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Abstract

Background: Thymosin beta-4 (Tb4) is a ubiquitous protein with many properties relating to cell proliferation and
differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tb4
modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the
cardioprotective mechanism of Tb4 on H2O2 induced cardiac damage.

Methods: Rat neonatal cardiomyocytes with or without Tb4 pretreatment were exposed to H2O2 and expression of
antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS
levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and
antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tb4 on H2O2-induced
cardiac damage was evaluated.

Results: Pre-treatment of Tb4 resulted in reduction of the intracellular ROS levels induced by H2O2 in cardiomyocytes. Tb4
pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl2 ratio in the
cardiomyocytes. Pretreatment with Tb4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and
catalase in cardiomyocytes at both transcription and translation levels. Tb4 treatment resulted in the increased expression of
anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in
the cardiomyocytes which was prevented by treatment with Tb4.

Conclusion: This is the first report that demonstrates the effect of Tb4 on cardiomyocytes and its capability to selectively
upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes
thus preventing cell death thereby protecting the myocardium. Tb4 treatment resulted in decreased oxidative stress and
inflammation in the myocardium under oxidative stress.
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Introduction

Adverse cardiac remodeling is a detrimental process account-

able for the development of various cardiac diseases including

myocardial infarction, cardiac hypertrophy and heart failure.

Although the mechanisms underlying the cardiac remodeling are

multi-factorial, current evidences suggest that oxidative stress plays

a critical role in the process. Oxidative stress is defined as an

imbalance in antioxidant defense mechanism that elicits the

production of reactive oxygen species (ROS) [1–4]. ROS are

primarily characterized as oxygen based free chemical particles, if

present in excess, causes contractile dysfunction and structural

damage in the myocardium [5]. Therefore the balance between

ROS production and removal of excess ROS are essential in

maintaining the redox state and, homeostasis balance in the cell

[6]. At the subcellular level, increased ROS levels can cause

damage to nucleic acids and proteins leading to programmed cell

death or apoptosis [7–9]. Thus, ROS mediated oxidative damage

in cardiomyocytes is responsible for structural integrity of the

myocardium.

It has been reported that increase in the levels of oxidative stress

in the failing heart is primarily due to the functional uncoupling of

the respiratory chain caused by inactivation of complex I in the

mitochondria and considered to be a good source for ROS

production [10,11]. Another source would consider is the

impaired antioxidant capacity that include superoxide dismutase
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(SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and

considered as such as the first line of cellular defense against

oxidative injury [12]. Accumulating evidences indicate that

cardiac overexpression of Mn-SOD or CAT protects the heart

from ischemic insult or myocardial infarction [13,14].

Oxidative stress triggers pro-inflammatory signaling pathways

that activate nuclear factor kappa B (NF-kB) and AP-1 transcrip-

tion factors [15]. Previously, we and others have shown that NF-

kB activation is associated with cardiac dysfunction, ventricular

hypertrophy, and maladaptive cardiac growth [16–20]. The

biochemical nexus between oxidative stress and inflammation

represent an integral part in the pathophysiology of myocardial

damage.

Thus, it is evident from our literature that oxidative damage

remains a great challenge to promote significant myocardial

damage and, numerous efforts have been made in the search of

strategies to protect the heart against oxidative damage. In search

of an ideal cardio-protective agent, Thymosin b4 (Tb4) emerged

as powerful candidate.

Tb4, a G-actin sequestering molecule is primarily implicated in

reorganizing actin cytoskeleton that needed for cell mobility [21].

Moreover, Tb4 is present in all cells and body fluids and, has

diverse biological function that includes tissue development, repair

and pathology [21,22]. Importantly, Tb4 contributes a significant

cardiac repair mechanism by activating integrin link kinase [23–

25] and, has further shown to promote cardiac regeneration,

epicardial cell migration and neovascularization [26,27]. Our

previous study demonstrated that treatment of Tb4 restored the

adverse cardiac remodeling (due to ischemic insult) by reducing

inflammation, fibrosis and, activating ILK, PINCH and a-Parvin

[27]. In the case of oxidative stress, Tb4 has been shown to protect

the cells by enhancing antioxidant enzymes and reducing caspase

9 activation in human corneal epithelial cells [28–30]. Under this

setting, we recently have shown in cardiac fibroblast that Tb4 has

the target for SOD and catalase and thereby protect the cell from

oxidative stress [31]. But the exact mechanism by which Tb4

functions in the myocardium under oxidative stress and its effects

on the cardiac myocytes is largely unknown.

The present study elucidates the protective mechanism of Tb4

under oxidative stress using rat neonatal cardiac myocytes. We

hypothesize that Tb4 protect myocytes under oxidative stress by

modulating antioxidant enzymes, apoptotic genes and pro-

inflammatory genes. As for the limitation of our study, we used

neonatal cardiomyocytes to study the protective effect of Tb4

under oxidative stress conditions that may not mimic the changes

in clinical conditions, and thus results using cultured cardiomy-

ocytes should be interpreted carefully. An advantage of neonatal

cardiomyocytes is the easy procedure for their isolation in contrast

to adult cardiomyocytes, which are very sensitive to the

concentration of Ca2+ in the medium. Moreover, the phenotype

of cultured neonatal cardiomyocytes is very stable and their

contractile profile very closely mimicking the adult cardiomyo-

cytes. Experiments in isolated neonatal cardiomyocytes have

generally reproduced the results on adult cardiomyocytes with a

wide variety of interventions exploring the cellular and molecular

mechanisms in oxidative stress.

