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Modern conflicts are characterized by an ever increasing use of
information and sensing technology, resulting in vast amounts of
high resolution data. Modelling and prediction of conflict, how-
ever, remain challenging tasks due to the heterogeneous and dy-
namic nature of the data typically available. Here we propose the
use of dynamic spatiotemporal modelling tools for the identifica-
tion of complex underlying processes in conflict, such as diffusion,
relocation, heterogeneous escalation, and volatility. Using ideas
from statistics, signal processing, and ecology, we provide a predic-
tive framework able to assimilate data and give confidence esti-
mates on the predictions. We demonstrate our methods on the
WikiLeaks Afghan War Diary. Our results show that the approach
allows deeper insights into conflict dynamics and allows a strik-
ingly statistically accurate forward prediction of armed opposition
group activity in 2010, based solely on data from previous years.

conflict prediction ∣ point processes ∣ variational Bayes

The last decade has witnessed a tremendous increase in the
availability of data relating to conflicts. For example, the col-

lection of media reports in the ‘Armed Conflict Location and
Event Dataset’ (1) provides a small scale but highly curated re-
cord of conflict events. More prominently, the release of confi-
dential documents by the WikiLeaks whistleblower website in
July 2010 has provided for the first time a large scale (but uncu-
rated) description of the current Afghan conflict. However, most
analyses of these and similar data sources do not go beyond
visualization and descriptive statistical methods (2–5), for good
reasons: first, conflict data is highly heterogeneous and often
poorly annotated. For example, theWikiLeaks AfghanWar Diary
(AWD) data used in this study (Dataset S1) consists of event en-
tries as diverse as elaborate preplanned military activity and spon-
taneous stop-and-search events. Any plausible attempt to model
this data will need to be statistical in nature in order to handle the
high levels of noise. Second, it is very difficult to define simple
mechanisms that would allow the bottom-up construction of a
plausible model.

Here, we develop statistical dynamical modelling methodolo-
gies to provide a predictive framework that may be used in policy
making. We show that the temporal and spatial dependencies
(6, 7) as well as diffusion and advection effects (8, 9) inherent
in conflict data make it suitable for the use of a broad class of
models, widely employed in ecology and epidemiology, in order
to describe the dynamics of disaggregated data. We then develop
tools based on ideas from point process statistics (10) to constrain
the models. The approach enables us to leverage powerful tech-
niques from point process filtering theory and spatiotemporal sta-
tistics (11–14) to carry out inference of the underlying system’s
dynamics and to predict the future behavior of the system.

We test the performance of our methods on the AWD, a
WikiLeaks release which contains over 75,000 military logs by the
USA military, describing events which occurred between the
beginning of 2004 and the end of 2009 and providing a high tem-
poral and spatial resolution description of the Afghan war in that
period. We show that our approach allows deeper insights in the
conflict dynamics than simple descriptive methods by providing a
spatially resolved map of the growth and volatility of the conflict.

Most remarkably, we show that a model trained on the AWD can
predict with surprising statistical accuracy the progression of the
conflict in 2010; i.e., a year after the end of the AWD data. We
conclude the paper by discussing the importance and potential of
statistical modelling of conflict data, as well as offering some
consideration as to its wide applicability.

Statistical Methods
Spatial Point Processes and the Stochastic Integro-Difference Equa-
tion (SIDE). Conflict data typically consists of a set of incidents
labeled through spatiotemporal coordinates which, when visua-
lized as event markers, are highly spatiotemporally correlated,
generally clustered and representative of some underlying struc-
ture. In this regard, these data sets are very similar to others
encountered in a variety of fields, such as epidemiology (15) and
agricultural sciences (16). Poisson point processes provide a con-
venient and frequently used mathematical framework to model
event-based data; in this framework, the probability of observing
a certain number of events within a region of interest O is given by
a Poisson distribution whose mean is the integral over O of an
intensity function λðsÞ, s ∈ O. In order to accommodate phenom-
ena such as event clustering, the intensity itself is often modeled
as a random function, giving rise to doubly stochastic or Cox
processes. A popular class of Cox processes, which will also be
considered here, is the log-Gaussian Cox process (LGCP) where
the logarithm of the event intensity is assumed to be a Gaussian
process (GP). We recall that a GP is wholly defined by (i) a mean
function μðsÞ describing a global trend and (ii) a covariance func-
tion kðs; rÞ indicating how the field at distinct points in space
(s and r) covary (17).

