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Global warming increases the occurrence probability of hot
extremes, and improving the predictability of such events is thus
becoming of critical importance. Hot extremes have been shown to
be induced by surface moisture deficits in some regions. In this
study, we assess whether such a relationship holds at the global
scale. We find that wide areas of the world display a strong rela-
tionship between the number of hot days in the regions’ hottest
month and preceding precipitation deficits. The occurrence prob-
ability of an above-average number of hot days is over 70% after
precipitation deficits in most parts of South America as well as the
Iberian Peninsula and Eastern Australia, and over 60% in most of
North America and Eastern Europe, while it is below 30–40% after
wet conditions in these regions. Using quantile regression ana-
lyses, we show that the impact of precipitation deficits on the num-
ber of hot days is asymmetric, i.e. extreme high numbers of hot
days are most strongly influenced. This relationship also applies
to the 2011 extreme event in Texas. These findings suggest that
effects of soil moisture-temperature coupling are geographically
more widespread than commonly assumed.

hot day prediction ∣ soil moisture–temperature coupling ∣
standardized precipitation index ∣ temperature extremes

Warm temperature extremes have significant societal and
economic impacts (1). The ability to seasonally predict

hot extremes would allow the undertaking of precautionary mea-
sures to avoid or reduce their impacts. This is particularly rele-
vant for public health management (2–4). Such predictions are
even more important in the view that hot days and heat waves
have become more frequent in the second half of the 20th century
(5, 6), and that these trends are projected to continue in the
future (4, 7–9).

The role of soil moisture anomalies for the occurrence of hot
days and the evolution of heat waves in transitional climate re-
gions has been highlighted in several regional studies (10, 11),
for example for the 2003 European heat wave (12) and for hot
European summers in general (13, 14). Such feedbacks between
soil moisture and temperature have also been shown to be rele-
vant for climate change projections (15, 16). In these various stu-
dies, soil moisture deficits were mostly found to affect hot
extremes through the energy balance: Low soil moisture availabil-
ity reduces evaporative cooling and increases atmospheric heat-
ing from sensible heat flux (10, 14, 17). Nonetheless, indirect
feedbacks with cloud cover and dry air advection may also play
a role (12, 18, 19).

Here, we explicitly investigate whether information on surface
moisture deficits can be used to derive predictive information on
the occurrence of hot extremes a few weeks later—and if so, in
which regions. In addition to modeling studies (20), previous stu-
dies assessed the relation of hot extremes and preceding drought
conditions using observational data (14), but to our knowledge,
this relationship has never been investigated with observations at
the global scale. Moreover, most studies assessing soil moisture-
atmosphere coupling in present or future climate (15, 21) focused
on boreal summer (June-July-August, JJA), but did not consider
months most relevant to the respective regions at the global scale,
e.g. austral summer for Southern Hemisphere mid-latitudes.

Building upon a recently published study (14), we use here the
Standardized Precipitation Index (SPI) (22) as proxy for surface
moisture deficits, and we globally assess the impact of these def-
icits on the occurrence of subsequent hot days in the respective
hottest month of each particular year and at each location (see
Fig. 1A) using correlation analysis and quantile regression (23,
24). While correlation analyses are suitable to study the relation-
ship between two variables’ mean states, quantile regression al-
lows to estimate the impact of one variable on the tails of the
distribution of another. It should be noted that statistical relation-
ships do not necessarily imply causality, but can be used to assess
the coupling between two variables if plausible mechanisms
exist (10).

The SPI is the standard deviation of observed precipitation
values from the long-term mean after a normalization with the
gamma distribution. SPI values lower than −0.8 are usually re-
ferred to as moderately to extremely dry, and values higher than
0.8 as moderately to extremely wet. The SPI is calculated from
precipitation deficits over a given time period. We consider here
the 3-, 6- and 9-month SPI. For all computations, SPI values in
the month directly preceding the hottest month of the particular
year are considered, which in the case of the 3-month SPI implies,
for instance, that April to June precipitation deficits are taken
into account for a hottest month occurring in July. The precipita-
tion datasets employed for the calculation of the SPI are gridded,
in-situ observations-based datasets (CRU, GPCP, CPC).

