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The inability to acquire protective immunity against Plasmodia
is the chief obstacle to malaria control, and inadequate T-cell
responses may facilitate persistent blood-stage infection. Malaria
is characterized by a highly inflammatory cytokine milieu, and the
lack of effective protection against infection suggests that memory
T cells are not adequately formed ormaintained. Using a genetically
targeted strain of Plasmodium berghei, we observed that the Plas-
modium ortholog of macrophage migration inhibitory factor en-
hanced inflammatory cytokine production and also induced
antigen-experienced CD4 T cells to develop into short-lived effector
cells rather than memory precursor cells. The short-lived effector
CD4 T cells were more susceptible to Bcl-2–associated apoptosis,
resulting in decreased CD4 T-cell recall responses against challenge
infections. These findings indicate that Plasmodia actively interfere
with the development of immunological memory and may account
for the evolutionary conservation of parasite macrophage migra-
tion inhibitory factor orthologs.

vaccine | immune evasion

Vector-borne parasites such as the Plasmodium spp. that are
responsible for malaria rely on an inefficient mode of in-

fection but nevertheless elude eradication. People living in
malaria-endemic regions can sustain a low-level parasitemia and
eventually may achieve tolerance to symptoms; however, these
individuals are protected only partially from disease manifes-
tations. The partial protection wanes quickly in the absence of
reinfection, and sterilizing immunity is not established against
natural Plasmodium infections (1). The inability of the host to
clear Plasmodia completely allows the parasites to mature and
survive during the low-transmission season.
Early studies identified the importance of cell-mediated im-

mune pathways in the adaptive response against malaria (2).
Selective depletion of different immune cell populations in-
dicated that control of blood-stage infection is dependent on
CD4 T cells, which can reduce parasitemia and promote host
survival (3–7). The ability of Plasmodium-specific memory CD4
T cells to develop and be maintained in the host appears to be
altered during malaria (8, 9), and this phenomenon likely con-
tributes to the lack of a long-term, sterilizing immunity. CD4 T
cells are activated initially by antigen and inflammatory signals
from antigen-presenting cells (APCs). Following activation, CD4
T cells proliferate rapidly and acquire critical effector functions;
these cells then undergo a dramatic contraction phase after
the peak of infection (10), and the cells that remain after the
contraction phase become established as memory T cells.
Responding terminal effector T cells do not survive the con-
traction period (11, 12) and thus do not confer protection
to reinfection.
The fate of antigen-primed T cells is dependent on both the

host cytokine milieu and the persistence of antigen. Although
inflammatory cytokines such as TNF-α and IFN-γ act to control

the malaria parasite burden (13, 14), high levels of inflammation
also promote the development of terminally differentiated ef-
fector cells. In viral infections, elevated expression of IL-12
favors the development of responding T cells into short-lived,
terminal effector cells rather than memory precursor effector
cells (11, 15); however less is known about the effects of in-
flammatory cytokines on the development of memory T cells
during Plasmodium infections. There is evidence that during
blood-stage Plasmodium infection IFN-γ is detrimental to the
survival of Plasmodium-specific CD4 T cells by regulating its
contraction phase (12, 16). The observation that concurrent in-
fection with Plasmodium falciparum impairs the development of
vaccine-induced Plasmodium antigen-specific memory CD4 T
cells (17) further suggests that the formation of T-cell–mediated
immunological memory is impaired during malaria.
We describe herein a central role for the Plasmodium ortholog

of the cytokine macrophage migration inhibitory factor (PMIF)
in regulating the host inflammatory response to malaria and its
subsequent effect on the development of CD4 T-cell–mediated
immune protection. Challenge infections showed that CD4 T
cells activated in the presence of PMIF do not produce a robust
recall response to homologous parasites. These studies provide
evidence for an active mechanism by which Plasmodia interfere
with the generation of Plasmodium-specific memory CD4 T cells,
thereby facilitating parasite persistence and transmission.

Results
IL-12 and IFN-γ Interfere with the Development of T-Cell–Mediated
Protection Against Malaria. We studied the Plasmodium berghei
ANKA (PbA) blood-stage infection model (18) to investigate the
effect of inflammatory cytokines on Plasmodium-specific CD4 T
cells. Upon infection, the cytokines IL-12 and IFN-γ promote the
differentiation of naive CD4 T cells into Th1 cells, which are
known to mediate antibody-independent protection against
Plasmodium infection (3). IL-12 and IFN-γ can further influence
CD4 T-cell fate (19, 20), and malaria-induced IFN-γ has been
implicated in regulating the contraction of Plasmodium-specific
CD4 T cells (12, 16). Although the effects of IL-12 and IFN-γ on
T-cell development and survival are well characterized in many
infection models (11, 15, 21, 22), they have not been investigated
thoroughly during malaria. Because IL-12 regulates IFN-γ pro-
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duction, we were interested in studying the effects of elevated
IFN-γ and IL-12 levels on Plasmodium-specific CD4 T-cell ex-
pansion and function during blood-stage malaria.
The effects of IL-12 and IFN-γ on CD4 T cells during blood-

