by the female sand fly during blood feeding on an
infected mammal. Leishmania parasites develop exclusively in the gut lumen during their residence in the insect before
transmission to a suitable host during the next blood feed. Female phlebotomine sand flies are blood feeding insects but
their life style of visiting plants as well as animals, and the propensity for larvae to feed on detritus including animal faeces
means that the insect host and parasite are exposed to a range of microorganisms. Thus, the sand fly microbiota may
interact with the developing Leishmania population in the gut. The aim of the study was to investigate and identify the
bacterial diversity associated with wild adult female Lutzomyia sand flies from different geographical locations in the New
World. The bacterial phylotypes recovered from 16S rRNA gene clone libraries obtained from wild caught adult female
Lutzomyia sand flies were estimated from direct band sequencing after denaturing gradient gel electrophoresis of bacterial
16 rRNA gene fragments. These results confirm that the Lutzomyia sand flies contain a limited array of bacterial phylotypes
across several divisions. Several potential plant-related bacterial sequences were detected including Erwinia sp. and putative
Ralstonia sp. from two sand fly species sampled from 3 geographically separated regions in Brazil. Identification of putative
human pathogens also demonstrated the potential for sand flies to act as vectors of bacterial pathogens of medical
importance in addition to their role in Leishmania transmission.
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Introduction

Phlebotomine sand flies are responsible for the spread of the

medically important Leishmania parasites that populate the female

sand fly gut. In Brazil Lutzomyia longipalpis is the main vector for

Leishmania infantum, the causative agent of severe visceral

leishmaniasis [1]. Visceral Leishmaniasis (VL) in Corumbá, central

Brazil [2] is transmitted by Lu. cruzi. The macro-ecology of the

infection cycle for Leishmania infantum is complex; in this case Lu.

longipalpis is the vector, domestic dogs are the main reservoir hosts

in urban environments with humans as the accidental hosts [3].

Very little is known about the microbial ecology of Lutzomyia spp.

but they are exposed to an unusually diverse range of microbial

communities. Although commonly termed ‘blood feeding insects’,

adult sand flies are also plant-feeders; only the female requires

occasional blood as a protein source for egg production. Both

males and females visit plants to acquire carbohydrates where they

will also acquire plant phyllosphere microbiota [4] which may be

ingested directly into the gut after piercing leaves and stems [5].

The juvenile larval stages feed on animal faeces and plant material

that are undergoing microbial biodegradation. Many of the

microorganisms ingested by the larvae will be killed during the

pupal stage (when the larval gut is reabsorbed) but some may

survive pupation to re-colonise the adult gut [6].

Bacteria in other medically important insect vectors may confer

a degree of colonisation resistance upon the host insect, reducing

parasite populations within the insect’s gut and interfering with

disease transmission [7–11]. While Plasmodium sp. cross through

the gut barrier the Leishmania parasite is confined to the gut lumen

of the female sand fly. The acquired gut bacteria are therefore

potentially more important in sand flies because some bacterial

species might compete with Leishmania.

In communities where there is an epidemic of leishmaniasis the

prevalence of Leishmania in sand flies seldom exceeds 2% of the

female sand fly population [12–14]. There are many macro-

ecological factors governing the prevalence of sand flies with

transmissible infections including the number of mammals with

infective leishmaniasis. The presence of a robust resident

microbiota within the female sand flies may also impede de-

velopment of a transmissible parasite population. This would

therefore need to be considered when predicting the effect of

ecological factors on Leishmania transmission. The microbial
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ecology of phlebotomine sand flies has been the subject of only

a few studies [6,9,15–18] and these have mainly focused on

culturable bacteria. One study of cultivatable bacteria associated

with the gut of Lutzomyia longipalpis [17] included a pre-enrichment

step and the identification of isolates by 16S rDNA sequence

analysis. The range of species included members of Enterobacter-

iaceae, such as Citrobacter, Enterobacter, Serratia, Pantoea, Morganella

and other genera such as Acinetobacter, Burkholderia, Flavimonas,

Pseudomonas and Stenotrophomonas. A bacterial cultivation approach

was used to identify bacteria from Phlebotomus argentipes in India

with potential for paratransgenetic strategy [18]. A comprehensive

metagenomic approach done by pyrosequencing analysis from

field-caught male and female L. longipalpis identified several

bacteria from environmental sources, as well as fungi and protists

[19]. Characterization based on a non-cultivatable approach is

a pre-requisite for understanding the functional role of the

microbiota of phlebotomine sand flies in survival and Leishmania

transmission. The aim of the study was to examine the bacterial

biota and potential endosymbionts associated with female Lu.

longipalpis and Lu. cruzi captured in 4 distantly located regions of

Brazil and Colombia.