Because conflict data is often logged in a discrete-time format
(e.g., the day of an event as opposed to the precise time), we will
consider a discrete-time series of continuous-space LGCPs. For-
mally, let k ∈ K, K ¼ f1; 2;…; Kg denote a discrete-time index
set and fzkðsÞg, zkðsÞ ∼GPðμkðsÞ; σ2

kψkðs; rÞÞ, a set of temporally
correlated spatial GPs, each with mean μkðsÞ and covariance
function σ2

kψkðs; rÞ. For each k, we then define the point process
intensity function as λkðsÞ ¼ expðzkðsÞÞ. Frequently, the mean
function of zkðsÞ, k ∈ K, can be related to explanatory variables,
such as population density, which help to reduce prediction un-
certainty. We hence let dðsÞ be a vector of spatially referenced
covariates and bT the corresponding regression parameters;
the LGCP at time k then has intensity λkðsÞ ¼ expðbTdðsÞþ
zkðsÞÞ.

Naturally, the key question is how to specify the temporal
dynamics of the intensity functions through zkðsÞ; we need a suf-
ficiently flexible modelling approach to incorporate the complex-
ity of conflict dynamics. One such representation is the stochastic
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integro-difference equation (SIDE), a model originally intro-
duced in ecology (18) which has rapidly gained popularity in spa-
tiotemporal statistics (19). The SIDE relates the spatiotemporal
dependent variable zkðsÞ to zkþ1ðsÞ through the following integral
equation

zkþ1ðsÞ ¼
Z
O
kIðs; rÞf 1ðzkðrÞÞdrþ ekðsÞ; [1]

where kIðs; rÞ is the mixing kernel in the integral and ekðsÞ is an
added disturbance, modeled as a Gaussian field with mean μQðsÞ
and covariance function kQðs; rÞ, ekðsÞ ∼GPðμQðsÞ; kQðs; rÞÞ,
and O is the spatial domain under investigation. The nonlinear
mapping f 1ð·Þ distorts the field in the sedentary stage; in this work
we will employ the identity map f 1ðzkðrÞÞ ¼ zkðrÞ, an assumption
usually adopted in the absence of a priori knowledge (20). The
SIDE is, in its original form, a very flexible modelling tool,
capable of representing a number of dynamic effects such as dif-
fusion and dispersal (or both simultaneously) even under consid-
erably restrictive conditions (19). Although the AWD will suggest
the use of only a special case of SIDE, the two-pronged metho-
dological approach we present here to estimate unknown compo-
nents is in principle applicable to the more general case.

Nonparametric Analysis. We start by studying the correlation be-
tween the conflict events within the same and across subsequent
time frames. We are interested in the probabilities of finding a
conflict event at r given that an event has occurred at s within the
same time frame k or at the previous time frame k − 1. In point
process statistics these are quantified through the pair auto-
correlation function (PACF) gk;kðs; rÞ, and what we term the pair
cross-correlation function (PCCF) gk;kþ1ðs; rÞ defined as

gk;kðs; rÞ ¼
λð2Þ
k;kðs; rÞ

λð1Þ
k ðsÞλð1Þ

k ðrÞ
; [2]

gk;kþ1ðs; rÞ ¼
λð2Þ
k;kþ1ðs; rÞ

λð1Þ
k ðsÞλð1Þ

kþ1ðrÞ
; [3]

where λð1Þ
k ðsÞ ¼ E½λkðsÞ� and λð2Þ

k;kðs; rÞ ¼ E½λkðsÞλkðrÞ� are real and
positive and E½·� denotes the expectation operator.

