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Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical
manifestations characterized by the development of pathogenic autoantibodies manifesting in
inflammation of target organs such as the kidneys, skin and joints. Genome-wide association
studies have identified genetic variants in the UBE2L3 region that are associated with SLE in
subjects of European and Asian ancestry. UBE2L3 encodes an ubiquitin-conjugating enzyme,
UBCH7, involved in cell proliferation and immune function. In this study, we sought to further
characterize the genetic association in the region of UBE2L3 and use molecular methods to
determine the functional effect of the risk haplotype. We identified significant associations
between variants in the region of UBE2L3 and SLE in individuals of European and Asian ancestry
that exceeded a Bonferroni corrected threshold (P < 1 × 10−4). A single risk haplotype was
observed in all associated populations. Individuals harboring the risk haplotype display a
significant increase in both UBE2L3 mRNA expression (P = 0.0004) and UBCH7 protein
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expression (P = 0.0068). The results suggest that variants carried on the SLE associated UBE2L3
risk haplotype influence autoimmunity by modulating UBCH7 expression.

Keywords
Systemic Lupus Erythematosus; UBE2L3; Multi Ethnic Association Study; UBCH7 Expression

INTRODUCTION
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by self-
reactive antibodies that form immune complexes leading to systemic inflammation and
organ failure. SLE susceptibility is strongly influenced by both genetic and environmental
factors. Recent candidate gene and genome-wide association studies (GWAS) have
identified more than 30 susceptibility loci for SLE 1–8. Single nucleotide polymorphisms
(SNPs) in the region of UBE2L3, which encodes the ubiquitin conjugating enzyme,
UBCH7, demonstrate association with SLE in multiple independent SLE cohorts of
European and African American ancestry 9,10 and correlate most significantly with patients
developing anti-dsDNA antibodies 11. Variants in the region of UBE2L3 have also been
reported to be associated with several other autoimmune disorders such as Crohn’s
disease 12, 13, celiac disease 14 and rheumatoid arthritis 9, 14. Gene expression studies
suggest that variants in the vicinity of UBE2L3 regulate UBE2L3 expression, thus providing
a potential mechanism by which UBE2L3 influences susceptibility to autoimmune
diseases 13.

Post-translational ubiquitination of proteins is an important process in eukaryotes that is
responsible for the degradation of short-lived and abnormal cytosolic proteins and the
regulation of cellular signaling pathways 15. Three classes of enzymes, ubiquitin-activating
enzymes (E1s), ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s)
constitute the system by which ubiquitin is transferred to target proteins. UBE2L3, located at
chromosome 22q11.2, is a member of the E2 ubiquitin conjugating enzyme family and has
been demonstrated to participate in the ubiquitination of p53 16, c-Fos, and the NF-κB
precursor p105 in vitro 17, 18. Recent studies have further revealed that UBE2L3 is involved
in cell proliferation 19.

In order to more thoroughly evaluate the UBE2L3 locus in SLE, we fine mapped and
imputed SNPs in five diverse ethnic populations using a custom genotyping array, publicly
available datasets of human variation and a targeted resequencing dataset enriched for
subjects with SLE risk haplotypes. We identified a single 67kb risk haplotype associated
with SLE and characterized the effect of the risk haplotype on gene expression by using
quantitative-PCR and Western blotting. Our data demonstrate that both UBE2L3 mRNA
transcripts and UBCH7 protein expression is increased by variants carried on the SLE risk
haplotype, suggesting a mechanism by which variants in the region of UBE2L3 influence
the pathogenesis of SLE.