stage malaria were examined by administering neutralizing
antibodies directed against IFN-γ and IL-12 on days −1, 1, 3, and
5 post PbA infection. In the BALB/c PbA blood-stage infection
model, immunoneutralization of IFN-γ and IL-12 did not sig-
nificantly affect parasitemia during the acute phase of infection
(Fig. S1A), a finding that is consistent with reports from other
murine Plasmodium blood-stage infection models (23, 24). The
peak of the inflammatory response to PbA infection of BALB/c
mice occurs around days 4 and 5 post infection (25), and this
acute phase of the response is followed by contraction of
responding CD4 T cells starting around day 7 post infection (16).
No significant differences in parasitemia were observed in the

groups treated with IgG (control) or anti–IFN-γ/IL-12 at day 7
post infection, indicating that the two groups were exposed to
comparable levels of Plasmodium antigens. We then examined
the effects of these cytokines on CD4 T-cell development during
blood-stage malaria. The lack of defined CD4 T-cell epitopes has
hindered efforts to characterize CD4 T-cell function during
malaria, and we therefore used cell proliferation as a surrogate
for identifying CD4 T cells that respond to PbA infection (26). In
these experiments, T-cell proliferation was detected by expres-
sion of the nuclear protein Ki67. We observed no significant
difference in the number of PbA-responsive CD4 T cells in
control IgG- and anti–IFN-γ/IL-12–treated animals at day 7 post
infection (Fig. S1B), indicating that IL-12 and IFN-γ do not
contribute significantly to the initiation of the anti-Plasmodium
CD4 T-cell response.
Studies in lymphocytic choriomeningitis virus have shown that

increased inflammatory responses can promote the development
of a terminally differentiated, short-lived effector cell phenotype
rather than a memory precursor phenotype in responding T-cell
populations (11, 27). We hypothesized that IL-12 and IFN-γ may
have similar effects on Plasmodium-responsive CD4 T cells. T-
bet is a transcription factor that is regulated by IFN-γ and IL-12
signaling and that is elevated in terminally differentiated T cells
(11, 28). We observed that the increase in IL-12 and IFN-γ levels
during blood-stage PbA infection promotes the up-regulation of
T-bet at day 7 post infection. Comparison of PbA-responsive
CD4 T cells from control IgG- and anti–IFN-γ/IL-12–treated
mice revealed elevated levels of T-bet in the presence of IFN-γ
and IL-12 (Fig. 1A), suggesting that these cytokines influence
the differentiation of responding CD4 T cells during blood-
stage malaria.
The effect of IL-12 and IFN-γ on the expression of T-bet in

PbA-responsive CD4 T cells indicated that these cytokines may
contribute to CD4 T-cell contraction after the peak of the re-
sponse. To examine the effects of malaria-induced IFN-γ and IL-
12 on CD4 T-cell contraction, splenocytes were isolated from
control IgG- or anti–IFN-γ/IL-12–treated mice at day 7 post
infection and were labeled with carboxyfluorescein succinimidyl
ester (CFSE). The cells then were cultured without additional
stimulation, and the ability of CD4 T cells to maintain pro-
liferation was detected by assessing CFSE dilution in CD4 T cells
3 d later. We observed that although CD4 T cells from IFN-γ/IL-
12–neutralized mice continued to proliferate ex vivo, CD4 T cells
from control IgG-treated mice did not sustain the ability to di-
vide in culture (Fig. 1B). These data suggest that the IL-12 and
IFN-γ responses to blood-stage malaria are involved in pro-
moting CD4 T-cell contraction and support a recent report that
CD4 T-cell contraction is reduced in P. berghei-infected IFN-γ−/−
mice (16).
Terminally differentiated effector T cells are less protected

from apoptotic cell death during the contraction phase than their
memory precursor effector T-cell counterparts (10). Consistent

with the elevated levels of T-bet and shortened proliferation,
TUNEL staining of spleen histologic samples indeed revealed
more apoptotic cell death in the presence of IFN-γ and IL-12
(Fig. 1C). We further observed lower Bcl-2 expression in CD4 T
cells that express high levels of T-bet (Fig. S2), and the loss of
Bcl-2 is known to increase susceptibility to apoptosis (10). We
detected higher levels of Bcl-2 in PbA-responsive CD4 T cells
from anti–IFN-γ/IL-12–treated mice than in control IgG-treated
mice by flow cytometric analysis (Fig. 1D), suggesting that IL-12
and IFN-γ may increase apoptosis via a Bcl-2–dependent
mechanism during the contraction phase of the T-cell response
to blood-stage malaria.
We next investigated whether regulation of the CD4 T-cell

response by IFN-γ and IL-12 influenced the recall response
against a PbA challenge infection. Because BALB/c mice are
unable to clear PbA infections, we adoptively transferred 2 ×
107 splenocytes from control IgG- or anti–IFN-γ/IL-12–treated
mice into naive recipients and challenged the recipients with
PbA. Mice that received splenocytes from anti–IFN-γ/IL-12–
treated donors showed a stronger anti-malaria cytokine re-
sponse and better parasite control than mice that received
splenocytes from control IgG-treated donors (Fig. 1 E–G).
These data indicate that the inflammatory response produced
during acute PbA infection promotes CD4 T-cell contraction,
and increased splenocyte apoptosis is likely a major factor in the
diminished anti-Plasmodium recall responses observed during
challenge infection.