Soil moisture deficits can also be estimated from remote
sensing (RS) satellite retrievals, such as the European Remote
Sensing (ERS), Advanced Microwave Scanning Radiometer for
EOS (AMSR-E), or Soil Moisture and Ocean Salinity (SMOS)
satellites. Such RS-based datasets provide more direct observa-
tions of soil moisture than the SPI, which is based solely on pre-
cipitation. However, the SPI has several advantages over satellite-
derived soil moisture data: First, it can be calculated over a longer
time period than that covered by consistent RS data, which is
important to obtain statistically robust results; second, satellite
RS data of soil moisture are not fully global (e.g. due to retrieval
difficulties over densely vegetated areas (10, 25)); and third,
the SPI—contrary to retrievals from RS, which undergo a post-
processing—is available in near real time, which is essential for
timely forecasting.

Several definitions of hot days exist (9, 26). Here, we define the
number of hot days per month (NHD) as the number of days with
a maximum temperature exceeding the 90th percentile (sample
of warmest decile days). As opposed to e.g. threshold-based
indices, percentile-based indices are more comparable across dif-
ferent climatic regions. For the computation of the NHD, we use
daily 2-m air temperature from 1979 to 2010 from different
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datasets: In the main analyses, hot days are calculated from the
ECMWF reanalysis ERA-Interim (27), while comparisons to hot
days from other reanalyses (CFSR and MERRA) and from an
observations-based dataset over Europe are also shown. A time
window of five days centered on each day of the 32-year period is
considered, i.e. the 90th percentile is calculated from 160 daily
values.

Results and Discussion
Global Analyses of Coupling Between Precipitation Deficits and Sub-
sequent Hot Extremes. Correlations between the NHD in the hot-
test month at each location and the preceding 3-month SPI are
displayed in Fig. 1B. Several regions exhibit significantly negative
correlations, i.e. high (low) NHD following negative (positive) SPI
values, and thus a potential for NHD early warning. The correla-
tions of the NHD and the preceding 6- and 9-month SPI are
shown in Fig. 1 C–D. The correlations are smaller for the 6- and
9-month SPI, and regions with significant values are less extended,
but the patterns of strong coupling are nearly identical. In the fol-
lowing, as well as for the additional analyses, we will focus on the
computations with the 3-month SPI, but the high consistency over
all time frames suggests a strong robustness of the results. Note
that, given the link between SPI and soil moisture availability,
these correlations can also be seen as a measure of coupling
strength between the land surface and the atmosphere (10, 21).

The identified regions of strong correlation between surface
moisture deficits and temperature extremes are found to be lo-
cated in most of the Americas (both North and South America),

Southern and Eastern Europe, Australia, China, Japan and the
southern tip of Africa. Interestingly, these regions are more
extended and located in partly different areas than diagnosed
in the commonly cited model-based (and boreal-summer) Global
Land-Atmosphere Coupling Experiment (GLACE) study (21).
However, there are also some common features, mostly the
strong coupling found in the Great Plains of North America, and
the strong potential predictability found in Europe in the second
phase of the GLACE experiment (GLACE-2) (28). In addition,
the identified hot spots agree well with the results of another
recent model-based study investigating patterns of soil moisture-
evapotranspiration coupling computed for all seasons (29) (com-
pare in particular with patterns for JJA and DJF in the mid-
latitudes). It should be noted that although the GLACE study
(21) is sometimes erroneously interpreted as being a global ana-
lysis of land-atmosphere coupling valid for any season or time
period, it has various limitations. Most importantly, it is: 1) mod-
el-based; 2) limited to the JJA season; 3) limited to the 1994 con-
ditions; and 4) valid for intra-seasonal rather than for interannual
variability. The more recent GLACE-2 experiment (28) has simi-
lar limitations, except that it has been computed over a longer
time period (1986–1995). Our observation-based analysis, by
taking into account the respective period of the year where soil
moisture is most likely to be limiting in each region, suggests a
broader relevance of soil moisture-atmosphere coupling than
could be assumed from the well-established GLACE study. Note
that our analysis is limited to interactions between moisture

Fig. 1. Relation between number of hot days (NHD) in hottest month of each year and preceding precipitation deficits (SPI). (A) Geographical distribution of
most frequent hottest month. (B) Correlations of NHD in hottest month with 3-month, (C) 6-month, and (D) 9-month SPI in preceding month. All maps have
been smoothed with a boxcar filter of width 10. Significant levels (90%) are not smoothed (hatched). White areas indicate missing values. The employed
datasets are ERA-Interim (E-Int) for NHD and CRU for SPI.
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deficits and hot extremes, and possible feedbacks with precipita-
tion could be relevant in other regions.