Results

Analysis of the 16S Gene Clone Library from Field-
collected Lu. longipalpis and Lu. cruzi
Characterization of bacteria associated with Lutzomyia by

sequencing a portion of the bacterial 16S rRNA gene from clone

libraries led to the identification of 38 bacterial sequences through

BLAST searches, with 19 distinct bacterial phylotypes (Table 1).

The relative abundance of different phylotypes in the clone

libraries was estimated by band pattern comparison of PCR-

amplified bacterial 16S rRNA gene fragments derived from single

clones run on DGGE, giving a measure of relative abundance for

each bacterial species within the gut of the female Lutzomyia sand

fly (Table 2). Between 26 to 28 clones were analysed from bacterial

16S rRNA clone libraries obtained from 4 pools of field-collected

females of Lu. longipalpis and Lu. cruzi. These wild-caught sand flies

were captured from four distantly located regions in Brazil and

Colombia. On the basis of sequence similarity to existing Genbank

database sequences, the majority of the bacterial sequences

obtained from Lu longipalpis collected in Lapinha belonged to the

Betaproteobacteria class. Ralstonia spp. (plant associated species)

were the most abundant bacterial phylotype, present in 65.5% of

the randomly picked clones (Table 2). The second most frequent

bacteria also belong to Betaproteobacteria (Leptothrix sp. 217.2%),

followed by the Alphaproteobacteria Bradyrhizobium japonicum

(10.3%), with the Gram positive Firmicutes Clostridium disporicum

and the Alphaproteobacteria Caulobacter sp. being the least

abundant in the Lapinha’s field samples (3.4%).

The 16S rRNA gene sequencing data derived from Lu.

longipalpis collected in Alagoas state (Brazil) showed that the

majority of bacterial species identified belonged to Gammapro-

teobacteria (Table 1). However, BLAST searches confirmed that

clones from this library were also dominated by sequences related

to the genus Ralstonia (50%). The most abundant Gammaproteo-

bacteria were Erwinia billingiae (another well known plant

pathogen) (17.8%) and Klebsiella pneumoniae (14.2%). Notocardioides

albus, Serratia sp., Acinetobacter sp., Sphingobacterium daejeonense and

Propionibacterium acnes were identified in 3.6% of the bacterial

clones.

The 16S rRNA sequence analysis of Lu. cruzi from Corumbá

(Mato Grosso – Brazil) identified 8 bacterial genera across 5

different divisions. Again, Ralstonia spp. was the most abundant

phylotype (40.7%), with the Gram-positive Staphyloccoccus xylosus

and Cryseobacterium meningosepticum being identified in 25.9 and

11.1% of the clones, respectively. The Caulobacter sp. (Alphapro-

teobacteria) and the Gram-positive Clostridium sp. (Firmicutes) were

found in 7.4% of the individual clones analysed and the Gram-

positive bacteria Lactobacillus zymae and the Bradyrhizobium japonicum

(Alphaproteobacteria) were detected in 3.7% of the bacterial

clones screened.

The vast majority of the bacterial phylotypes identified from Lu.

longipalpis collected from cattle in Callejón (Colombia) belonged to

the Alphaproteobacteria class: Saccharibacter floricola was present in

89.2% of the clones. Stenotrophomonas floricola (Gammaproteobac-

teria), Propionibacterium acnes (Actinobacteria) and Dyadobacter

ginsengisoli (Bacterioidetes) were present in 4% of the bacterial

samples analysed.