RESULTS
Genome-wide association studies have identified genetic association with variants in the
vicinity of UBE2L3 and multiple autoimmune diseases. In an effort to identify the causal
variants responsible for association with SLE, we genotyped 57 SNPs in and around
UBE2L3 along with 347 ancestry-informative markers (AIMs) in 8922 independent SLE
cases and 8077 independent controls across five ethnic populations (Table 1, Supplementary
Figure 1, Supplementary Tables 1, 2 and 3). After applying a series of quality control filters,
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55 genotyped SNPs and 262 AIMs were available for further analyses. To enrich our dataset
for additional untyped SNPs, we imputed a minimum of 285 SNPs from the 1000 Genomes
Project. Single-marker logistic regression analyses, adjusting for gender and global ancestry
estimates, revealed significant associations between multiple SNPs and SLE surpassing a
Bonferroni corrected P < 1 × 10−4. In individuals of European-ancestry the strongest signal
was observed at rs131658 (P = 6.50 × 10−7, odds ratio [OR] = 1.24, 95% confidence interval
[CI] = 1.14–1.35, Figure 1A). In the Asian population the strongest signal occurred at
rs5754177 (P = 1.98 × 10−6, OR = 1.33, 95% CI = 1.18–1.50, Figure 1B). We also observed
weaker evidence of association not exceeding the Bonferroni corrected threshold in other
populations with the optimal signals at rs11089629 for African Americans (P = 1.23 × 10−3,
OR = 1.18, 95% CI = 1.07–1.30, Figure 1C), rs390408 for Hispanics (P = 2.89 × 10−3, OR =
1.23, 95% CI = 1.07–1.42, Figure 1D) and rs11705317 for Gullah (P = 1.74 × 10−2, OR =
0.27, 95%CI = 0.09–0.79, Figure 1E). When all populations were combined in meta-
analysis, rs7444 produced the most significant association (Pcombined = 2.21 × 10−14,
Supplementary Table 4) with no evidence of heterogeneity (the Cochran’s Q test P = 0.672
and the inconsistency index I2 = 0%, see Methods).

To capture novel variants enriched on the UBE2L3 risk haplotype that were not genotyped
or imputed with the 1000 Genomes Project reference panel, we resequenced 174 subjects of
European-ancestry enriched for SLE risk haplotypes including UBE2L3. The phased
haplotypes of these sequenced individuals were then imputed into the European-ancestry
dataset. This procedure added 5 novel variants (3 SNPs and 2 deletion/insertion
polymorphisms [DIPs]) that were not present in dbSNP 132 (Supplementary Table 5).
Among these five variants, a single base insertion located in the 3’ UTR of UBE2L3
demonstrated significant association with SLE (P = 2.56 × 10−6, OR = 1.23, 95% CI = 1.13–
1.33) and is in strong linkage disequilibrium with the most significant SNP in European-
ancestry (rs131658, r2 = 0.99).

To determine if differences in the linkage disequilibrium patterns across populations (trans-
population mapping) could help define a minimal risk segment, we performed haplotype
analysis using the thirty-four variants with P < 1 × 10−4 defined in subjects of European-
ancestry (Table 2). In the European-ancestry population we observed a single 67 kb risk
haplotype (P = 1.17 × 10−7) spanning the UBE2L3 region (haplotype H2, Figure 2).
Similarly, a single risk haplotype harboring the majority of alleles in the EA risk haplotype
was also present in Asian (haplotype H2, Supplementary Figure 2A), African American
(haplotypes H2, Supplementary Figure 2B), and Hispanic populations (haplotype H2,
Supplementary Figure 2C). Strong linkage disequilibrium was observed on the risk
haplotype in all four populations and limited the utility of trans-population mapping or
conditional analysis to further isolate a minimal risk segment. These results suggest that a
single risk effect common to these populations may be responsible for the association with
SLE.

Previous studies have demonstrated that variants in the region of UBE2L3 influence
UBE2L3 transcript expression 13, therefore, we evaluated whether the SLE associated risk
haplotype produced a similar molecular phenotype. To evaluate UBE2L3 mRNA and
UBCH7 protein expression, quantitative real-time PCR and western blotting was performed
in an independent set of EBV-transformed B cell lines under resting conditions. Cell lines
were selected based on whether they contained 0, 1, or 2 copies of the UBE2L3 risk
haplotype as defined by the rs7444-C risk allele. Concordant with other published studies,
we observed increased UBE2L3 mRNA expression and increased expression of UBCH7
protein as a function of the number of copies of the risk haplotype (P = 0.0004 and P =
0.0068, respectively (one-way ANOVA), Figures 3A, 3B and Supplementary Figure 3).
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DISCUSSION
In this study, we observed significant associations between variants in UBE2L3 and SLE in
individuals of European, Asian, and African-American ancestry. Weaker association
evidence was also observed in the Hispanic and Gullah populations due in part to the smaller
samples sizes of these two groups (Table 1). Risk variants were carried on a 67 kb risk
haplotype tagged by the proxy SNP rs7444, in all populations demonstrating association
with SLE. Since the variants in this haplotype block were highly correlated across the
different populations, we were unable to further narrow this SLE associated DNA segment
using conditional analyses or trans-population mapping.