Similar Regions of Strong Coupling Found with Different Observa-
tions-Based Datasets. We repeat the analysis of Fig. 1B with the
NHD calculated from different reanalysis products (Fig. 2 A
and C) and the 3-month SPI from different observations-based
precipitation datasets (Fig. 2 B andD). Using the CFSR or MER-
RA instead of the ERA-Interim reanalysis for the NHD results in
nearly identical regions of strong negative correlations. Using re-
analysis data for the NHD seems appropriate since the respective
time series agree well with the NHD calculated from an observa-
tions-based gridded temperature dataset (see Fig. S1). The choice
of the precipitation dataset does also not affect the resulting pat-
terns substantially. Note that the correlations are slightly more
consistent for GPCP (Fig. 2B) and CPC (Fig. 2D) compared to
CRU (Fig. 1B). A global map of the numbers of dataset combi-
nations with significant correlations is shown in Fig. S2. In addi-
tion, we have tested the robustness of our results by changing the
choice of months considered for the NHD as well as applying a
different hot extreme metric (see Fig. S3).

Quantile Regression Analysis. The slopes of the 10th, 30th, 70th,
and 90th quantile regressions of the 3-month SPI (CRU precipi-
tation) with NHD (ERA-Interim temperature) are shown in
Fig. 3 A–D. The patterns of the slopes from the four different
quantiles display correspondences in many regions, implying that
the SPI generally affects all quantiles of the NHD in the same
direction. Furthermore, positive slopes are found to increase to-
wards higher quantiles (from A to D), i.e. higher values of the

NHD are more strongly affected by surface wetness conditions
than lower values. This also implies that the distribution of the
NHD is wider after dry conditions, i.e. both low NHD and very
high NHD are found after dry conditions, while wet conditions
are strictly followed by a low NHD. This is consistent with pre-
vious results for Southeastern Europe (14).

Hot Day Occurrence Probability Larger After Dry than After Wet Con-
ditions. Fig. 4 (Top) displays the occurrence probability for an
above-average NHD in the hottest month of the year after dry
(SPI below −0.8, 4A) and wet (SPI above 0.8, 4B) conditions. The
difference between the occurrence probabilities after dry minus
wet conditions is displayed in Fig. 4C. In many areas, for instance
in most parts of the Americas, in Southern and Eastern Europe
and Australia, 60 to 80% of the years display an above-average
NHD following dry conditions (Fig. 4A). The occurrence prob-
ability of an extreme NHD (i.e. >150% of average) after dry con-
ditions is 50–60% (see Fig. S4A), and the regions correspond very
well with those found in Fig. 4. After wet conditions (high SPI),
the occurrence probability of an above-average NHD is limited to
less than 40% in wide areas (mostly in the same regions, Fig. 4B),
and extreme NHD (>150%) are very unlikely to occur (probabil-
ity of less than 20% in many and less than 30% in most areas of
the world, Fig. S4B). Hence, wet conditions prohibit the occur-
rence of hot extremes in most regions. Overall, the occurrence
probability of an above-average NHD is increased by 30 to
60% after dry compared to wet conditions (Fig. 4C) in the regions
of strong surface moisture-temperature coupling identified from
Fig. 1. These results suggest that effects of soil moisture condi-
tions on the occurrence probability of hot days are relevant in a

Fig. 2. Relation between number of hot days (NHD) in hottest month of each year and preceding 3-month precipitation deficits (SPI) for different reanalysis
datasets (NHD, A and C), and different precipitation datasets (SPI, B and D). (A) CFSR NHD correlated with CRU SPI, (B) ERA-Interim NHD with GPCP SPI, (C)
MERRA NHD with CRU SPI, and (D) ERA-Interim NHD with CPC SPI. Significant levels (90%) are not smoothed (hatched). White areas indicate missing values.
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large fraction of the globe. This has important implications for
the improvement of forecasting skill of hot extremes in these
regions.