Circulating PMIF Levels Are Associated with Inflammation in Malaria
Patients. The discovery that orthologs of the human cytokine,
macrophage migration inhibitory factor (MIF), are expressed by
evolutionarily distant parasites (29) prompted us to consider that
such orthologs may function in pathways of immune evasion.
Human MIF is an upstream mediator that promotes inflammatory
cytokine production (30), and the structural similarities between
human MIF and PMIF (31) led us to hypothesize that PMIF
likewise may promote inflammation in the host.
We developed a P. falciparum MIF (PfMIF)-specific ELISA

and observed higher PfMIF levels in patients with cerebral
malaria than in patients with uncomplicated malaria (Fig. 2A).
Of note, cerebral malaria is a severe inflammatory manifestation
of acute infection that is not correlated with parasitemia (32, 33).
Positive associations between plasma concentrations of PfMIF
and the inflammatory mediators TNF-α, Fas ligand, CCL2, and
CXCL10 are likely contributing factors for the increased in-
cidence of cerebral malaria (Fig. 2 B and C) (34). These data
from malaria patients support the idea that parasite production
of PMIF is associated with a greater proinflammatory state in the
infected host.

PMIF Binds the Host MIF Receptor and Enhances TNF-α and IL-12
Production by APCs. Mammalian MIF carries out many of its in-
flammatory effects by binding to the MIF receptor (MIF-R, also
known as “CD74”) (35). To define the inflammatory function of
PfMIF we expressed recombinant PfMIF and tested its equilib-
rium binding kinetics to recombinant MIF-R by surface plasmon
resonance. We observed a high-affinity binding interaction be-
tween PfMIF and the MIF-R ectodomain (PfMIF Kd = 2.7 × 10−
8 M) (Fig. 3A), comparable to the Kd observed between mam-
malian MIF and MIF-R [human MIF (HuMIF) Kd = 9.0 × 10−9

M] (35). These data also confirm a recent report of PMIF
binding to host MIF-R by coimmunoprecipitation (31).
MIF-R is highly expressed on activated APCs (35), which are

important for initiating the pathogen-specific CD4 T-cell re-
sponse during natural Plasmodium infection. We therefore
assessed the effects of PMIF in vitro by stimulating APCs with
PMIF. We noted an enhanced secretion of TNF-α and IL-12p40
when activated bone marrow-derived dendritic cells from naive
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Fig. 1. IL-12 and IFN-γ suppress CD4 T-cell proliferation and diminish CD4 T-cell recall responses. (A) BALB/c mice were infected by i.p. injection of 106 PbA-
infected RBCs and were treated with control IgG or neutralizing antibodies against IFN-γ and IL-12 on indicated days (see schematic). T-bet expression in PbA-
responsive CD4 T cells (Ki67hi, CD4+) at day 7 post infection was detected by intranuclear staining and analyzed by flow cytometry. (B) On day 7 post infection,
5 × 106 splenocytes were isolated, labeled with CFSE, and cultured for 3 d ex vivo without additional stimulation. Then proliferation was detected by CFSE
dilution in CD4 T cells. (C) TUNEL staining of spleen histologic sections at day 7 post infection. Three fields were counted per spleen section to determine the
number of TUNEL+ cells. (Magnification: 20×.) n = 4 per group. (D) Bcl-2 was detected in the Ki67hi, CD4+ T-cell population at day 7 post infection. (E–G)
Splenocytes (2 × 107) from anti–IFN-γ/IL-12– or IgG-treated mice were labeled with CFSE and incubated with 10 μM chloroquine for 2 h and then were
adoptively transferred i.v. into naive BALB/c mice. Recipients were challenged with PbA on day 2 post transfer. One group of recipients was killed at day 5 post
challenge, and a second group was monitored for parasitemia. In mice killed at day 5 post challenge, IL-12 was measured in the serum, and IFN-γ secreted by
5 × 106 splenocytes after 18 h in culture was measured in the supernatant. Parasitemias of recipient mice were determined by quantitative PCR detection of
P. berghei 18S rRNA copies/μL blood. One representative experiment of two independent experiments with n = 5 mice per group is shown; data are shown as
mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.005 by two-tailed t test.
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mice were stimulated with recombinant P. berghei MIF (PbMIF)
(Fig. 3 B and C). To investigate better the role of PbMIF during
blood-stage malaria, we also studied the macrophage response to
a strain of PbA with a genetic deletion in PbMIF (mifKO PbA)
(36). Peritoneal macrophages were harvested from naive mice,
activated with IFN-γ, and stimulated in vitro with magnetically
purified PbA-infected red blood cells (iRBCs) obtained from
WT PbA- or mifKO PbA-infected mice. Macrophages that were
stimulated with WT PbA iRBCs produced more TNF-α than
macrophages stimulated with mifKO PbA iRBCs, indicating that
the presence of PbMIF increased inflammatory cytokine pro-
duction. Furthermore, this effect was dependent on macrophage
expression of the MIF receptor, supporting the idea that PMIF
functions by signaling through the host MIF receptor (Fig. 3D).