In line with data published in Crohn’s Disease, we observed higher levels of UBE2L3
mRNA and UBCH7 protein expression in EBV cell lines carrying the risk haplotype. This
suggests that similar molecular mechanisms in UBE2L3 that influence susceptibility to
autoimmunity are shared between SLE and CD. The precise mechanism by which causal
variants on the UBE2L3 risk haplotype influence expression of UBE2L3 is not yet defined
but we hypothesize that this could be due to the modification of mRNA stability and/or
modification of the binding affinity of transcription factors to the UBE2L3 promoter.
Further studies geared toward identification of the causal variant(s), which underlies the
effect on gene and protein expression are required.

Ubiquitination is a critical post-translational protein modification for regulation of NF-κB
signaling 20, however, little is known about how UBCH7 mediated ubiquitination might
impact NF-κB signaling. In a cell free system, Orian et al. demonstrated that the NF-κB
precursor protein, p105, was a substrate for UBCH7 mediated ubiquitination. At rest, p105,
encoded by the gene, NF-κB1, undergoes constitutive proteosomal processing to yield the
NF-κB subunit, p50 18. Unprocessed p105 functions as an inhibitor of NF-κB by retaining
p50 homodimers in the cytoplasm using ankyrin repeats located in the C-terminal portion of
the protein 21. Following cellular activation, p105 is phosphorylated and undergoes
complete proteosomal degradation, allowing bound p50 homodimers to translocate to the
nucleus. It is possible that UBCH7 mediated ubiquitination of p105 may result in increased
proteosomal processing and/or degradation of p105, resulting in increased levels of free p50
homodimers.

UBCH7 has been demonstrated to function with the HECT (homologous to the E6-
associated protein carboxy terminus) family E3 ubiquitin ligase, ITCH, in in vitro
ubiquitination assays 22, 23. ITCH participates in regulation of NF-κB along with RNF11,
TAX1BP1 and A20 as part of a protein complex known at the ubiquitin-editing complex 24.
Recent data demonstrates that UBCH7 is restricted to HECT and RBR (RING-in-between-
RING) type E3 ligases which underscores the possibility that UBCH7 and ITCH could
function together to ubiquitinate substrate proteins, however, to our knowledge, a physical
interaction between ITCH and UBCH7 has not yet been demonstrated in vivo.

In summary, our data support a role for variants in the UBE2L3 locus in the predisposition
to SLE in multiple ethnic populations. The UBE2L3 locus demonstrates low haplotype
diversity with a single risk haplotype associated with SLE. This risk haplotype carries causal
variants that result in increased expression of UBE2L3 transcripts and UBCH7 protein.
Future work will now focus on the isolation and characterization of the variants that result in
this expression phenotype and on the role of UBCH7 function in immune cell signaling.
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MATERIALS AND METHODS
Subjects

In this study, the following independent case and control subjects were collected,
respectively: African-American (1,569/1,893), Asian (1,328/1,348), European-ancestry
(4,248/3,818), African-American Gullah (155/131) and Hispanic enriched for the
Amerindian-European admixture (1,622/887) populations (Supplementary Table 1). SLE
cases were determined by meeting at least four of the eleven 1997 ACR revised criteria for
SLE. Case and control samples were obtained from multiple sites with the Institutional
Review Board (IRB) approval from each institution and processed at the Oklahoma Medical
Research Foundation (OMRF) under the OMRF IRB.