Texas Conditions Illustrate Asymmetrical Impact. We illustrate the
asymmetrical impact of the SPI on the NHD at the example
of Texas (region indicated in Fig. 1B), which was hit by an excep-
tional drought and heat wave in the 2011 summer. In order to
include data from the 2011 summer in this analysis, ERA-Interim
instead of CRU precipitation is used to calculate the SPI statis-
tics. A comparison of the SPI calculated from the two different
datasets reveals a close correspondence between the two pro-
ducts (Fig. S5). As identified from Fig. 3 A–D for the above-high-
lighted regions, the slopes of the quantile regressions also
increase towards higher percentiles in Texas, and the conditions
of the 2011 summer fit well in the overall distributions (Fig. 5A).
Consistent with the results from Fig. 3, the relative frequency dis-
tribution of the NHD (Fig. 5B) is narrower for wet (SPI above
0.8) and wider for dry (SPI below −0.8) years, and the analysis
indicates that the high tails of the NHD distribution are more
strongly influenced by precipitation (and soil water) deficits.

Conclusions
Our observational analysis suggests a strong relationship between
precipitation deficits and the subsequent occurrence of hot ex-
tremes in a large fraction of the world, such as most areas of
North and South America, Europe, Australia and parts of China.
The correlation of the precipitation deficits is found to be stron-
gest with high compared to low extremes of hot day occurrences.
Correspondingly, the occurrence probability of an above-average
number of hot days is high after dry conditions and low after wet
conditions in the identified regions. It is noteworthy that we find
several additional regions of strong soil moisture-atmosphere

coupling in comparison to previous studies that were based on
model data only (21, 29).

In summary, our results show that surface moisture deficits are
a relevant factor for the occurrence of hot extremes in many areas
of the world. This suggests that hot day predictions could be sub-
stantially improved in operational forecasts in these regions with
the aid of soil moisture initialization. This would allow the devel-
opment of early warning and adaptation measures previous to the
occurrence of hot extremes, not only in regions typically referred
to as hot spots of land-atmosphere coupling (e.g. North American
Great Plains) (21), but also in several additional regions such as
the European continent, and a large fraction of the Southern
Hemisphere.

Materials and Methods
CRU 3.1 precipitation data (30) have been used to calculate the SPI for the
main analyses. SPI has also been calculated from GPCP (31), CPC (32) and the
atmospheric reanalysis ERA-Interim (27) (only used in Fig. 5 and Fig. S5) pre-
cipitation data. The reference period for the CRU SPI is 1950–2009, for the
GPCP SPI 1979–2010, for the CPC SPI 1979–2009 and for the ERA-Interim
SPI 1979–2011. The reference period for all NHD calculations is 1979–2010
(except for Fig. S5, where it is 1979–2011). Information on the atmospheric
reanalyses MERRA and CFSR can be found in the literature (33, 34). E-Obs
maximum temperature values (35) are employed for the verification of rea-
nalyses based NHD in Fig. S1. For the normalization of the precipitation data
with the gamma distribution that is needed to compute the SPI, the goodness
of fit was tested using the critical values of the Kolmogorov-Smirnov test.
All analyses have only been performed when the goodness of fit test was
significant at the 5%-level. SPI and NHD data were linearly interpolated
on a 1° × 1° resolution. All maps have been smoothed with a boxcar filter
of width 10 (width 3 for Fig. S2) to enhance readability. The significance
of the correlations have been estimated with a t-Test (90%-level) and have
not been smoothed.

Fig. 3. Quantile regression of NHD in hottest month of each year and preceding 3-month SPI. Slope of regression lines of 10th (A), 30th (B), 70th (C) and 90th
(D) percentiles. White areas indicate missing values. The employed datasets are ERA-Interim for NHD and CRU for SPI.
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Fig. 4. Hot day occurrence probability after dry versus wet conditions. Occurrence probability for above-average number of hot days in the respective hottest
month of each year following low 3-month SPI values (dry conditions, A) and high 3-month SPI values (wet conditions, B), and difference between the two (C).
Values are given in percentage of years with above-average NHD from total number of low and high SPI years, respectively. Values that are based on a
composite of less than 4 years are not shown (white areas). The employed datasets are ERA-Interim for NHD and CRU for SPI.
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