Materials and Methods

Reagents
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT), hydrogen peroxide (H2O2) (Sigma), dimethyl sulfoxide

(DMSO), dihydroethidium (DHE), dichlorofluorescein diacetate

(DCF-DA), diaminofluorescein 2-diacetate (DAF-2DA), 3,39-

dihexyloxacarbocyanine iodide (DiOC6), and chloromethyl-X-

rosamine (MitoTracker red) were purchased from Molecular

Probes, Invitrogen, USA. Antibodies for Mn-SOD, Cu/Zn-SOD,

Catalase, GAPDH, Bax, Bcl2, caspase-3 were purchased from Cell

Signaling Technologies, USA Santa Cruz Biotechnologies (USA),

Immuno-Rockland (USA). Protease inhibitor cocktail tablets were

purchased from Roche GmbH, Germany. Dulbecco’s Modified

Eagle Medium (DMEM), non-essential amino acid cocktail,

insulin, transferrin and selenium (ITS), and fetal Bovine Serum

(FBS) were purchased from GIBCO, Invitrogen (USA). Thymosin

b4 was supplied by RegeneRx Pharmaceutical.

Cell culture and treatment
Primary cultures of cardiac myocytes were prepared from

ventricles of 1–3-day-old Wistar rats as described previously [32].

In brief, cardiomyocytes were plated at a field density of 2.56104

cells per cm2 on coverslips, 6-well plates, 60-mm culture dishes, or

100-mm dishes as required with DMEM containing 10% FBS and

supplemented with insulin, transferrin and selenium and bromo-

deoxy-uridine. After 24 h, cells were serum deprived overnight

before stimulation. A standardized dose of 100 mM H2O2 was

used to induce oxidative stress in the in vitro system. To study the

protective effects of Tb4, cells were pretreated with Tb4 2 hours

prior to H2O2 challenge. The final concentration of Tb4 used in

this study was 1 mg/ml which was based on previous reports

[28,32].

Detection of the cell viability
Cell viability of cardiac myocytes was measured quantitatively

using MTT as described previously [31]. The absorbance was

measured at 570 nm using a microplate reader (Molecular

Devices, SpectraMax 250). The effect of Tb4 was assessed on

the H2O2 treated myocyte and the cytotoxicity curve was made

and, expressed as percentage cell viability compared to control.

Measurement of intracellular ROS levels
For measuring the levels of intracellular ROS, cardiac myocytes

after treatments were incubated with 50 mM 29,79-dichlorodihy-

drofluorescein diacetate (H2DCFH-DA, Molecular Probes, Eu-

gene, OR) at 37uC in the dark for 30 min as described previously

[31].

Confocal microscopy
For measuring the levels of intracellular ROS, cells were seeded

on coverslips in 6-well plates and after treatments were incubated

with 50 mM 29,79-dichlorodihydrofluorescein diacetate (H2DCFH-

DA, Molecular Probes, Eugene, OR) at 37uC in the dark for

30 min as previously described [31]. Cells were then fixed and

mounted on glass slides and observed under confocal laser

scanning microscope (Fluoview FV1000) fitted with a 488 nm

argon ion laser. Images were acquired using the F10-ASW 1.5

Fluoview software.

Western blot analysis
Cardiac myocytes were treated with or without Tb4 for 2 h

before stimulated with 100 mM of H2O2. The cell lysate

preparation, western blot analysis and image quantification were

performed as described previously [31].

RNA isolation and quantitative RT-PCR (q RT-PCR)
analysis

Cardiomyocytes were treated with or without Tb4 for 2 h

followed by stimulation with H2O2 (100 mM) for up to 24 h. The

Thymosin Beta 4 and Oxidative Stress in Myocytes
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preparation of RNA, 1st strand cDNA synthesis and q RT-PCR

was performed as described previously [31]. Analysis of relative

gene expression was done by evaluating the real-time quantitative

PCR data by 2(2DDCt) method as described previously by others

[33,34]. GAPDH or 18S was used as housekeeping gene.

RNA interference and siRNA transfection
The gene silencing experiment using small interfering (si) RNA

of Cu/Zn-SOD and Bcl2 was performed using predesigned

double-stranded siRNA of the above from Sigma Life Science,

Saint Louis MO, USA as described previously [31]. A scramble

siRNA was used for negative control was also obtained from

Sigma. In brief, cells were then transfected with 200 pmol of the

siRNAs for Cu/Zn-SOD and Bcl2 or negative control siRNA

using N-TERTM nanoparticle siRNA transfection system (Sigma)

in accordance with the manufacturer’s protocol. After 24 h of

transfection, cells were treated and harvested to determine the

transfection efficiency and effect of Tb4 treatment on H2O2

treatment in the transfected cells.