PMIF Increases Inflammatory Cytokine Production and CD4 T-Cell
Activation During P. berghei Infection. Like malaria patients, mice
infected with WT PbA showed significant serum concentrations
of PbMIF (Fig. S3A). PbMIF is expressed during the blood
stages (36, 37) and accumulates in the spleen, the main organ

associated with anti-Plasmodium immune responses (Fig. S3B).
To confirm the effect of PMIF on inflammatory responses in
vivo, we compared serum and splenic cytokine levels in mice
infected with WT or mifKO PbA. Mice infected with WT PbA
showed an increase in serum IL-12, IL-1β, TNF-α, and IL-6
concentrations compared with mifKO PbA-infected mice (Fig.
4A). Higher splenic levels of the inflammatory cytokines IFN-γ,
IL-1β, and IL-6 also were detected in WT PbA-infected mice
than in mifKO PbA-infected mice (Fig. 4B). The presence of
PMIF did not alter the expression of host MIF (at day 5 post
infection, mouse MIF = 32 ± 16 ng/mL in WT PbA infections
and 28 ± 9.2 ng/mL in mifKO PbA infections, n = 5 per group,
P = not significant), and no apparent differences in survival,
parasitemia, and anemia were seen in BALB/c mice infected with
WT PbA or mifKO PbA (Fig. S3C). These data support the

A

B

C

Fig. 2. Association of PfMIF with increased inflammatory cytokine levels in
malaria patients. (A) Serum PfMIF levels in uninfected controls (n = 72), in
patients with uncomplicated malaria (UM, n = 69), and in patients with ce-
rebral malaria (CM, n = 32). P < 0.0001 between uninfected and UM and
between uninfected and CM groups by Mann–Whitney test; *P < 0.05; N.D.,
not detected. (B) Circulating serum PfMIF levels correlated with serum TNF-α
levels in malaria patients (n = 141, r = 0.35, P < 0.0001 by Pearson’s corre-
lation). (C) Circulating inflammatory mediators were detected as previously
described (33), and correlations of the listed mediators with PfMIF levels
were calculated by Pearson’s correlation analysis for n = 126–140 patients.
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interpretation that PbMIF increases the innate inflammatory
response during acute blood-stage Plasmodium infection.
Next, we were interested in determining whether the ability of

PbMIF to regulate the inflammatory milieu during acute blood-
stage malaria affects the development of Plasmodium-specific
adaptive immune responses. Both antibody and CD4 T-cell re-
sponses are involved in the control of blood-stage Plasmodium
infection (2, 38), and we first analyzed whether PbMIF affects
anti-Plasmodium antibody production. BALB/c mice were infec-
ted with WT PbA or mifKO PbA, and the infections were cured
by chloroquine. At day 33 post infection, anti-PbA antibody titers
were measured in serum samples, and we observed no significant
differences between WT PbA- and mifKO PbA-infected mice in
the titers of all antibody isotypes measured (Fig. 5A).
A major contribution of CD4 T cells to the immune response

against blood-stage malaria is to produce IFN-γ (23). Using
a CFSE-based method for detecting CD4 T cells responding to
blood-stage malaria, we found similar numbers of PbA-re-

sponsive CD4 T cells in WT PbA- and mifKO PbA-infected mice
at day 5 post infection (Fig. S4), indicating comparable initiation
of the anti-Plasmodium CD4 T-cell response. However, more
PbA-responsive CD4 T cells produced IFN-γ in WT PbA-
infected mice than in mifKO PbA-infected mice (Fig. 5B and
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phenotype. (A) Mice were infected with WT PbA or mifKO PbA and were
cured by i.p. injection of chloroquine (50 mg/kg) on days 7–10 post infection.
Serum antibody titers were determined by direct ELISA, using purified PbA
iRBC lysates as the coating antigen. Data shown are representative of two
independent experiments. n = 4–5 animals per group. (B) CFSE-labeled
splenocytes (2 × 107) from naive Thy1.1+ BALB/c donors were transferred into
Thy1.2+ BALB/c recipients, which were then infected with PbA. PbA-re-
sponsive CD4 T cells are defined as CFSElo, Thy1.1+, CD4+ cells (see schematic,
Fig. S4), and the number of IFN-γ–producing CFSElo, Thy1.1+, CD4+ PbA-re-
sponsive cells was determined. (C) IL-7Rα surface expression, shown as mean
fluorescence intensity of Thy1.1+, CD4+ PbA-responsive cells. Data shown are
representative of two independent experiments. n = 4 animals per group.
(D) RT-PCR was performed on RNA extracted from homogenized spleens of
mice infected with WT PbA or mifKO PbA at day 5 and day 7 post infection.
Expression of IL-7 to relative GAPDH is shown. Data shown are representa-
tive of two independent experiments. n = 4 animals per group. (E) IL-2–
producing cells as per cent of IFN-γ–, TNF-α–, and/or IL-2–producing malaria-
responsive CD4 T cells. (F) Mice were infected with WT PbA or mifKO PbA.
The mifkO PbA-infected mice were divided into two groups; one group was
injected with PBS, and the other group was injected with 10 μg IFN-γ on days
0, 2, and 4 post infection. Intranuclear T-bet staining was performed on day
5 post infection. The number of T-bethi PbA-responsive cells (Ki67hi, CD4+) is
shown. Data are shown as mean ± SEM and are representative of two in-
dependent experiments. n = 4 animals per group. *P < 0.05; **P < 0.01 by
two-tailed t test.
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Fig. S5). Compared with macrophages, few CD4 T cells express
MIF-R (<2% of CD4+ splenocytes) (Fig. S6A) (35), indicating
that PMIF signaling is likely APC dependent. The ability of
PbMIF to increase IFN-γ production by CD4 T cells indeed
appears to depend on signaling through the host MIF-R, because
the addition of PbMIF to unstimulated anti-CD3/CD28 or
phorbol 12-myristate 13-acetate (PMA)/ionomycin-stimulated
naive CD4 T-cell cultures did not enhance production of IFN-γ
by the CD4 T cells (Fig. S6B).
The effect of PbMIF on the host appears to be confined to

proinflammatory cytokine production, because PbMIF had no
discernible impact on IL-10 and IL-4 production or on regulatory
T-cell formation; nor were there differences in the proportion of
CD4 T-cell, CD8 T-cell, macrophage, or B-cell populations in
WT PbA- or mifKO PbA-infected spleens (Fig. S7). However,
we did observe a 45% increase in the proportion of PD-1+ PbA-
responsive CD4 T cells in the presence of PbMIF (Fig. S8),
suggesting that PbMIF may be involved in the recently described
ability of malaria to induce CD4 T-cell exhaustion (39).