Genotyping and Quality Control
The Illumina iSelect platform at OMRF was employed to genotype 57 SNPs and 347
genome-wide ancestry-informative markers (AIMs) 25, 26. SNP quality control (QC)
measures included well-defined cluster scatter plots, a call rate >90%, a minor allele
frequency >0.001 and Hardy-Weinberg proportion test p-value in controls >0.001 for
inclusion. For the AIMs, we removed AIMs with low call rates (<90%), low minor allele
frequencies (<0.001), and that are in LD with each other (r2>0.2). We did not perform the
Hardy-Weinberg proportion test for the AIM QC to avoid AIMs being inadvertently
dropped due to monomophic states in one of the ethnic groups. Principal components 27

calculated using R and global ancestry estimated using ADMIXMAP 28, 29 (with ancestral
allele frequencies from African, European, American, Indian, and East Asian population)
were utilized to pinpoint population outliers (Supplementary Figure 1) and to adjust the
logistic regression models for controlling population structure in our association analyses. A
total of 1,135 samples were removed because they were duplicates (the proportion of alleles
shared identity by descent (IBD) >0.4), sample heterozygosity outliers (>5 standard
deviation from the mean), population outliers, low call rate (<90%), or gender discrepancies
between reported gender and genetic data (Supplementary Table 3). The final dataset,
following quality control exclusions comprised 55 SNPs and 262 AIMs and 15,864 samples
(Table 1).

Association Analyses
Single marker association analyses were calculated using the logistic regression function in
PLINK v1.07 30 under the additive model adjusting for gender and global ancestry estimates
(African, European, and East Asian). Meta-analyses to combine p-values from different
populations were performed using a weighted Z-score METAL 31. We used both the
Cochran's Q test statistic and I2 index to test for heterogeneity in the meta-analysis. The
Cochran’s Q test calculates the weighted sum of the squared deviations between individual
study effects and the overall effect across studies 32 whereas the I2 index measures the
degree or percentage of inconsistency across studies due to heterogeneity rather than by
chance 33. LD between variants was estimated and probable haplotypes were calculated
using Haploview 4.2 34 followed by haplotypic association for all haplotypes formed by the
associated markers across the various populations. Constructing haplotypes using all
variants yielded the same haplotypes as the analysis using only the associated SNPs (results
not shown).

Imputation
IMPUTE2 software 35 was used to impute SNPs from 20.21 Mb to 20.34 Mb on
chromosome 22 with genotype data as the source of observed genotypes and the 1000
Genomes Project from Phase I interim release (June 2011) for 1,094 individuals from
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Africa, Asia, Europe, and the Americas (Supplementary Table 6) as reference genotypes.
Imputation using the sequence data from our European-ancestry samples along with the
1000 Genome Project haplotypes was also performed. IMPUTE2 calculates posterior
probabilities for the three possible genotypes (i.e. AA, AB, and BB). These probabilities
were converted to the most possible genotypes with a threshold of 0.8. Imputed SNPs with
the information measure less than 0.4 were excluded.

Resequencing, Variant Detection and Quality Control
We resequenced 74 SLE cases and 100 controls of European-ancestry then included the
sequenced haplotypes into the genotype imputation. For each sample 3–5 ug of whole
genomic DNA were sheared and prepared using an Illumina Paired-End Genomic DNA
Sample Prep Kit. The SureSelect Target Enrichment System was used to enrich targeted
regions of interest from each sample by utilizing a custom designed bait pool. Resequencing
was performed on an Illumina GAIIx platform using standard procedures with minimum
average fold coverage of 25X. Illumina Pipeline software v.1.7 was the used to process post
sequence data.

Duplicate reads were excluded using a custom script followed by alignment to the human
reference genome build hg18 using BWA alignment software version 0.5.9 36. Realignment
of reads around insertion/deletion sites and problematic areas, base quality score
recalibration, and variation detection were processed using the Genome Analysis Tool Kit
(GATK) software suite version 1.0 37, 38. Variants clustered within 10 base pairs were
filtered out, as well as any variant with a quality score less than 30, a quality by depth score
less than 5, inclusion within a homopolymer run of 5 or more bases, or a strand bias score of
greater than −0.1. The program Beagle version 3.3 39 was utilized to determine variant
phase. PLINK and IMPUTE2 format files were created using the vcftools software suite
version 0.1.3 40.

In order to assess the quality of the sequence data, the sequence-based variant calls were
compared with common SNPs previously genotyped with the Illumina iSelect platform.
More than 99% concordance was observed suggesting high quality of our sequence data.
Samples with more than 5% of variants inconsistent with genotype calls required a manual
inspection of the assembled contig sequence to determine the sequence quality using the
Integrative Genomics Viewer (IGV) program 41. The assembled contig sequence of each
novel variant identified by our sequencing was also inspected using IGV.