The PACFmay be used to determine qualitative characteristics
of the conflict; for instance if gk;kðs; rÞ ¼ 1, then no spatial
pattern can be extracted from the data; gk;kðs; rÞ > 1 and gk;kðs; rÞ
< 1 can be used to indicate conflict aggregation and repulsion
respectively. The PACF can also be used as a preprocessing tool
for dimensionality reduction. Direct use of the PACF and PCCF
for nonparametric field estimation is also possible (SI Text) but
our preliminary investigation showed that this is only a reliable
proposition for homogeneous datasets with a very large number
of events (SI Text).

Dimensionality Reduction and Bayesian Inference. In order to devel-
op an inferential approach for SIDE driven LGCPs, we adopt a
basis function representation of the spatiotemporal field, which
we will then truncate at a level which enables sufficient accuracy
(21). This representation, frequently employed in spatiotemporal
modelling [e.g., process convolution models (22, 23)], in turn
facilitates the implementation of computationally efficient infer-
ence algorithms.

The choice of basis functions is a problem that deserves atten-
tion; as far as we are aware, there are no standard solutions for
LGCPs. We propose here a general approach to selecting basis
functions based on the nonparametric estimation of the PACF.
Specifically, we capitalize on (i) a fundamental lemma of LGCPs

gk;kðs; rÞ ¼ expðσ2
kψkðs; rÞÞ; [4]

which states that the log PACF is proportional to the field auto-
correlation function and (ii) the auto-correlation theorem (24)
which states that the Fourier transform of the auto-correlation
function is the spectrum of the signal. Hence, a relationship be-
tween the frequency content of the point process and the PACF is
found, which in turn may be used to select a set of sufficiently
representative basis functions, much on the lines of refs. 21
and 25. We then obtain a decomposition of the kernel, the mean
disturbance and the field as

zkðsÞ ¼ ϕðsÞTxk; [5]

μQðsÞ ¼ ϕðsÞTϑ; [6]

kIðs; rÞ ¼ ϕðsÞTΣIϕðrÞ; [7]

kQðs; rÞ ¼ ϕðsÞTΣQϕðrÞ; [8]

where ϕðsÞ ∈ Rn is the vector of basis functions, xk ∈ Rn and
ϑ ∈ Rn are weights which reconstruct the spatiotemporal field
and the disturbance mean respectively and where ΣI ∈ Rn×n

and ΣQ ∈ Rn×n reconstruct the kernel covariance function and
the disturbance covariance function respectively.

It can be shown (SI Text) that under this decomposition, the
SIDE of Eq. 1 can be represented in the compact form

xkþ1 ¼ AðΣIÞxk þ wkðϑ; ΣQÞ; [9]

where AðΣIÞ ∈ Rn×n and wk ∈ Rn is a Gaussian colored noise
term with mean E½wk� ¼ ϑ and covariance cov½wk� ¼ ΣQ. Eq. 9 is
a standard linear dynamical system where both the states XK ¼
x0∶K ¼ fxkgK

k¼0 and the unknown parameters θ ¼ fϑ; ΣI ; Σ−1
Q g

need to be estimated from the data YK ¼ fykgK
k¼1 where we

define each yk to be the set of coordinates of the logged events
at the kth time point.

For inference, we make use of the likelihood function

pðykjλkðsÞÞ ¼
Y
sj∈yk

λkðsjÞ exp
�
−
Z
O
λkðsÞds

�
; [10]

and approximate each λkðsÞ using the same basis representation:

λkðsÞ ¼ expðbTdðsÞ þ zkðsÞÞ ≈ expðbTdðsÞ þ ϕðsÞTxkÞ: [11]

We proceed with a computationally efficient variational Bayes
(VB) method by approximating the full posterior distribution

pðXK; θ; bjYKÞ ¼ pðXK; ϑ; ΣI ; Σ−1
Q ; bjYKÞ

≈ ~pðXKÞ ~pðϑÞ ~pðΣIÞ ~pðΣ−1
Q Þ ~pðbÞ; [12]

where ~pð·Þ are the variational marginals (26, 27).
The variational marginals are able to reveal important proper-

ties of the conflict progression;XK is used to reconstruct the spa-
tiotemporal field at every time point, ϑ reveals the spatially
varying escalation in conflict, ΣI the extent of any spatial dy-
namics, if any, and ΣQ the volatility of the conflict which can either
be localized or dependent on events happening at remote geogra-
phical locations. The number of unknown parameters in the re-
duced model scales as Oðn2Þ, where n is the number of basis
functions retained. However, as we will see later, nonparametric
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data analysis can suggest further simplifications which can con-
siderably lower the complexity of the model.