Neighbour-joining Phylogram of Bacterial 16S Sequences
Obtained from Lu. longipalpis Collected from the Field
The 16S gene sequences generated from the clone libraries from

Lu. longipalpis collected from the field were used to construct

a neighbour-joining tree. The topology of the ML and NJ trees

(Fig. 1) were identical and showed good correspondence with the

RDP classifier results. The phylogenetic analysis showed robust

clustering of bacterial species isolated from the different sand fly

species and different geographic locations. This is particularly true

for the Ralstonia and Erwinia isolates that showed both robust clades

and a high degree of similarity (70% bootstrap support) despite the

fact that they were from different sand fly species and from

different geographical locations.

DGGE Profiles of Field Caught Lu. longipalpis and Lu. cruzi
Bacterial DGGE profiles were generated using PCR-amplified

bacterial 16S rRNA gene fragments from individual female Lu.

longipalpis collected in Lapinha cave and Alagoas and Lu. cruzi

collected in Corumbá, Mato Grosso do Sul (Brazil). DGGE band

profiles indicated the presence of several putative bacterial

phylotypes in Lu. longipalpis from different geographic populations

and Lu. cruzi from Corumbá (Fig. 2 and 3). Random sequencing of

DGGE bands identified bacterial species that were not previously

detected in our clone libraries for Lu. longipalpis from Lapinha cave

and Alagoas. DGGE band sequencing also confirmed the presence

of Ralstonia in individual Lu. longipalpis from Alagoas and Lu. cruzi

from Corumbá (Brazil). It is possible that some bands at identical

positions may not be homologous and the diversity of phylotypes

may be higher than the profile suggests.

Discussion

The present study used DGGE and 16S rRNA sequence

analysis to identify a relatively low range of bacterial phylotypes

across several divisions within female adult phlebotomine sand

flies. Other insects such as cockroaches, termites and crickets have

a much more complex microbiota reflecting their greater

contribution to digestion [20]. Studies using classical microbio-

logical techniques demonstrated that bacteria can be frequently

isolated from the gut of female Phlebotomus [9] and Lutzomyia [15–

17]. The approach of cultivating the bacteria prior to identifica-

tion, however, may have introduced an unknown bias into the

sampling as the uncultivated bacteria will not have been

considered. Dillon et al. [9] isolated bacteria from the midgut of

field-collected P. papatasi caught in Egypt and found that in the

sand flies with blood in their midguts, 59% contained bacteria and

some of them contained potential human pathogens. Hillesland

et al. [18] identified 28 distinct gut bacteria from Phlebotomus
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PLoS ONE | www.plosone.org 2 August 2012 | Volume 7 | Issue 8 | e42531



argentipes, with Staphyloccoccus and members of the family Enter-

obacteriaceae being isolated in the greatest abundance. In Lu.

longipalpis, a previous study using 3 Brazilian populations identified

Serratia marcescens, Pseudomonas aeruginosa and Pantoea agglomerans as

the most frequent bacteria associated with all field populations

[17]. The present study was an attempt to investigate the

microbiota associated with sand flies of the genus Lutzomyia using

a molecular approach to identification. A metagenomic analysis of

Table 1. Bacterial phylotypes associated with Lutzomyia sand flies sampled from 4 field sites.

Clone number Length (bp) Bacterial Division Database match (accession no.) Score Similarity (%)

Lu. longipalpis, Lapinha

1–1 750 Betaproteobacteria Ralstonia sp. (AY216797) 1455 (99)

1–3 781 Betaproteobacteria Leptothrix sp. (AF385528) 1501 (99)

1–4 557 Firmicutes Clostridium disporicum (Y18176) 985 (98)

1–6 851 Betaproteobacteria Ralstonia pickettii (AY268180.1) 1631 (99)

1–9 914 Betaproteobacteria Ralstonia sp. (AY216797) 1741 (99)

1–11 731 Alphaproteobacteria Caulobacter sp. (AY807064.1) 1419 (99)

1–13 620 Alphaproteobacteria Bradyrhizobium japonicum (AB195988) 1229 (100)

1–15 913 Betaproteobacteria Ralstonia sp. (AY216797) 1717 (99)

1–20 918 Betaproteobacteria Ralstonia sp. (AY191853) 1764 (99)

1–23 861 Alphaproteobacteria Bradyrhizobium japonicum (AF208517) 1657 (99)