TUNEL staining
Quantification of TUNEL staining was done to study the extent

of apoptotic cell death on transfected fibroblasts by in situ cell death

detection kit (Roche Applied Science, Indianapolis, IN) as

described previously [31].

Statistical analysis
All experiments were performed at least three times for each

determination. Data are expressed as means 6 standard error (SE)

and were analyzed using one-way analysis of variance and

secondary analysis for significance with Tukey–Kramer post tests

using Prism 5.0 GraphPad software (GraphPad, San Diego, CA,

USA). A p value less than 0.05 was considered statistically

significant.

Results

Tb4 protects cardiomyocytes cells against H2O2-induced
cell death

The viability of cardiomyocytes was determined by MTT assay.

Cardiomyocytes were treated with increasing doses of H2O2 and,

cell viability was determined over a period of 24 hours. Our data

showed that the 50% lethal dose (LD50) of H2O2 was between 150

and 250 mM (Figure 1A). Pretreatment with Tb4 (1 mg/mL)

prevented the myocyte cell death by 23.4% (p,0.05), compared to

the H2O2-treated group indicating a protective role of Tb4 in

cardiomyocytes. The optimal sub-lethal concentration of H2O2

was determined and 100 mM H2O2 was used for the entire study.

Tb4 protects cardiomyocytes in H2O2-induced oxidative
stress

Intracellular ROS levels in myocytes for 12 and 24 h post-H2O2

(100 mM) treatment were subsequently measured by fluorimetry

and confocal microscopy analyses. There was an increase in ROS

Figure 1. Effect of Tb4 on cell viability in H2O2-treated
cardiomyocytes. (A) The MTT assay was performed with increasing
H2O2 concentration (1 to 250 mM) in presence (dotted lines) and
absence (solid lines) of Tb4 (1 mg/mL). Data represent means 6 SEM of
3 individual experiments. (B). Effect of Tb4 on generation of ROS in
cardiomyocytes treated with H2O2 by fluorimetry. The graph represents
the percentage of fluorescence positive cardiomyocytes upon staining
with DCF-DA. Data represent the mean 6 SE of at least three separate
experiments. * means p,0.05 compared to the controls and #
represents p,0.05 compared to the respective H2O2 treated group (C)
Representative confocal laser scanning microscopy images of cardio-
myocytes stained with DCF-DA showing the effect of Tb4 on
intracellular ROS upon treatment with H2O2. (D) Representative
confocal laser scanning microscopy images of cells stained with DHE

Red showing the effect of Tb4 on generation of superoxide radicals
upon treatment with H2O2 in cardiomyocytes. (E). Representative
confocal laser scanning microscopy images of cells stained with DAF-
2DA showing the effect of Tb4 on generation of nitric oxide upon
treatment with H2O2 in cardiomyocytes. (F). Representative confocal
laser scanning microscopy images of cells stained with Mitotracker Red
showing the effect of Tb4 on loss of mitochondrial membrane potential
upon treatment with H2O2 in cardiomyocytes.
doi:10.1371/journal.pone.0042586.g001
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activity as indicated by increased fluorescence intensity of DCF-

DA in the cardiomyocytes after H2O2 treatment (Figure 1B and 1

C). The fluorescence intensity of DCF-DA (indicative of oxidative

burst) increased by 2.8-fold at 12 h (p,0.01) and 10.8-fold at 24 h

(p,0.001), respectively, in the H2O2-treated group, compared to

the untreated cardiomyocytes. Pretreatment with Tb4 resulted in a

5.3% decrease at 12 h (n.s.) and 54.5% decrease at 24 h (p,0.01),

respectively, compared to the H2O2-treated cells (Figure 1B and

C) suggesting Tb4 rescues cardiomyocytes from oxidative stress at

later time-point. The quantifications of image intensities have been

tabulated in Table 1.

Tb4 reduces the formation of superoxide radicals and
nitric oxide in H2O2-induced oxidative stress in
cardiomyocytes

H2O2 treatment induces a cascade of biochemical reaction in

the cell leading to generation and accumulation of a variety of free

radicals in the cells. We estimated the levels of superoxide and

nitric oxide by using confocal microscopy. Our data revealed that

there was an increase in the fluorescence intensity of DHE and

DAF-2DA in H2O2 treated cells, an indicator of O2
.2 and NO

radicals, compared to unstimulated cells (Figure 1D and 1E). This

increase in the fluorescence intensity of DHE and DAF-2A was

significantly prevented by Tb4 pretreatment. The quantifications

of image intensities have been tabulated in Table 1.

Tb4 treatment protects mitochondrial membrane
potential (DYm) in oxide in H2O2-induced oxidative
stress in cardiomyocytes

Oxidative stress is known to elicit depolarization of mitochon-

drial membrane potential. We evaluated the effect of Tb4 on the

mitochondrial membrane potential in H2O2 stimulated cardio-

myocytes using MitoTracker Red by confocal microscopy. Our

data revealed that there was loss of mitochondrial membrane

potential as indicated by a decrease in the fluorescence intensity of

MitoTracker Red H2O2 stimulated cell. Tb4 treatment signifi-

cantly restored the phenomenon (Figure 1F). The quantifications

of image intensities have been tabulated in Table 1.