The Afghan War Diary
On July 25 , 2010, WikiLeaks publicly made available a compen-
dium of US military war logs in Afghanistan dating between 2004
and 2009. The so-called Afghan War Diary contains a detailed
insider’s description of the military machinery of the world’s
largest power; it consists of roughly 77,000 logs and entries detail
the time and position of an event, which could be anything from a
stop-and-search episode to a gunfight. The dataset is considered a
reliable description of the Afghan war and systematic verification
efforts carried out by several organizations such as the New York
Times* have found little reason to dispute its authenticity. SI Text
reports some of our own tests which show significant correlations
between the logged event rate in the AWD and that in other da-
tasets. In what follows we adopt the spatiotemporal point process
approach to infer a model from the data in the AWD and use it to
analyze the heterogeneous growth (through ϑ) and volatility
(through ΣQ) of the conflict in Afghanistan and also to predict
violence of armed opposition groups in 2010, a year after the
end of the WikiLeaks dataset.

We start with a nonparametric analysis (SI Text) of the data by
splitting the data into weekly intervals (Δt ¼ 1 week) and looking
at the temporally averaged PACF and PCCF fitted to Gaussian
radial basis functions. It is found that, on average, the log PACF
is nearly identical to the log PCCF and that a nonparametric es-
timate of a homogeneous kernel kIðjjs − rjjÞ, computed with the
direct inverse filter, is very narrow in relation to the extent of the
spatial correlations in the field (SI Text). This observation sug-
gests that kIð·Þ in the SIDE may be safely approximated to
γðsÞδðs − rÞ, corresponding to negligible spatial interactions
across adjacent time frames. Note that if ekðsÞ is restricted to
be homogeneous and γðsÞ ¼ γ, the spatiotemporal covariance
function is separable, a common assumption in several fields such
as epidemiology (15). However, given the data characteristics, we
chose to maintain the spatial heterogeneity in ekðsÞ. We also set
γðsÞ ¼ 1 as we found no evidence of mean reversion both at a
national and a provincial level; additionally, we found that a spa-
tially dependent γðsÞ did not contribute to increased prediction
accuracy.

The resulting formulation is validated by studying the temporal
dynamics of the AWD (Fig. 1A). A quantitative analysis reveals
that the fractional increments of the event incidence nationwide
are normally distributed (with a one-tailed Shapiro Wilk’s test
and a Levene’s test with α ¼ 0.1, n ¼ 312 w. See also Fig. 1 B
and C)†. This statistic characterizes systems following a geometric
Brownian motion given by

dλðs; tÞ ¼ eRðsÞλðs; tÞdtþ λðs; tÞdW ðs; tÞ; [13]

where the increment dW ðs; tÞ is a Gaussian process with zero
mean and covariance function kQðs; rÞdt and eRðsÞ is a spatially
varying percentage drift. Applying Ito’s Lemma (28) to ln λðs; tÞ
and noting that the continuous-time intensity ln λðs; tÞ ¼ bTdðsÞþ
zðs; tÞ, we obtain the following form for zðs; tÞ:

dzðs; tÞ ¼ RðsÞdtþ dW ðs; tÞ; [14]

where RðsÞ ¼ eRðsÞ − 1
2
σðsÞ2 is a heterogeneous temporally inde-

pendent spatial growth rate and σðsÞ2 is the variance field. Ap-
plying an explicit Euler discretization scheme to Eq. 14, one
obtains the model zkþ1ðsÞ ¼ zkðsÞ þ ekðsÞ where ekðsÞ has mean
μQðsÞ ¼ RðsÞΔt and covariance function kQðs; rÞΔt. This model
is, as expected, the SIDE with the delta-Dirac kernel.