Decreased CD4 T-Cell Survival Signals in the Presence of PMIF. We
hypothesized that the ability of PMIF to augment the host in-
flammatory response may contribute to Plasmodium parasite
fitness by hindering the development of host-protective respon-
ses. Because IL-12 and IFN-γ have been observed to interfere
with memory T-cell formation by promoting effector cell death
(Fig. 1) (12, 40), we explored the possibility that the up-regula-
tion of inflammatory cytokines induced by PbMIF could lead to
decreased long-term CD4 T-cell–mediated protection against
malaria. One of the hallmarks of CD4 T-cell–mediated pro-
tection is that pathogen-specific CD4 T cells can survive the
contraction phase to produce a rapid response during reexposure
to the pathogen (10). We thus examined whether the presence of
PMIF alters the expression of survival signals for PbA-responsive
CD4 T cells. IL-7Rα is a receptor for the prosurvival cytokine IL-
7 (41, 42) and has been correlated with increased memory CD4
T-cell development in protozoan infections (43, 44). Even
though similar numbers of CD4 T cells responded to WT PbA or
mifKO PbA infection (Fig. S4), more PbA-responsive CD4 T
cells from WT PbA-infected mice down-regulated expression of
IL-7Rα compared with mifKO PbA-infected mice (Fig. 5C). The
expression of IL-7, the prosurvival cytokine ligand of IL-7Rα,
also was decreased in the spleens of WT PbA-infected versus
mifKO PbA-infected mice (Fig. 5D).
IL-2 is a prosurvival and mitogenic signal for T cells, and T

cells that produce IL-2 are more likely to survive the contraction
phase and become protective memory T cells (45). Notably, in
recent studies of the RTS,S malaria vaccine, protected recipients
had more IL-2–producing CD4 T cells than study participants
who were not protected from malaria (5). In the presence of
PbMIF, fewer cytokine-secreting CD4 T cells produce IL-2 (Fig.
5E), suggesting that fewer CD4 T cells will persist through the
contraction phase and initiate a robust recall response. (Al-
though Ly6C is a recently identified marker for memory CD4 T
cells (46), available antibodies do not detect the Ly6C variant
expressed by BALB/c CD4 T cells.) The differences in IL-7Rα,
IL-7, and IL-2 levels between WT PbA and mifKO PbA infec-
tions suggest that PbMIF plays a role in determining whether
responding CD4 T cells become long-lived memory cells or
short-lived effector cells.
Because we noted that PbMIF contributes to an increase in

the levels of two cytokines that induce T-bet expression, i.e.,
IFN-γ and IL-12 (Fig. 4) (47, 48), we next assessed T-bet levels in
PbA-responsive CD4 T cells. We observed greater T-bet ex-
pression in PbA-responsive CD4 T cells from mice infected with
WT PbA than from mice infected with mifKO PbA (Fig. 5F),
further indicating that PbMIF promotes the terminal differen-
tiation of effector cells.

The phenotype of CD4 T cells during PbA infection in IFN-
γ/IL-12–neutralized animals appeared to be similar to those of
mifKO PbA-infected animals (Fig. 1), suggesting that the ability
of PMIF to induce IFN-γ and IL-12 may be responsible for the
observed differences in PbA-responsive CD4 T cells during WT
PbA and mifKO PbA infections. To test whether increased IFN-
γ signaling is a mechanism by which PbMIF modulates the de-
velopment of memory precursor CD4 T cells, we infected mice
with mifKO PbA and administered 10 μg IFN-γ during infection.
Because IFN-γ was administered extrinsically, we expected that
IFN-γ production by CD4 T cells would not be influenced in the
treated and control groups (Fig. S9), and we asked whether the
increased systemic IFN-γ levels would alter PbA-responsive CD4
T cells. We observed that administration of IFN-γ during mifKO
PbA infection caused the phenotype of PbA-responsive CD4 T
cells to resemble that of CD4 T cells from WT PbA-infected
mice. Treatment of mifKO PbA-infected mice with IFN-γ in-
creased the expression of T-bet in PbA-responsive CD4 T cells to
levels similar to those in PbA-responsive CD4 T cells from WT
PbA infections (Fig. 5F). The observation that administration of
IFN-γ recapitulates the CD4 T-cell phenotype of WT PbA-
infected mice during mifKO PbA infection provides evidence
that links the ability of PbMIF to induce IFN-γ production with
a decrease in the numbers of long-lived memory precursor ef-
fector T cells.