1–26 913 Betaproteobacteria Ralstonia sp. (AY216797) 1746 (99)

Lu. longipalpis, Alagoas

2–7 898 Actinobacteridae Propionibacterium acnes (AY642051) 1764 (99)

2–8 918 Gammaproteobacteria Erwinia billingiae (AM055711) 1663 (98)

2–11 913 Betaproteobacteria Ralstonia sp. (AY216797) 1762 (100)

2–14 914 Gammaproteobacteria Enterobacter sp. (NJ-1 AM396909) 1616 (98)

2–17 918 Gammaproteobacteria Pantoea sp. (NJ-87 AM419023) 1618 (98)

2–18 892 Actinobacteridae Nocardioides albus (AF004997) 1703 (99)

2–19 914 Betaproteobacteria Ralstonia sp. (AY216797) 1748 (99)

2–23 850 Gammaproteobacteria Serratia sp. (AY827577) 1655 (99)

2–24 909 Gammaproteobacteria Klebsiella pneumoniae (AY043391) 1618 (98)

2–25 913 Gammaproteobacteria Acinetobacter sp. (DQ227342) 1784 (99)

2–27 916 Bacteroidetes Sphingobacterium daejeonense (AB249372) 1536 (96)

2–30 916 Gammaproteobacteria Klebsiella pneumoniae (AY043391) 1659 (97)

Lu. cruzi, Corumbá

3–2 858 Alphaproteobacteria Caulobacter sp. (AY807064) 1427 (99)

3–4 844 Firmicutes Clostridium glycolicum (AY007244) 1481 (97)

3–5 925 Firmicutes; Bacillales Staphylococcus xylosus (D83374) 1731 (99)

3–15 917 Betaproteobacteria Ralstonia sp. (AY216797) 1756 (99)

3–17 945 Firmicutes Lactobacillus zymae (AJ632157) 1699 (98)

3–19 894 Firmicutes Clostridium disporicum (Y18176) 1667 (99)

3–22 913 Betaproteobacteria Ralstonia sp. (AY216797) 1754 (99)

3–24 906 Bacteroidetes Flavobacteria Chryseobacterium meningosepticum (AY468445) 1360 (94)

3–27 402 Alphaproteobacteria Bradyrhizobium japonicum (AB231926) 733 (98)

3–30 907 Bacteroidetes Flavobacteria Chryseobacterium meningosepticum (AY468445) 1340 (93)

Lu. longipalpis, El Callejón

4–1 906 Alphaproteobacteria Saccharibacter floricola (AB110421) 1562 (97)

4–7 919 Gammaproteobacteria Stenotrophomonas maltophilia (AJ293470) 1570 (99)

4–13 907 Actinobacteria Propionibacterium acnes (AB041617) 1756 (99)

4–18 907 Alphaproteobacteria Saccharibacter floricola (AB110421) 1566 (98)

4–22 898 Bacteroidetes Dyadobacter ginsengisoli (AB245369) 1532 (97)

Insects collected in field locations were suspended in 70% ethanol. DNA extracts from pooled samples of insects were subjected to PCR using primers specific for
a 900 bp region of the 16S rRNA gene. The PCR products were cloned and colonies randomly selected. Purified plasmids from the clones were subjected to specific PCR,
the products separated with DGGE and representative clones were selected on the basis of the band pattern of their DGGE profiles.
doi:10.1371/journal.pone.0042531.t001
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all taxa associated with adult Lutzomyia longipalpis from Brazil

identified only ten different bacterial types including sequences for

Ralstonia pickettii, Anoxybacillus flavithermus, Geobacillus kaustophilus,

Streptomyces coelicolor, Propionibacterium acnes, Acinetobacter baumannii

and Veillonella sp. [19].

The phylotypes in this study were similar to those found in an

apparently disparate range of insect species representing different

orders of insects. This includes Orthoptera (locusts [21]),

Lepidoptera (cabbage white butterfly [22]), Diptera (mosquitoes

[23] and tephritid fruit flies [24]). We suggest that they represent

insects with low diversity, facultative microbiota that are drawn

from the reservoir of phylotypes in the local environment of the

insect. It should be noted that the identifications are tentative and

some clones may represent novel phylotypes. The relative

abundances of different phylotypes in the clone libraries give

a measure of relative abundance in the female Lutzomyia sand fly.