The field is next decomposed and Eqs. 6 and 8 are applied to
finally obtain the random walk model occasionally employed in
spatiotemporal studies (29)

xkþ1 ¼ xk þ wkðϑ; ΣQÞ: [15]

For basis function selection we employed the aforementioned fre-
quency-based approach (see SI Text for complete details). Finally,
we chose population density and the distance to the nearest major
city as covariates (see SI Text for details on how this choice was
made). Inference was carried out using the VB algorithm de-
scribed above. Full derivatons, algorithmic details, and configura-
tion parameters (priors and stopping conditions), as well as
indicative run times, are given in SI Text respectively whilst a de-
tailed simulation study showing the identifiability of the model
under flat priors and a comparison with kernel-based estimators
(30), is given in SI Text.

Results
Conflict Intensity and Regression Parameters. State inference leads
to broad conclusions to where and how the conflict intensity has
increased, decreased or shifted in time. We show the posterior
mean intensity at regular intervals in SI Text and also in
Movie S1 together with the underlying AWD events at a weekly
resolution. The progression of the intensity captures important
geographical features of the war scenario. Regions of high inten-
sity in 2009 include Sangin in northern Helmand (see SI Text for a
provincial map), one of the most dangerous places in Afghani-
stan, notorious for thousands of improvised explosive devices
and frequent suicide bombings (2). Other regions, such as Kabul,
Nangarhar, and Paktya provinces, on the other hand have wit-
nessed high activity throughout the six-year interval. Also very
apparent is the emergence in later years of a high intensity ring
starting from Kabul extending southwards towards Kandahar, up
through Herat, through Balkh and back to Kabul. This roughly
elliptical shape corresponds to the country’s ‘ring road’, com-
monly targeted by insurgent activity and placement of improvised
explosive devices (2). We note that a representative spatiotem-

Fig. 1. Temporal analysis of the AWD. (A) Weekly number of activity reports in Afghanistan between January 2004 and December 2009 (bin size ¼ 1 w).
(B) Distribution of weekly fractional increments in report count in the AWD where Nk denotes the number of report counts at week k. (C) Corresponding
normality probability plot. Fourteen points (4.5% of data) were marked as clear outliers as a result of low report count and not used in this analysis.

*http://www.nytimes.com/2010/07/26/world/26editors-note.html?_r=1
†The Levene’s test failed to reject the null hypothesis of constant variance for the years
2006 to 2009 but not when including 2004 and 2005. The reason for rejection when
including the earlier two years can be safely attributed to relatively low report count,
arising in noisy quantities when computing the fractional increments.
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poral intensity map may also be obtained with the use of standard
nonparametric kernel estimators (30), seen in Movie S2.

The regression parameters corresponding to population den-
sity and distance to the closest major city were estimated to be
1.97 × 10−4 �6.2 × 10−6 (2σ) and −0.037� 2.1 × 10−4 respec-
tively. This result reflects the fact that a vast majority of logs
in the AWD, as with typical conflict datasets, are present in urban
and highly populated areas (7).

Conflict Escalation and Volatility.Amajor advantage of the adopted
model-based approach is the ability to establish quantitative con-
clusions on aspects of the conflict scenario other than the inten-
sity. For instance, in the AWD we have modeled the spatially
varying escalation of conflict in Afghanistan between 2004 and
2009 through ϑ (Fig. 2) and the volatility of the conflict progres-
sion in the same period through the diagonal elements of
ΣQ (Fig. 3).

Escalation (or deescalation) may be used to distinguish
between event hot spots and growth hot spots. This feature is,
in itself, a major advantage over conflict clustering analysis which

cannot discern whether a cluster was a one-off, or a sign of a de-
teriorating situation. In the AWD it is very evident, for instance,
that while some of the high growth areas such as Helmand also
had an overall high count of events, this was not the general case;
for example, Sar-e Pul and Balkh in the north and the Badghis
province in the west all had witnessed a modest number of total
event count but are seen to have had a significant overall growth
in activity throughout the years.