Tb4 upregulates antioxidant genes in cardiac myocytes
under oxidative stress

Since, oxidative stress alters the expression of antioxidant

enzymes; we examined the mRNA expression of antioxidant

genes, Mn-SOD, Cu/Zn-SOD and catalase in cardiomyocytes by

q RT-PCR. In cardiomyocytes, the mRNA expression of Mn-

SOD showed an initial increase and then a subsequent decline

under H2O2 treatment. H2O2 treatment resulted in an increase in

the Mn-SOD mRNA expression in 12 h by 1.8-fold and in 24 h

by 1.7-fold, respectively (p,0.05), compared to the untreated cells.

Tb4 treatment did not significantly change the expression of Mn-

SOD. Tb4 pretreatment resulted in 1.07-fold (p = ns) and 1.04-

fold (p = ns) decline in the mRNA expression of Mn-SOD at 12 h

and 24 h, respectively, compared to H2O2-treated cells

(Figure 2A). Neonatal cardiomyocytes treated with H2O2 showed

a decline in the mRNA expression of Cu/Zn-SOD by 1.85-fold at

12 h (p,0.05) and 3.3-fold at 24 h (p,0.05), respectively,

compared to the control. Compared to the H2O2-treated cells,

pretreatment with Tb4 upregulated the mRNA expression of Cu/

Zn-SOD showing a 1.5-fold (p,0.001) and 2.9-fold (p,0.001)

increase at 12 h and 24 h, respectively, suggesting that Tb4

treatment reverts the Cu/Zn-SOD to normal (Figure 2B). The

expression of antioxidant catalase which is a primary scavenger of

H2O2 was also evaluated. The expression of catalase showed 2.12-

fold and 2.77-fold (p,0.05) decline at 12 h and 24 h, respectively.

Pretreatment with Tb4 increased the mRNA expression of

catalase by 1.4-fold (p,0.05) and 4.1-fold (p,0.05) at 12 h and

24 h, respectively, compared to H2O2-treated cells (Figure 3C)

indicating that Tb4 treatment prevented the depletion of

antioxidant enzyme genes under oxidative stress (Figure 2C).

To evaluate the status of these antioxidant enzymes at protein

levels, western blots were performed. Our data showed that the

levels of Mn-SOD increased upon H2O2 challenge but did not

change significantly upon treatment with Tb4 The expression of

Cu/Zn-SOD in H2O2-treated cells was reduced by 1.38-fold

(p,0.05) and 1.5-fold (p,0.05) at 12 h and 24 h, respectively,

compared to the untreated cells. The level of Cu/Zn-SOD was

restored in Tb4 treatment and showed a 2.0-fold (p,0.05) and

2.2-fold (p,0.05) increase at 12 h, and 24 h, respectively,

compared to H2O2-treated cells. Similar changes were noted in

the expression of antioxidant catalase, Tb4 treatment per se

increased the expression of catalase in the control cells by1.2-fold.

There was 1.2-fold (p,0.05) and 1.85-fold (p,0.05) decrease in

catalase treated with H2O2 at 12 h and 24 h, respectively,

compared to the untreated cells. Pretreatment with Tb4 resulted

in an increase in the expression of catalase by 1.3-fold (p,0.05),

and 1.8-fold (p,0.05) at 12 h and 24 h, respectively, compared to

H2O2-treated cells. This indicates that Tb4 preferentially

upregulates the expression of Cu/Zn-SOD and catalase under

oxidative stress (Figure 2D & E). The normalized quantification of

Mn-SOD, Cu/Zn-SOD and catalase by western blotting is shown

in the Figure 3E.

Tb4 protects cardiomyocytes from oxidative stress by
increasing anti-apoptotic gene and reducing pro-
apoptotic genes

Since oxidative stress leads to apoptotic cell death in cardio-

myocytes, we evaluated the expression of pro- and anti-apoptotic

genes. We determine the gene expression of Caspase-3, Bax and

Bcl2 in H2O2 treated cells in the presence and absence of Tb4.

Under oxidative stress, there was a 6.6-fold (p,0.05), and 7.2-fold

(p,0.05) increase in the mRNA expression of caspase3 in 12 h

and 24 h, respectively compared to control. Tb4 treatment

resulted in 1.56-fold (p,0.05) and 1.58-fold (p,0.05) decrease

in the mRNA expression of caspase3 at 12 h and 24 h treatment,

respectively, compared to the H2O2-treated cardiomyocytes

(Fig. 3A). Compared to the controls, H2O2 treatment resulted in

an increase in the mRNA expression of Bax by 2.4-fold and 2.4

fold (p,0.05) at 12 h and 24 h, respectively (Figure 3 B). Tb4

treatment reduced the increased Bax expression by 1.13-fold

(p = n.s) and 1.2-fold (p,0.05) at 12 h and 24 h, respectively,

Table 1. Image intensities (Arbitrary Units) showing the
fluorescence intensities in cardiomyocytes upon staining with
DCF-DA, DHE, DAF-2DA and MitoTracker Red.