However, larger sample numbers may provide a more accurate

comparison of relative abundance.

A notable observation was the apparent abundance of putative

Ralstonia spp. from 2 sand fly species sampled from 3 geo-

graphically separated regions. The association of Ralstonia sp. with

Lu. longipalpis was also found in a previous metagenomic analysis of

all taxa associated with this sand fly species from one of the same

locations, Lapinha, in Brazil [19]. The most common species is

Ralstonia solanacearum, the causal agent of bacterial wilt in

solanaceous crops. R. solanacearum is a soil-borne bacterium

originating from the tropics, subtropics, and warm temperate

regions [25]. Another potential plant pathogen genus Erwinia was

also noted. In addition to their plant visiting habits [26–28], the

female sand flies deposit eggs in terrestrial habitats and the larvae

feed on either decaying vegetation or animal faeces. Therefore,

there is ample opportunity for these insects to come into contact

with plant pathogens. The discovery of Ralstonia sp. in our sand fly

samples raises the question whether Phlebotomine sand flies may

act as vectors of plant pathogens (see also [19]). Future

experiments will establish whether sand flies can harbour or

mechanically transmit pathogens from a diseased plant to a healthy

individual.

The identification of the bacterial sequences from female sand

flies with similarity to Bradyrhizobium sp. (a bacteria found

intracellularly in root nodules) is notable, although a number of

nitrogen fixing bacteria have been associated with insects and

Table 2. Abundance of bacterial phylotypes recovered from 16S rRNA gene clone libraries constructed from adult Lutzomyia sand
flies.

Bacterial Division Database Match Abundance (%)

Lu. longipalpis, Lapinha n=29

Betaproteobacteria Ralstonia sp. AY216797 65.5

Betaproteobacteria Leptothrix sp. 17.2

Alphaproteobacteria Bradyrhizobium japonicum 10.3

Firmicutes Clostridium disporicum 3.4

Alphaproteobacteria Caulobacter sp. 3.4

Lu. longipalpis, Alagoas n=28

Betaproteobacteria Ralstonia sp. AY216797 50.0

Gammaproteobacteria Erwinia billingiae AM055711 17.8

Gammaproteobacteria Klebsiella pneumoniae AY043391 14.2

Actinobacteridae Nocardioides albus AF004997 3.6

Gammaproteobacteria Serratia sp. AY827577 3.6

Gammaproteobacteria Acinetobacter sp. DQ227342 3.6

Bacteroidetes Sphingobacterium daejeonense 3.6

Actinobacteridae Propionibacterium acnes AY642051 3.6

Lu. cruzi, Corumbá n=26

Betaproteobacteria Ralstonia sp. AY216797 40.7

Firmicutes; Bacillales Staphylococcus xylosus D83374 25.9

Bacteroidetes Chryseobacterium meningosepticum 11.1

Alphaproteobacteria Caulobacter sp. AY807064 7.4

Firmicutes Clostridium sp. 7.4

Firmicutes Lactobacillus zymae AJ632157 3.7

Alphaproteobacteria Bradyrhizobium japonicum AB231926 3.7

Lu. longipalpis, El Callejón n=28

Alphaproteobacteria Saccharibacter floricola AB110421 89.2

Gammaproteobacteria Stenotrophomonas maltophilia AJ293470 4.0

Actinobacteridae Propionibacterium acnes AB041617 4.0

Bacteroidetes Sphingobacteria Dyadobacter ginsengisoli AB245369 4.0

Between 26 and 28 clones were randomly selected each of the 4 pools of samples. The PCR products from GC clamped primers [44] were run on DGGE and clones were
selected for sequencing on the basis of the gel profile. Gel profiles were grouped according to identical band distribution.
doi:10.1371/journal.pone.0042531.t002
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blood feeding invertebrates such as leeches where a new lineage of

a-proteobacterial endosymbionts, related to Rhizobiaceae, have

been identified [29]. Is there a role for nitrogen fixing bacteria in

sand flies that are unable to find a bloodmeal? There are large

populations of diazotrophic enterobacteria that express dinitrogen

reductase within the gut of fruit flies (Ceratitis capitata) and nitrogen

fixation may significantly contribute to the fruit fly nitrogen intake

[24,30]. When a blood source is scarce, the presence of nitrogen

fixing bacteria may also be beneficial for the female sand fly.