Decreased T-Cell Survival in the Presence of PMIF. In the presence of
IFN-γ, Plasmodium-specific CD4 T cells exhibit an increased
susceptibility to undergo cell death in vivo (12, 16). Because of
the PbMIF-mediated increase in IFN-γ and the increased num-
bers of CD4 T cells with a short-lived effector phenotype (10),
we anticipated that more T-cell death occurs in the presence of
PbMIF. The number of live splenocytes began to decline after
day 5 in WT PbA-infected mice but not in mifKO PbA-infected
mice (Fig. 6A). To investigate whether apoptotic cell death was
responsible for this decline in live splenocyte numbers, we per-
formed TUNEL staining and found increased apoptosis in both
the total splenocyte population and the CD4 T-cell population of
WT PbA-infected mice compared with mifKO PbA-infected
mice (Fig. 6B). These results were confirmed by a spleen histo-
logic TUNEL study (Fig. 6C).
We then examined whether the increase in apoptosis during

WT PbA infections, compared with mifKO PbA infections, is
regulated by Bcl-2, as in the case of IFN-γ/IL-12–associated cell
death (Fig. 1D). Bim-1 is a proapoptotic antagonist of Bcl-2 (49),
and we noted a decrease, which is indicative of increased sus-
ceptibility to apoptosis, in the ratio of Bcl-2/Bim-1 expression
levels in WT PbA-infected spleens (Fig. 6D) (49). Bcl-2 down-
regulation in the presence of PbMIF was confirmed further by
immunoblotting of spleen lysates from WT PbA- and mifKO
PbA-infected mice at day 5 post infection (Fig. 6E). We then
detected Bcl-2 levels in PbA-responsive CD4 T cells and found
decreased intracellular levels of Bcl-2 in WT PbA- versus mifKO
PbA-infected mice (Fig. 6F). We did not observe CD4 T-cell
apoptosis to be associated with changes in Fas or Fas ligand
signaling, a result that is in agreement with previous character-
izations of CD4 T cells during blood-stage malaria (12).

T Cells Activated in the Presence of PMIF Confer Less Protection
During Challenge. Our findings support the conclusion that
a strong inflammatory response leads to decreased survival of
Plasmodium-specific T cells. To assess the functional significance
of these observations, we examined the effect of PbMIF on the
ability of T cells to confer protection against a second PbA
challenge infection that more closely models human disease in
regions of high malaria transmission. CD45.2+ mice were
infected with either WT PbA or mifKO PbA, and at day 7 post
infection splenocytes were isolated, CFSE-labeled, and trans-
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ferred into congenic CD45.1+ mice. All recipients were chal-
lenged with WT PbA at day 3 post transfer. Mice that received
splenocytes from WT PbA-infected donors had higher circulat-
ing parasite burdens after the challenge infection than mice that
received splenocytes from mifKO PbA-infected donors (Fig. 7A).
The diminished control of parasites by recipients of cells from
WT PbA-infected donors may be attributed both to fewer sur-
viving donor CD4 T cells (Fig. 7B) and to decreased anti-Plas-
modium responses in the remaining donor CD4 T cells (Fig. 7 C
and D). Fewer CD4 T cells from WT PbA-infected donors than
from mifKO PbA-infected donors proliferated and produced
IFN-γ after the challenge infection (Fig. 7 C and D).
We confirmed these findings by a second experimental design

to test the long-term protection conferred by CD4 T cells that
previously were exposed to either WT PbA or mifKO PbA
infections. Mice were infected with WT PbA or mifKO PbA and
were cured by 4 d of chloroquine treatment starting on day 7 post
infection. Three weeks after chloroquine treatment, CD4 T cells
were isolated and restimulated ex vivo by coculturing with naive
APCs and PbA antigens from iRBC lysates. As shown in Fig. 7E,
CD4 T cells from mice previously infected with WT PbA showed
lower proliferation and IFN-γ production than cells from mice
infected with mifKO PbA. Thus, not only do fewer malaria-re-
sponsive CD4 T cells survive in the presence of PbMIF, but the

remaining cells also are less capable of mediating a robust anti-
Plasmodium recall response.

Discussion
Individuals in endemic areas remain at risk for Plasmodium re-
infection despite the acquisition of partial immunity and toler-
ance to disease manifestations. A better understanding of why
acquired immunity to Plasmodium is slow to develop, in-
complete, and short lived is essential to improving strategies for
malaria control (50). Malaria is characterized by a highly in-
flammatory cytokine milieu, and the lack of effective protection
against infection suggests that memory T cells are not adequately
formed or maintained during infection (51). Expression of IFN-γ
during blood-stage malaria may direct the contraction of
responding CD4 T cells (12, 16); therefore, the role of IFN-γ in
mediating CD4 T-cell death is of particular interest, because it
may affect directly the formation of immunological memory.
We show here that IFN-γ and IL-12 regulate the contraction

phase of the anti-Plasmodium blood-stage CD4 T-cell response.
IFN-γ and IL-12 signaling through CD4 T cells results in the up-
regulation of T-bet and a concurrent down-regulation of Bcl-2
and IL-7Rα. These changes in T-bet and Bcl-2 promote the
development of antigen-experienced CD4 T cells into short-lived
terminal effector cells rather than long-lived memory cells.
Terminally differentiated effector T cells are more susceptible to
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4 animals per group. (E) Spleen lysates also were obtained from infected animals on day 7 post infection, and Bcl-2 protein was detected by immunoblotting
(Left). Densitometry analysis is shown (Right). (F ) Mean fluorescence intensity of Bcl-2 in PbA-responsive CD4 T cells. Data are representative of three
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the contraction phase that occurs in the adaptive immune cells
after the peak of the immune response, whereas long-lived
memory precursor effector T cells are preserved in the memory
T-cell pool (10). Fewer surviving memory CD4 T cells result in
decreased control of Plasmodia during reinfection.
Our studies indicate that inflammatory cytokines critically in-