S. No. Staining Control Tb4 H2O2 H2O2+Tb4

1 DCF-DA 339629 213643* 792653* 273632#

2 DHE 592671 602668 904650* 711662#

3 DAF-2DA 414639 184637* 1311692* 375629#

4 MitoTracker Red 361638 370647 237629* 349624#

Data acquired from at least 15 fields taken from 3–4 different confocal images
of the same treatment group and were quantified by using ImageJ Software.
*denotes p,0.05 compared to controls while # denotes p,0.05 compared to
the H2O2-treated group.
doi:10.1371/journal.pone.0042586.t001
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compared to the H2O2-treated cells. Oxidative stress reduced the

levels of anti-apoptotic gene Bcl2. Compared to the untreated

groups, the mRNA expression of Bcl2 decreased by 1.56-fold

(p,0.05) and 1.47-fold (p,0.05) at 12 h and 24 h, respectively,

upon treatment with H2O2 (Figure 3 C). The reduced mRNA

expression of Bcl2 under oxidative stress was reversed by

pretreatment with Tb4 by 1.14-fold (p,0.05) and 1.2-fold

(p,0.05) at 12 h and 24 h, respectively, compared with the

H2O2-treated cells (Figure 3 C).

At the translational level, H2O2 treatment resulted in a 4.7-fold

(p,0.05), and 6.6-fold (p,0.05) increase in the expression of

caspase3 at 12 h and 24 h treatment, respectively compared to the

control. Tb4 pretreatment in the H2O2 stimulated cells resulted in

1.6-fold (p,0.05) and 1.7-fold (p,0.05) decrease in the caspase3

protein expression at 12 h and 24 h treatment, respectively,

compared to the H2O2-treated cells. (Figure 3 D). The normalized

quantification of caspase-3 by western blotting is shown in the

Figure 3 E. The Bax/Bcl2 ratio was also evaluated at protein level

in cardiomyocytes. Our data showed that the Bax/Bcl2 ratio

increased to 2.3-fold (p,0.05) and 3.0-fold (p,0.05) at 12 h and

24 h, respectively, under H2O2 treatment compared to the

controls (Figure 3 D). Tb4 treatment significantly reduced the

increase in Bax/Bcl2 ratio by 1.9-fold (p,0.05) and 2.32-fold

(p,0.05) at 12 h and 24 h, respectively, compared to the H2O2-

treated group (Figure 3 E).

Effect of Tb4 treatment and analysis of NF-kB target
genes by RT2 PCR array

To gain further insight into NF-kB-target genes, we performed q

RT-PCR array. The data showed alteration of NF-kB family genes

in H2O2 treated cardiomyocytes, compared to unstimulated cells.

Furthermore, Tb4 treatment restored those altered genes signif-

icantly. The list of NF-kB genes are shown in Table S1. Our data

showed that H2O2 treatment induced upregulation of several NF-

kB target genes, importantly, the following: TNFa, Irak1, Stat1,

Tgfbr1, IkBa, IKKb, Casp1, Rel, Egr1, NF-kB1, Tgfbr2, Rela,

Ifnc, Ccl2, Fasl, Il1b, IL-6 and Fadd. A list of selected NF-kB

family genes is provided in Table S2.

Figure 2. Effect of Tb4 on anti-oxidative enzymes under oxidative stress in cardiomyocytes. (A) Relative fold change in the mRNA
expression of Mn-SOD, (B) Cu/Zn-SOD and (C) Catalase, in cardiomyocytes treated with H2O2 in presence and absence of Tb4. Data represent the
means 6 SE of at least three separate experiments. (D) Western blots showing the protein expression of Mn-SOD, Cu/Zn-SOD and catalase at 12 h
and 24 h, respectively. GAPDH was used as internal loading control for the experiment. (E) Graph shows the relative fold change in the protein
expression of Mn-SOD, Cu/Zn-SOD and catalase, respectively by densitometry. Data represent means 6 SEM from 3 individual experiments. * denotes
p,0.05 compared to controls while # denotes p,0.05 compared to the H2O2-treated group.
doi:10.1371/journal.pone.0042586.g002
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Validation of NF-kB target genes in cardiomyocytes
The expression of NF-kB target genes, FasL, TNFa, c-Fos, c-

Jun and ICAM-1 were analyzed in H2O2 treated cardiomyocytes

in the presence and absence of Tb4. Our data showed that the

expression of FasL, TNFa, c-Fos, c-Jun and ICAM-1 genes were

increased by 1.4560.07, 1.8160.25, 1.1460.03, 1.4260.17and

1.2960.12 fold (p,0.05), respectively, in H2O2 treated cardio-

myocytes, compared to untreated cells. The Tb4 treated showed

significant restoration of the above genes by 1.2260.1, 1.4660.16,

1.0560.06, 1.1860.12 and 1.1660.11fold (p,0.05), compared

H2O2 treated cardiomyocytes (Figure 4).

Tb4 selectively upregulates Cu/Zn-SOD and Bcl2 genes in
cardiac myocytes

We took knock-down approach to further validate the target

molecule of Cu/Zn-SOD and Bcl2 by Tb4. Both genes were

knock- down in cardiomyocytes using their specific siRNAs and,

were subsequently challenged with H2O2 in the presence and

absence of Tb4. The scramble siRNA were used as a control.