Chryseobacterium meningosepticum is an emerging pathogen, an agent

of neonatal meningitis and is involved to a lesser extent in cases of

pneumonia and bacterial sepsis in neonates and adults [31,32].

The preliminary identification of this bacterial species in Lu. cruzi

from Corumbá (Brazil) highlights the potential for identifying sand

flies as vectors of bacterial pathogens of medical importance.

Other potential human and plant pathogens identified in our field

samples are bacterial clones with sequence similarity to genus

Burkholderia (soil-borne, Gram-negative, motile, obligately aerobic,

rod-shaped bacteria). Burkholderia has been previously identified

from the digestive tract microbiota in female Lutzomyia longipalpis

[17]. Burkholderia mallei is the causative agent of the predominately

equine disease glanders and is very closely related to the much

more diverse species Burkholderia pseudomallei, an opportunistic

human pathogen and the primary cause of melioidosis [33].

The nested PCR screening of the sand fly microbiota did not

result in identification of endosymbionts Wolbachia or Cardinium

despite successful positive results from control insect material

known to contain these species (results not shown). The absence of

Wolbachia endosymbionts in most Lutzomyia species [34] including

our own colony raises the question as to whether there are other,

as yet, undescribed endosymbionts in these insects. One study [6]

has shown that Ochrobactrum intermedium survives pupation in Lu.

longipalpis to appear in the adult gut. This species is also present

throughout our Lu. longipalpis 25 year old colony originally from

Jacobina (Bahia-Brazil). Some of the above mentioned phylotypes

could represent endosymbionts. The negative result of Wolbachia

specific PCR probably means that Wolbachia does not naturally

infect Lutzomyia and this is the first time that the sand fly genus has

been tested for Cardinium. The lack of these reproductive symbionts

in the system may be valuable for the design and deployment of

symbiont control strategies. It is also interesting as the lack of these

bacteria may suggest either a barrier to their invasion of sand flies

or a mismatch in symbiont/host biology.

The molecular microbial ecology approach has resulted in an

upsurge in understanding about the relationships of insects with

microorganisms; the importance of gut microbes is gaining

increased recognition [20,35–38]. Of particular relevance is the

hypothesis that resident bacteria of insects may prevent the

development of insect pathogens in the gut either directly [7] or

indirectly by regulating the host immune response [11]. Adler and

Theodor [39] were the first to suggest that the presence of

commensal microorganisms might impair Leishmania development

in the sand fly midgut. Schlein et al. [40] observed yeast-like fungi

in lab reared and field caught Phlebotomus papatasi and P. tobbi and

suggested that gut contamination might interfere with Leishmania

transmission. Only approximately 1.5% of the adult female

population contain Leishmania parasites in the gut [14] and not

all these insects may contain parasites at the mammalian infective

(metacyclic) stage. The reasons for the low number of Leishmania

infected sand flies are related to a number of factors; the main

factors being the availability of infected mammalian reservoirs and

the short life of the adult sand fly. The presence of competing

microbes in the sand flies’ gut could contribute and perhaps

reduce even further the chances of a sand fly becoming infected

with Leishmania.

Materials and Methods

Insect Collection Sites
Wild caught Lu. longipalpis collected in Brazil were obtained

from 3 different localities separated from each other by over

2,000 km: sand flies captured in Estrela de Alagoas (a town located

in a rural area of Alagoas State-Brazil) were collected using CDC

light traps near the livestock with the presence of adjacent fruit

trees; Sand flies collected in Lapinha cave (situated in the

municipality of Lagoa Santa-Minas Gerais, Brazil) were collected

using a CDC light trap placed near a caged chicken; Lutzomyia cruzi

were collected in Mato Grosso do Sul State- Corumbá (Brazil)

from a rural area next to a pigpen in the backyard of a small

house. Lu. longipalpis from Colombia came from the small rural

community of El Callejón (municipality of Ricaute) and were

collected by aspiration from cattle.