fluence the formation of immunological memory to malaria by
modulating the survival of Plasmodium-responsive T cells. We
identified a role for PMIF in the up-regulation of host in-
flammatory cytokines. This observation was unexpected and
perhaps contrary to the expectation that Plasmodium-encoded
factors evolved to diminish or subvert the host inflammatory
response (52). Nevertheless, we observed that, when PbMIF is
present, the increase in inflammatory cytokine production leads
to up-regulation of T-bet and down-regulation of CD62L, IL-
7Rα, and Bcl-2 in Plasmodium-responsive CD4 T cells. These
PbMIF-induced changes cause more responding CD4 T-cells to
develop into terminally differentiated effector T cells. As in the
case of PbA infection in control IgG- and anti–IFN-γ/IL-12–
treated mice, terminally differentiated effector T cells are sus-
ceptible to apoptosis and thus do not survive the contraction

phase and are not present in the memory T-cell population when
the host again is exposed to Plasmodium infection. Without an
adequate anti-Plasmodium memory CD4 T-cell population, the
host is not protected against subsequent malaria infection. In the
absence of PMIF signaling, more responding CD4 T cells de-
velop into memory precursor CD4 T cells, which persist and
confer enhanced protection against future infections.
Plasmodium-specific CD4 T cells not only are important as

a source of IFN-γ but also are essential for helping activate both
CD8 T cells and B cells, which enhance the host anti-Plasmo-
dium response (53). Although anti-Plasmodium antibody titers
and CD8 T-cell populations were not affected by the presence of
PMIF during a primary infection, it is not known whether PMIF
also alters the ability of CD4 T cells to provide help in activating
these adaptive immune cell populations. Differences in the vir-
ulence of murine Plasmodium models may complicate further
the outcome of immunomodulation by the Plasmodium MIF
ortholog, as suggested by study of the Plasmodium yoelii MIF
variant (54, 55).
This study implicates the immunomodulatory action of a

Plasmodium protein in interfering with the establishment
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Fig. 7. CD4 T cells activated in the presence of PbMIF confer decreased protection to homologous challenge. (A) CD45.2+ BALB/c mice were infected with WT
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supernatant. Data are shown as mean ± SEM and are representative of two independent experiments. n = 5 mice per group. *P < 0.05; **P < 0.01 by two-
tailed t test.
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of protective immunity. Plasmodium species have coevolved
with their hosts for more than 100,000 y, and several strategies
have been identified by which these parasites evade immune
destruction to ensure persistence (50, 56). Most immuno-
modulatory mechanisms that have been described to date
involve blockade of different components of the innate im-
mune response (52), and the possibility that malaria parasites
may actively direct the inflammatory response to interfere
with the development of protective immunity had not been
explored closely.
It is interesting to consider that the low protection rates of

many Plasmodium blood-stage vaccines in endemic populations
(57) may be caused by the active interference of adaptive im-
mune responses by PMIF rather than by the immunogenicity of
the candidate antigens. Notably, parasite MIF orthologs have
been identified in several evolutionarily distant species of hel-
minthic and protozoan pathogens (29). The close structural
similarities between these parasite orthologs and mammalian
MIF, together with evidence that these orthologs bind the MIF
receptor (58, 59), suggest that parasite proteins also may act to
modulate the adaptive immune responses of their hosts.
Malaria is a major global health challenge, and several vaccine

initiatives are under way. Without natural acquisition of steril-
izing immunity, the stimuli necessary for developing effective
anti-malaria immunity remain unknown. The present findings
indicating that Plasmodia actively modulate the host immune
response to prevent the development of effective memory CD4 T
cells have implications for the therapeutic immunomodulation of
malaria infection and for vaccine development.

Experimental Methods
Patient Samples and Measurement of PMIF and Anti-PMIF Antibody Titer. Sera
from a well-characterized cohort of P. falciparum-infected patients from
Zambia were used in our study (33).

We developed ELISAs to measure PfMIF and PbMIF levels from serum and
spleen lysates. Briefly, polyclonal antibodies against PfMIF or PbMIF were
produced in rabbits (PFR&L), and antibody specificity was verified by both
Western blotting and ELISA, as described recently (60). IgG antibody fractions
were purified and used to coat microtiter plates (Nunc) at 1 μg/mL anti-PfMIF
or anti-PbMIF IgG overnight. The plates then were washed and blocked in
assay diluent (eBioscience) for 1 h. Patient or mouse sera were added and
incubated for 2 h at room temperature. Bound PfMIF or PbMIF was detected
by adding biotinylated versions of the rabbit polyclonal IgG, followed by
streptavidin-HRP (eBioscience) and developed with TMB substrate (Dako).

Anti-PbA antibody titers were determined by ELISA. Microtiter plates
(Nunc) were coated with 100 ng/mL of PbA-iRBC lysate overnight. Plates then
were blocked in assay diluent (eBioscience) for 1 h, and mouse sera were
serially diluted and added to the wells for 2 h. Antibody binding was de-
termined by adding HRP-labeled goat anti-mouse antibodies (Southern
Biotech) and were developed with TMB substrate (Dako).

Mice. WT, Thy1.1, and CD45.1 BALB/c mice were purchased from Jackson
Laboratories. All procedures performed in these experiments complied with
federal and Yale University guidelines.