Pretreatment with Tb4 in scramble transfection enhanced the

expression of Cu/Zn-SOD and Bcl2 under normal conditions

(Fig. 5 A and 5 C). H2O2 treatment significantly downregulated

the Cu/Zn-SOD and Bcl2 protein to 0.6760.01 and 0.4560.08-

fold (p,0.05), respectively, compared to control. Tb4 pretreat-

ment for 24 h partly restored the expression of both Cu/Zn-SOD

Figure 3. Effect of Tb4 on pro-and anti-apoptotic proteins under oxidative stress in cardiomyocytes. Relative fold change mRNA
expression of (A) Caspase-3, (B) Bax and (C) Bcl2. Data represent the means 6 SE of at least three separate experiments. (D) Protein expression of
Caspase-3, Bax and Bcl2 at 12 h and 24 h, respectively. GAPDH was used as loading control for the experiment. (E) Graph shows the relative fold
change in the protein expression of Bax, Bcl2 and caspase-3, respectively by densitometry. Data represent means 6 SEM from 3 individual
experiments. * denotes p,0.05 compared to controls while # denotes p,0.05 compared to the H2O2-treated group and @ means p = ns compare to
the H2O2-treated group.
doi:10.1371/journal.pone.0042586.g003
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and Bcl2 to 0.8460.03 and 0.7460.01-fold (p,0.05), respectively,

compared to H2O2 treated cells (Fig. 5 A and 5 C). Furthermore,

the cardiomyocytes challenged with H2O2 in Bcl2 depletion

showed further degradation of Bcl2 protein to 0.2960.03-fold

compared to H2O2 treated cells (p,0.05). Pretreatment partially

recovered Bcl2 protein to 0.4460.03-fold, compared t0 H2O2

treated cells. Likewise, the cardiomyocytes challenged with H2O2

in Cu/Zn-SOD depletion showed further degradation of Cu/Zn-

SOD protein to 0.2760.02-fold (p,0.05), compared to H2O2

treated cells. Pretreatment partially recovered Cu/Zn-SOD

protein to 0.4660.02-fold (p,0.05), compared t0 H2O2 treated

cells. The quantification of western analysis was shown in Fig. 5 B

and 5 D.

We then evaluated the expression of apoptotic marker gene,

caspase-3 under the similar setting. The scramble transfection

showed significant attenuation of caspase3 gene expression in

Tb4treated cells compared to H2O2 treated cells. The expression

of caspase-3 increased to 2.5660.69-fold (p,0.05) in H2O2

treated cell which was reduced by 1.8060.54-fold upon pretreat-

ment with Tb4 (Fig. 5 E, left panel). Our data further showed that

knocking down of both Cu/Zn-SOD and Bcl2 significantly

enhance the caspases3 gene expression even in unstimulated cell.

The expression of caspase3 was increased with the knockdown of

Bcl2 by 2.6561.3-fold in unstimulated cells. H2O2 treatment

resulted in 4.0461.16-fold increase and Tb4 pretreatment showed

2.660.13-fold reduction of caspase3 expression in H2O2 treated

cells (Fig. 5E, middle panel). The caspase3 gene expression was

determined in Cu/Zn-SOD depleted cells. The expression of

caspase3 was increased by 2.3261.1 fold in unstimulated cells

(Fig. 5E, right panel). The expression of caspase3 was further

increased to 4.1961.52 fold (p,0.05) with the knockdown of Cu/

Zn-SOD gene by siRNA transfection. Tb4 pretreatment showed

2.360.70-fold (p,0.05) reduction of caspase3 expression in H2O2

treated cells (Fig. 5E, right panel).

The TUNEL assay, performed under similar experimental

conditions, showed increase in the TUNEL-positive nuclei under

H2O2 treatment and, si-RNA knockdown of Cu/Zn-SOD, and

Bcl2 further increased the TUNEL-positive cells. Representative

fluorescence microscopy images showing TUNEL-positive nuclei

(FITC-positive) of H2O2 treated in presence and absence of Tb4

were shown in Figure 6 A and B. H2O2 treatment resulted in an

increase of TUNEL-positive nuclei from 2.262.2% to

13.3363.84% (p,0.05) in the scrambled si-RNA transfection.

Both Bcl2 and Cu/Zn-SOD depleted cells challenge with H2O2

resulted further increase in the TUNEL-positive nuclei to

28.8962.22% (p,0.05) and 22.2262.622% (p,0.05), respective-

ly (Figure 6 C). Pretreatment with Tb4 in the H2O2 treated group

resulted in a significant reduction in the TUNEL-positive nuclei to

4.462.2% (p,0.05) in scramble transfected cell, 13.363.84%

(p,0.05) in si-RNA- Bcl2 and 11.1162.22% (p,0.05) in si-RNA-

Cu/Zn-SOD transfected cells, respectively (Figure 6 C). These

results indicate that Tb4 selectively targets Bcl2 and Cu/Zn-SOD

genes to provide cardiac protection under oxidative stress.

Discussion

The present study showed for the first time that Tb4 protects

cardiomyocytes under oxidative stress by upregulating antioxidant

enzymes and reducing pro-apoptotic and pro-inflammatory genes.