Ethics Statement
No specific permits were required for the insect collections.

Specific permission was obtained from the private owners to

collect the sand flies from all sites apart from Lapinha where RPB

has a long standing agreement to collect sand flies. The field

studies did not involve endangered or protected species.

Extraction and Purification of DNA
Insects were surface sterilized by dipping in 70% ethanol for

30 seconds and then washed twice in sterile saline (NaCl 0.15 M)

followed by storage in 90% ethanol. Whole insects were suspended

in homogenisation buffer with lysing matrix. Homogenisation was

done using a bead beater (Fastprep instrument, MP Biomedicals)

for 40 sec. DNA extraction was carried out using the FastDNA

Spin Kit for soil (MP Biomedicals) according to the manufacturer’s

instructions with the exception that material was centrifuged for

8 minutes at 14,000 g following cell lysis before transferring the

supernatant to a clean tube with protein precipitation solution

[41]. DNA was stored in a 50 ml aliquot of DNase/pyrogen free

water at –70uC. In addition, DNA template was also prepared

from pure bacterial cultures as described previously [42].

Essentially, 1 ml of log phase culture was centrifuged for 4 min

at 14,000x g. Supernatant was discarded and the cell pellet was re-

suspended in 100 ml of 5% (w/v) Chelex 100 (Sigma-Aldrich). The

suspension was then heated at 100uC for 5 min prior to placing in

ice for 5 min followed by a further heating and cooling step. The

crude DNA lysate was then centrifuged as above and used directly

for PCR amplification.

Lutzomyia Bacterial Clone Library Production and
Sequencing
Partial sequences of the 16S rRNA gene were amplified from

DNA extracts from pooled samples of insects (n = 20) using

Figure 1. Neighbour-joining phylogram of bacterial 16S sequences obtained from field collected Lutzomyia species. Numbering refers
to clones described in Table 1. Bacterial species from Lapinha (Minas Gerais-Brazil) are presented in purple; species identified from sand flies collected
in Alagoas (Brazil) are presented in green; species identified in Corumbá (Brazil) are presented in pink and red represents bacterial species identified
from Lu. longipalpis collected in Callejón (Colombia). Bacterial sequences extracted from Genbank for comparison are presented in black.
doi:10.1371/journal.pone.0042531.g001
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Figure 2. Denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified bacterial gene fragments derived from field-
collected individual female Lu. longipalpis. Lanes L1 to L10 corresponds to DGGE profiles of Lu. longipalpis collected from Lapinha cave-Minas
Gerais; A1 to A5 correspond to DGGE profiles of Lu. longipalpis collected from Alagoas state/Brazil. Lanes labelled S correspond to standard DGGE
markers prepared from a selection of bacterial 16S rRNA gene products to enable gel to gel comparison.
doi:10.1371/journal.pone.0042531.g002

Sand Fly Microbiota

PLoS ONE | www.plosone.org 7 August 2012 | Volume 7 | Issue 8 | e42531



Sand Fly Microbiota

PLoS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e42531



primers 27F and 1492R [43]. Four clone libraries (Lapinha,

Alagoas, Corumba, El Callejón) were derived from the amplified

products using a cloning kit (TOPO TA, Invitrogen, CA, USA).

Purified plasmids from randomly selected clones (n = 26–29) were

subjected to DGGE (denaturing gradient gel electrophoresis)

specific PCR and the products were run on DGGE (data not

shown), representative clones were selected for sequencing on the

basis of their DGGE profiles and the abundance of the putative

phylotypes estimated on the basis of identical band profiles in

comparison to the sequenced clones. Bacterial sequences obtained

during this study were deposited at EMBL as HE611532-69.