P. berghei Infection, Cytokine Depletion, and Adoptive Transfer of Splenocytes.
BALB/c mice were infected with WT PbA or mifKO PbA by i.p. injection of 106

iRBCs. In some experiments, mice were challenged by i.p. injection of 106

GFP-expressing PbA. The absence of PbMIF in the mifKO PbA strain was
verified by ELISA with a specific PbMIF antibody.

IL-12 and IFN-γ were depleted by i.p. injection of 0.25 mg of antibody
(clones C17.8 and XMG1.2, respectively) on days −1, 1, 3, and 5 post infection
(61). IFN-γwas administered by injection of 10 μg IFN-γ (BioLegend) in PBS on
days 0, 2, and 4 post infection.

Splenocytes were isolated from CD45.2+ BALB/c mice at day 0 or day 7 post
infection. Single-cell suspensions were obtained, and red blood cells were
lysed. In some experiments, splenocytes were labeled with 0.5 μM CFSE
(Invitrogen) before transfer. Splenocytes from infected mice then were in-

cubated with 10 μMchloroquine for 2 h at 37 °C, and 2 × 107 splenocytes were
adoptively transferred into recipient Thy1.1+ BALB/c or CD45.1+ BALB/c mice.

PfMIF Recombinant Protein and Receptor Binding. cDNA for PfMIF and PbMIF
were synthesized (GenScript), and PfMIF and PbMIF were expressed and pu-
rified following a previously described methodology with <20 pg endotoxin/
mg protein as assessed by the PyroGene Recombinant Factor C assay (Cam-
brex BioScience) (58). Real-time binding interaction of PfMIF to the soluble
ectodomain of CD74 was analyzed using the BIAcore 2000 biosensor (60).

Flow Cytometry. Spleens were harvested at the indicated days post infection,
homogenized, and passed through a 70-μm strainer to obtain single-cell sus-
pensions. Red blood cells were lysedwithACK lysis buffer, and splenocyteswere
stained with Ki67, Bcl-2 (BD Biosciences), CD4, CD8, IL-7Rα, CD62L, IL-2, IFN-γ,
T-bet, CD11a, CD45.2, Thy1.1 (eBioscience), or TUNEL (BioVision). The Foxp3
Staining Buffer Kit (eBioscience) was used for Ki67, T-bet, and Bcl-2 staining.

For intracellular cytokine staining, cells were stimulated ex vivo by
coculturing with an 18 h prior coculture of iRBC lysates and naive CD45.1
splenocytes and with anti-CD3/CD28–coated beads (1 μL per 106 splenocytes)
(Invitrogen) for 5 h in the presence of 1 μg/mL Brefeldin A (BD Bioscience). In
some experiments, splenocytes were stimulated with 50 ng/mL PMA and
1 μg/mL ionomycin for 3 h in the presence of 1 μg/mL Brefeldin A. Stained
cells were analyzed on LSR II or FACSCalibur flow cytometers (BD Bioscience).
Data were analyzed with FlowJo software (TreeStar).

Quantification of Parasite Burden. DNA was purified from blood samples ob-
tained from the tail vein on the indicated days (Qiagen DNeasy), and P. berghei
18S rRNA copies were determined by quantitative PCR (Bio-Rad) (62). In some
experiments, 18S rRNA expression relative to mouse GAPDH expression in RNA
purified from spleens was analyzed by real-time PCR to determine spleen par-
asite burden (62). In animals challenged with GFP-expressing PbA, parasitemia
was determined by analysis of blood samples with LSRII flow cytometers (BD
Biosciences) (63). Parasitemia also was confirmed by counting iRBCs on blood
smears obtained from tail vein samples stained with HEMA-3 (Fisher).

Cytokine Measurements and Histology. Cytokine levels in serum, spleen
lysates, or culture supernatant were measured by ELISA (eBioscience) or
multiplex Luminex bead assays (Bio-Rad). Spleen lysates were obtained by
freezing spleen sections immediately after harvesting, followed by homog-
enization in 1% TritonX-100 in Tris-buffered saline. Protein concentrations
were determined from the supernatant fraction of the lysates, and ELISAs
were conducted with 1 mg per well. Culture supernatants were collected
from 106 splenocytes isolated from mice and were cultured for 18 h ex vivo
or from 2.5 × 105 bone marrow-derived dendritic cells cultured for 10–24 h.

In some experiments, spleens were removed from infected mice, and
TUNEL was performed on histologic sections (Yale University Research His-
tology Core Facility).

Cell Culture. Bone marrow cells were isolated from naive BALB/c mice and
matured into dendritic cells by incubation with 1 μg/mL GM-CSF for 7 d. Peri-
toneal elicited macrophages were obtained by injection of naive WT and MIF-
R–deficient (64) BALB/c mice with 4% (wt/vol) thioglycollate. Peritoneal cells
were recovered by washing the peritoneal cavity with 15 mL PBS. iRBCs were
isolated from infected mice by exsanguination followed by purification of
blood over magnetic LD columns (Miltenyi Biotec), and lysates were obtained
by sonication. CD4 T cells were purified from naive mice by magnetic selection
(Miltenyi).

Statistical Analysis. Patient samples were analyzed by Pearson’s correlation
and a Mann–Whitney test as indicated. All other data were analyzed by
unpaired two-tailed Student’s t test. P values <0.05 were considered sig-
nificant. Error bars indicate SE.
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