H2O2 elicits marked increment in intracellular ROS that promotes

degradation of antioxidant enzymes (Cu/Zn-SOD and catalase)

and activates pro-apoptotic (Bax and caspase3) and pro-inflam-

matory genes in cardiomyocytes. Increased ROS further advocate

detrimental changes in cardiomyocytes leading to the loss of

mitochondrial membrane potential and, subsequently increases

the Bax/Bcl2 ratio favoring apoptosis. Pretreatment with Tb4

showed significant attenuation of ROS activity and restoration of

the above molecules and protecting cardiomyocytes from oxidative

stress. Finally, we showed that knocking down of either Cu-Zn-

SOD or Bcl2 in cardiomyocytes failed to protect the cells from

oxidative stress in presence of Tb4.

The myocardium has a complex mechanism to maintain the

oxygen supply demand in response to diverse physiological and

pathological stresses and, control the contractile function. The

major pathological manifestation of oxidative stress is the

generation of ROS that damage the cellular activity and function.

It has become more apparent that the effect of oxidative stress in

cardiac cells predisposes the condition that lead to adverse cardiac

remodeling including cell death, myocardial hypertrophy and

contractile dysfunction [6,35,36]. Cardiomyocytes are the major

‘‘bulk’’ in the myocardium and primarily governs the contractile

function. Any sort of stress will have a serious impact on

cardiomyocytes and affect various signaling cascades that

ultimately lead to dysfunction. In an attempt to protect these cells

under oxidative stress, we tested the efficacy of Tb4 in

cardiomyocytes which is currently undetermined. Our results

indicate that cardiomyocytes pretreated for 2 h with Tb4 increases

the cell viability under oxidative stress suggest that Tb4

contributes a crucial role in the cardio-protection under oxidative

stress.

Oxidative stress and ROS have been implicated in triggering

cell death. Following a one-, two- or three-electron reduction, O2

may generate successively O2
.2 (superoxide radical), H2O2 or

OH2 (hydroxyl radical). ROS are able to oxidize biological

macromolecules such as DNA, protein and lipids [37,38].

Superoxide dismutase (SOD) converts O2
.2 into H2O2 and the

latter can generate OH2 in the presence of Fe2+ cations (Fenton

reaction). It should be noted that nitric oxide (NO) can also be

oxidized into reactive nitric oxide species, which may show

behavior similar to that of ROS. In particular the combination of

NO and O2
.2 can yield a strong biological oxidant, peroxynitrite

that is more detrimental to the cells [10,39]. In our study, we

showed that treatment of Tb4 restored all H2O2 induced free

radical generation in cardiomyocytes suggesting a protective role

in this setting. One of the traditional hallmarks of ROS-initiated

cell death is mitochondrial dysfunction and energy depletion

[40,41]. Several mechanisms can impair energy production in

cardiac mitochondria, including damage to the electron transport

chain and phosphorylation apparatus, mtDNA injury, opening of

Figure 4. Effect of Tb4 on pro-inflammatory molecules under
oxidative stress in cardiomyocytes. Relative fold change in the
mRNA expression of FasL, TNFa, c-Fos, c-Jun and ICAM1. Data represent
the means 6 SE of three separate experiments. * denotes p,0.05
compared to controls. # denotes p,0.05 compared to H2O2 group
with Tb4 treated group.
doi:10.1371/journal.pone.0042586.g004
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the mitochondrial permeability transition pore (MPTP), the loss of

the mitochondrial membrane potential (DYm) and, the concom-

itant drop in ATP production [42,43]. Dysfunction of mitochon-

drial machinery in the heart releases apoptotic signaling molecules

e.g. cytochrome c and may cause an irreversible injury to the

mitochondria [44]. Our data showed significant decrease in DYm

which was prevented by pretreatment with Tb4.

Tb4 is very effective in reducing intracellular ROS in H2O2-

treated cardiomyocytes. Our study is the first to show that the

attenuation of ROS is mediated by restoring Cu/Zn-SOD and

catalase, the two important antioxidant enzymes. Another relevant

antioxidant that loses function upon oxidation is Mn-SOD.

Although, both Mn-SOD and Cu/Zn-SOD have been reported

to play a crucial role in protecting the cardiac cells from oxidative

damage by scavenging ROS [13,45] but, we found that Tb4

upregulated the expression levels of Cu/Zn-SOD in cardiomyo-

cytes. Catalase, which was directly responsible for H2O2 clearance,

was upregulated by Tb4 both at mRNA and protein level in the

presence of H2O2 stimulus indicating that Tb4 preferentially

targets catalase in the cardiomyocytes which enable effecting

scavenging of the H2O2 from the system. Also it was worth notice

that even though the protein and gene expression levels of both

catalase and Cu/Zn-SOD were increased by Tb4, this peptide

upregulated the gene encoding the former more efficiently in

cardiomyocytes. Furthermore, oxidative stress promotes apoptotic

cell death by lowering Bax/Bcl2 ratio. In our study, we showed

that Tb4 reduced the intracellular ROS levels in cardiomyocytes

and prevents cell death by restoring Bax/Bcl2 ratio and inhibiting

the activation of caspase3. This observation supports our previous

observation using cardiac fibroblast [31] but, contrast to the

previous reported by Sosne G et al where they did not observe any

change in Bax/Bcl2 expression [30]. We did not know the reason

for this but, the use of different cell type may accountable for this

altered phenomenon.