DGGE Analysis of PCR Amplified Products from Individual
Females
For the DGGE approach amplification of the 16S rRNA genes

of bacteria were performed using PCR-DGGE primers 357FGC-

518R [44] Amplifications were carried out with 4 pmol ul21

primers, 1 ml of DNA template, 1 x reaction buffer (Promega),

1.5 mMMgCl2, 1.5U Taq DNA polymerase (Promega), 0.25 mM

each dNTP in a 50 ml PCR reaction mixture with molecular grade

water. Positive (pure culture bacterial DNA) and negative controls

(water) were routinely included. PCR conditions were 95uC for

5 mins, 10 cycles of 94uC/30 s; 55uC/30 s; 72uC/60 s, 25cycles

of 92uC/30 s; 52uC/30 s; 72uC/60 s, followed by 10 min at 72uC.
DGGE was conducted according to previously described methods

[21,45]. DGGE marker was prepared from a selection of bacterial

16S rRNA gene products to enable gel to gel comparison. PCR

products prepared from single females were separated (ca 200 ng

of each product) using a combined polyacrylamide and denaturant

gradient between 6% acrylamide/30% denaturant and 12%

acrylamide/60% denaturant. A 100% denaturing condition is

equivalent to 7 M urea and 40% (v/v) formamide. Gels were

poured with the aid of a 50 ml gradient mixer (Fisher Scientific,)

and electrophoresis run at 200 V for 5 h at 60uC. Polyacrylamide

gels were stained with SYBRGold nucleic acid gel stain (Molecular

Probes) for 30 min and viewed under UV.

Bands were excised with sterile razor blades immediately after

staining and visualisation of the gels. Gel bands were stored at –

70uC, washed with 100 ml distilled water and DNA extracted with

10–20 ml of water depending on band intensity. DNA was re-

amplified using the PCR-DGGE primers and products checked by

agarose gel electrophoresis. The PCR products were purified using

the QIAGEN PCR purification kit (Qiagen Ltd). The products

were directly sequenced with the 518R primer. Partial bacterial

16S rRNA gene sequences (approximately 160 bp) were subjected

to a NCBI nucleotide blast search (http://blast.ncbi.nlm.nih.gov/

Blast.cgi) to identify sequences of the highest similarity.

Endosymbiont Analysis
Bacterial 16S rDNA was amplified by PCR. The PCR reagents

comprised 2 mM MgCl2, 0.5 mM each dNTP, 0.5 mM each

primer, PCR buffer and 1 U Taq polymerase (Promega,

Southampton, UK), and the reaction conditions were 24 cycles

of 94uC for 1 min, primer pair annealing temperature for 1 min,

72uC for 1 min, but with the extension time increased to 2 min

and 8 min for the first and last cycle, respectively. Universal

bacterial 16S rDNA primers were used together with primers

specific to Wolbachia 16S rRNA gene; primers 99F and 994R [46]

and Cardinium with related Bacteroidetes primers, (forward) Ch-F 59-

TACTGTAAGAATAAGCACCGGC-39 and (reverse) Ch-R 59-

GTGGATCACTT AACGCTTTCG-39 [47].

Nested PCR reactions used specific primers and 1 ml cleaned
PCR product (QIAquick PCR purification kit, Qiagen, Crawley,

UK) from a PCR amplification with the universal bacterial

primers and total fly DNA template. All PCR reactions included

template-free samples as negative control. PCR products were

separated by electrophoresis in a 1.6% agarose gel and visualized

under UV following staining with ethidium bromide. Sequences

were checked for chimeric artefacts using the CHECK_CHI-

MERA program of Ribosomal Database Project II (RDP II) [48]

and compared with similar rDNA sequences in the DNA

databases using the BLAST search program of the National

Centre for Biotechnology Information (NCBI) and RDP classifier

[49].

For the phylogenetic analysis the Muscle alignment program

[50] was used to generate multiple sequence alignment (which was

adjusted manually). The neighbour-joining (DnaDist-Neighbour)

[51] and maximum likelihood (PhyML) [52] analysis, gaps and

ambiguous bases were excluded from the analysis using Gblock

[53]. The two methods of tree drawing neighbour-joining (NJ)

used the Kimura two-parameter model with correction for

multiple substitutions and maximum likelihood (ML) using the

HKY85 model that included an estimate of 0.49 for the

proportion of sites assumed to be invariable and a transition/

transversion ratio of 1.7 (estimated from the data). Bootstrap

analyses with 100 replications were performed to estimate the

reliability of the resulting gene phylogenies.
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