The volatility/predictability of the conflict is also of consider-
able interest. In our case, a small diagonal value in ΣQ indicates
that based on the data so far the future intensity may be predicted
with reasonable accuracy. On the other hand, a large value is a
sign of considerable volatility; little can be said about the future.
Such inferences are vital for decision purposes—simply stated it
might prove a better option to admit a large uncertainty about the
future, than to base a policy decision on a highly uncertain pre-
diction. Consider for instance the high volatility on the eastern
part of Farah province in western Afghanistan (see SI Text). A
subsequent analysis of the video shows spurious clusters emerging
in April 2005 and towards the end of 2006, an indication that the
conflict dynamics in this part of Afghanistan are relatively hard to
predict; even more so than in Sangin which had seen a drastic, but
relatively smooth, increase in events in the latter years.

Prediction.The key advantage of dynamic point process modelling
is the ability to make statistical predictions of the system’s beha-
vior for decision making. To illustrate this feature we considered
the frequency of incidents by armed opposition groups (AOG)
and predicted it in 2010, a year after the termination of the
WikiLeaks dataset. AOG activity on a provincial scale was ob-
tained from the Afghanistan NGO Safety Office (ANSO) safety
reports‡. Prediction was carried out by (i) sampling a trajectory zk
through ~pðXÞ in 2009, (ii) forward simulating each trajectory for
52 weeks (2010) using the generative model with the parameters
ϑ, ΣQ and b set to E ~pðϑÞ½ϑ�, ðEΣ−1

Q
½Σ−1

Q �Þ−1 and E ~pðbÞ½b� respectively,

Fig. 2. AWD activity growth in Afghanistan. (A) Posterior mean fractional increase in logs per week in the AWD between 2004 and 2009. Only regions with
positive overall growth are shown. (B–F left) Spatial map of all events occurring in a square of side 100 km centered on the city under study. (B–F right) Number
of weekly events Nk in these regions (-) together with the estimated 90% confidence intervals (green shading).

Fig. 3. Volatility in conflict events between 2004 and 2009 in the WikiLeaks
AWD. Only regions with a high volatility (σ2 > 0.055) are shown. ‡Reports are freely available from the official ANSO website http://www.afgnso.org.
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(iii) integrating the interpolated sample over each ith province to
give ẑk;i, (iv) finding the corresponding intensity λ̂k;i, (v) averaging
the intensity over 52 w invervals to obtain λ̂2009;i and λ̂2010;i, (vi)
generating two samples Ni;2009 and Ni;2010 from Poisson random
variables with intensity λ̂2009;i and λ̂2010;i, (vii) predicting a provin-
cial AOG count in 2010, AOGi;2010, from that in 2009, AOGi;2009,
through the formula

AOGi;2010 ¼
Ni;2010

Ni;2009
AOGi;2009; [16]

and (viii) repeating (i)–(vii) for N ¼ 2; 000 times. Note that
although Eq. 16 is a very simple predictor, one which assumes
a linear relationship (without offset), it reflects the fact that
the frequency of the logs in the WikiLeaks dataset is significantly
correlated with the saliency of AOG initiated attacks in Afghani-
stan, particularly in 2009 (SI Text).

As seen from Fig. 4 A and B, the prediction medians from the
model match closely the observed values. In Baghlan, for in-
stance, AOG activity rose by 120% (17.3% using log counts) from
100 incidents in 2009 to 222 in 2010; the model predicted a med-
ian 2010 increase of 128% (17.9%) to a count of 228. Badakhshan
saw a −19% (−5.5%) growth in 2010; our model predicted a med-
ian of −23% (−7.0%) growth. Further, a correlation test between
the predicted medians and actual incident count for all 32 pro-
vinces gave a Pearson’s correlation coefficient of 0.81 on a linear
scale and 0.89 under a log transform (Fig. 4B), showing strong
support for prediction capability.