To confirm the target of Cu/Zn-SOD and Bcl2 by Tb4 in order

to protect the cardiomyocytes from oxidative stress, we selectively

knocked down these molecules and determined the efficacy of Tb4

under oxidative stress. We found that Tb4 prevented cell death by

specifically targeting Cu/Zn-SOD and Bcl2 molecules in H2O2

treated cardiomyocytes. But, when these molecules were knocked

down in the cell, Tb4 failed to protect the cells from apoptosis.

These data led us to convey the message that Tb4 may provide

Figure 5. Effect of Tb4 treatment after knocking down of Cu/Zn-SOD and Bcl2 in presence and absence H2O2-induced oxidative
stress in cardiomyocytes. (A) Neonatal cardiomyocytes were transfected with scramble and Bcl2 siRNA, (C) scrambled and Cu/Zn-SOD siRNA in the
presence and absence of Tb4 under oxidative stress and Western blotting was performed using Bcl2 and Cu/Zn-SOD antibodies as probe. (B and D)
Representative showing the quantification of panel A and C (E) Bar graph shows relative fold-change in the mRNA expression of caspase-3 in
cardiomyocytes under similar experimental condition stated in A and B. Data represent the means 6 SE of at least three separate experiments.
* denotes p,0.05 compared to controls while # denotes p,0.05 compared to the H2O2-treated group with Tb4 treated group.
doi:10.1371/journal.pone.0042586.g005
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cardiac protection under oxidative stress by restoring Cu-Zn SOD

and Bcl2 levels in the myocardium.

Our study also indicates that Tb4 protects the cardiomyocytes

from oxidative stress by attenuating pro-inflammatory genes

regulated by NF-kB. It is evident that ROS activation often

triggers NF-kB translocation and thereby promotes pro-inflam-

matory response [46,47] As mentioned previously, ROS are toxic

in cells and damage the cellular integrity, it is therefore, critical to

make a balance of ROS production in order to prevent further

oxidative damage. In this setting, our study further indicates that

Tb4 protects the cardiomyocytes from oxidative stress by

attenuating the pro-inflammatory genes regulated by NF-kB.

Taken together, our data validate and re-established a potential

role Tb4 as an anti-inflammatory molecule which may provide a

new therapeutic module for cardiac protections under oxidative

stress. Future studies may aim to delineate the interaction or

association between NF-kB and Tb4 in the context of NF-kB

transcriptional regulatory circuit and anti-inflammatory properties

in the cardiac cells.

In conclusion, we demonstrated that Tb4 protects the

myocardium from oxidative stress by reducing ROS activity via

re-establishing the antioxidant enzyme levels, Cu/Zn-SOD and

catalase and, further attenuating Bax and caspase3 levels and

restoring Bcl2 as well. Our results not only offered more

mechanistic explanation about the protective mechanism of Tb4

but also supported the need to further investigate the use of this

small molecule in protecting the myocardium against oxidative

damage in variety of disease condition where ROS has been

Figure 6. Representative fluorescent microscopy images of TUNEL staining in rat neonatal cardiomyocytes. (A) Bright TUNEL-positive
images from control, H2O2 treated and H2O2 treated but pretreated with Tb4 (upper panel). The lower panel showed the images of corresponding
DAPI stained with a-actinin, a myocyte specific marker protein. (B) Representative fluorescent microscopy images showed the effect of Tb4 treatment
in the presence and absence of H2O2-induced oxidative stress on cardiomyocytes transfected with si-RNA-Bcl2 and siRNA-Cu/Zn-SOD vs. scrambled
siRNA, respectively (C) Bar graph shows the percent TUNEL-positive nuclei under similar experimental condition. Data represent the means 6 SE of at
least three separate experiments. A total of 45 to 65 nuclei were counted for each observation. * denotes p,0.05 compared to controls while #

denotes p,0.05 compared to the H2O2-treated group with Tb4 treated group.
doi:10.1371/journal.pone.0042586.g006

Thymosin Beta 4 and Oxidative Stress in Myocytes

PLoS ONE | www.plosone.org 9 August 2012 | Volume 7 | Issue 8 | e42586



implicated to play a damaging role like cardiac hypertrophy and

heart failure.

Therapeutic implication
Our findings are relevant in the clinical settings as many studies

have shown that depletion of anti-oxidants in the heart makes it

more vulnerable to damage especially under ischemia and under

high pro-oxidant condition. Although, we did not investigate adult

rat cardiomyocytes, but, many studies have shown that primary

cultured neonatal rat cardiomyocytes were useful models to

investigate cardio-protective effects. Future studies are, therefore,

warranted to examine the effect of Tb4 under the similar setting.

We believe that Tb4 is a better therapeutic target as it has the

ability to enhance the expression of the selected antioxidant and

anti-inflammatory genes, thereby, alleviating the damage to the

myocytes under oxidative stress. These possibilities regarding the

mechanisms whereby Tb4 modulates the above molecules need to

be further tested experimentally in future studies.
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