Cell Culture
EBV-transformed B cell lines were requested from the Lupus Family Registry and
Repository (LFRR) at OMRF with IRB approval. All cell lines in this study were EA
samples and were stratified by rs7444 genotype, which is a proxy of the UBE2L3 risk
haplotype. Cell lines are either homozygous (carry two copies) of non-risk haplotype,
heterozygous (one copy of the risk haplotype and one copy of non risk haplotype), or
homozygous (carry two copies) of risk haplotype. Cell lines were cultured in RPMI 1640
supplemented with 10% fetal bovine serum, penicillin, streptomycin, L-glutamine, and
55µM beta-mercaptoethanol. Equal numbers of cells were harvested under basal culture
condition in log-phase growth.

RNA Isolation and Quantitative RT-PCR
Total RNA was isolated using the Trizol total RNA isolation reagent (Invitrogen Inc.,
Carlsbad, CA). The concentrations of total RNA were determined by using nanodrop, and
were diluted with 20ng/µL of MS2-RNA (Hoffmann-La Roche, Inc., Nutley NJ) to a final
concentration of 0.5µg/µL. Total RNA was treated with DNase and cDNA was synthesized
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using the iScript cDNA Synthesis Kits purchased from Bio-Rad Laboratories, Inc., Hercules,
CA. Quantitative PCR was carried out using the SYBR Green method to determine the
mRNA expression of UBE2L3. A pair of primers was designed and synthesized: sense, 5'-
TTAGTGCCGAAAACTGGAAGC-3'; anti-sense, 5'-
ATTCACCAGTGCTATGAGGGAC-3'. The PCR product corresponds to 346bp-416bp of
UBE2L3 mRNA. Human HMBS gene was used in quantitative RT-PCR as a reference. The
RT2 qPCR Primer Assay-SYBR Green Human HMBS Kit was purchased from
SABiosciences Inc., Frederick, MD. mRNA expression of UBE2L3 was normalized to
HMBS.

UBE2L3 Protein Expression
EBV-transformed B cells were harvested and lysed in Whole Cell Extraction Buffer (25mM
Tris, 1% Triton X-100, 150mM NaCl, 1mM EDTA and protease inhibitors). Concentrations
of protein in each cell line were determined using Quick Start Bradford Protein Assay Kits
and were adjusted to a final protein concentration of 2mg/mL. Anti-UBE2L3 and Anti-
GAPDH antibodies were purchased from Cell Signaling Technology, Inc., Danvers, MA,
and were used to detect protein expression of UBCH7 and GAPDH, respectively. ECL Plus
Western Blotting Detection System was purchased from GE Heathcare, Inc., Amersham,
UK. The intensity of each band was analyzed using Image J (NIH) software. Protein
expression of UBCH7 was normalized to GAPDH.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
SNPs in and around the UBE2L3 region associated with SLE. (A) European-ancestry, (B)
Asian, (C) African American, (D) Hispanic and (E) African-American Gullah populations.
The dashed line in each panel signifies the Bonferroni corrected level of significance (P = 1
× 10−4). The orange solid line denotes the recombination rate calculated from the combined
HapMap CEU, YRI and CHB+JPT data.
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Figure 2.
Analyses of 34 associated SNPs present on UBE2L3 region in European-ancestry
population. Top: UBE2L3 haplotype association analysis with haplotype frequencies > 5%.
Alleles in white boxes represent the major alleles and those in gray boxes represent the
minor allele for each haplotype. Bottom: the plot of the pairwise linkage disequilibrium
(LD) of 34 associated SNPs with the intensity color for r2 superimposed.
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Figure 3.
Effect of the risk haplotype on UBE2L3 (A) mRNA and UBCH7 (B) protein expression. On
the X-axis, the three different genotypes for SNP rs7444 are displayed corresponding to
homozygote of risk haplotype (C/C), heterozygote (C/T), and homozygote of non-risk
haplotype (T/T). On the Y-axis is the level of normalized expression for UBE2L3 for each
assay. Each data point represents the expression level of UBE2L3 mRNA or UBCH7 protein
for one individual.
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