Despite this, for some provinces (such as Badghis), the median
remains substantially offset from the true value. The disparities
are, however, consistent with the predictive distributions. From
Fig. 4A it is seen that counts in 62.5% of the predicted provinces
lie between the lower and upper quartiles and more importantly
all of them lie within the 99% confidence intervals. The same

holds for the predicted change in AOG activity in 2010, the dis-
tributions of which are given in SI Text. Even here, the model is
seen to be well tuned and supply confidence intervals which con-
sistently capture the true activity growth (Fig. 4C).

Thus, although the true count is not always close to the point-
wise median predictions, we see that the predictions are accurate
in a statistical sense; i.e., the predicted and observed distribution
of AOG growth across provinces match closely. Further, the
above results were obtained merely from the AWD up to 2009
and did not include any knowledge of events in 2010 such as mili-
tary plans or deployments/withdrawal of troops. Incorporation of
domain knowledge to reduce the predictive variance would, in
principle, be straightforward in our model through manipulation
of the prior distributions or inclusion of further relevant exoge-
neous inputs.

Discussion and Conclusions
Our results demonstrate that statistical spatiotemporal modelling
can be an extremely valuable tool in the analysis of conflict. The
analysis of the AWD data shows that data modelling can yield
insights that cannot be achieved by simple visualization or by the
use of descriptive statistics. This claim is borne out by the avail-
ability of a spatially resolved map of the growth of conflict inten-
sity, as well as the volatility/predictability of the conflict. Further-
more, the availability of statistical confidence intervals associated
with all model predictions is an important feature of our model-
ling framework and a potentially crucial feature for decision
making.

The most striking result of our analysis is the ability to accu-
rately predict (in a statistical sense) conflict dynamics for a whole
year after the end of the AWD data on which the model was
trained. While we do not have a simple mechanism underlying
our model, the fact that a latent Gaussian model can produce pre-
dictions of this quality cannot be by chance. Intuitively, we believe
that the type of conflict we are modelling may be the main reason

Fig. 4. Prediction of AOG growth in 2010. (A) Box-and-whisker plots of the predicted log AOG activity in 2010 using 2000 MC runs. For each province, the
box marks the first and third quartiles; the median (red line), mean (black circle), and true reported count (green circle) are also given. The whiskers extend to
the furthest MC points that are within 1.5 times the interquartile range (≈99% coverage) and the outliers are plotted individually (red cross). (B) Comparison
between the median log model prediction and log AOG count in 2010 where the mark number corresponds to the province number denoted in (A). (−) Ideal
prediction. (C) Cumulative distribution of growth prediction on a province-by-province basis. The graph shows correct tuning of the model, with approximately
x% of provinces lying within the xth percentile of the predictive distribution. (−) True cumulative score. (dotted line) Ideal cumulative score.
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why our method works. The Afghan conflict is characterized by
insurgent movements and qualifies as a case of irregular warfare
where activity is only loosely dependent and actioned by a myriad
of disparate groups. Some averaging effects may be leading to the
Gaussian behavior of the conflict’s intensity, which in turn may be
exploited for modelling purposes.

Naturally, as with all modelling techniques, our approach
comes also with limitations, as well as benefits. From the techni-
cal point of view, reliable parameter estimation in point processes
requires a sufficiently large number of events within the region of
interest. While it is difficult to put a precise figure to this number,
we found that parameter estimation in provinces with fewer event
counts than a few dozens a year was extremely difficult. Another
limitation may be the suitability of the modelling approach to
generic conflict scenarios. Our approach appears to be more
suitable for fragmented scenarios such as Afghanistan rather than
conventional wars between well organized armies. Finally, we

have assumed temporal-invariance of the parameters. Sequential
implementations allowing continuous estimation of slowly vary-
ing governing parameters are in principle straightforward (11)
and offer an attractive way forward to the study of conflict.

In conclusion, the analysis presented in this paper has been
made possible by the development of statistical methodologies
to handle large scale spatiotemporal datasets. Given the in-
creased availability of such datasets from remote sensing or
social networking sources, we envisage that methods such as
those used here will become increasingly useful in a number
of disciplines.
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