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Understanding differentiation, a biological process from a multipotent stem or progenitor state to a mature
cell is critically important. We developed a theoretical framework to quantify the underlying potential
landscape and pathways for cell development and differentiation. We proposed a new mechanism of
differentiation and found the differentiated states can emerge from the slow binding/unbinding of
regulatory proteins to gene promoters. With slow promoter binding/unbinding, we found multiple
meta-stable differentiated states, which can explain the origin of multiple states observed in recent
experiments. The kinetic time for the differentiation and reprogramming strongly depends on the time scale
of the promoter binding/unbinding processes. We discovered an optimal speed for differentiation for
certain promoter binding/unbinding rates. Future experiments might be able to tell if cells differentiate at
that optimal speed. We also quantified irreversible kinetic pathways for the differentiation and
reprogramming, which captures the non-equilibrium dynamics in multipotent stem or progenitor cells.

D
uring cell differentiation, the cell evolves from undifferentiated phenotypes in a multipotent stem or
progenitor state to differentiated phenotypes in a mature cell. In this process, the gene regulatory network,
which governs the progressive changes of gene expression patterns of the cell, forces the cell to adopt the

cell type-specific phenotypes. Cells can have states with the higher probability of appearance, which leads to
different cell phenotypes. Different cell phenotypes correspond to different basins of attractions on the potential
landscape1–3. Therefore the differentiation and developmental process of the cell can be thought as the evolution
of the underlying landscape topography from one basin to another. One grand challenge is to explain how this
occurs, what the underlying mechanism is and how to quantify the differentiation and developmental process.
Furthermore, the unidirectional developmental process poses another challenge to explain the origin of the arrow
of time.

In the cell, intrinsic fluctuations are unavoidable due to the limited number of protein molecules. There have
been increasing numbers of studies on how the gene regulatory networks can be stable and functional under such
highly fluctuating environments4–6. In addition, the gene state fluctuations from the regulatory proteins binding/
unbinding to the promoters can be significant for gene expression dynamics. Conventionally, it was often
assumed that the binding/unbinding is significantly faster than the synthesis and degradation (adiabatic limit)7,8.
This assumption may hold in some prokaryotic cells in certain conditions, in general there is no guarantee it is
true. In fact, one expects in eukaryotic cells and some prokaryotic cells, binding/unbinding can be comparable or
even slower than the corresponding synthesis and degradation (non-adiabatic limit). This can lead to nontrivial
stable states and coherent oscillations appearing as a result of new time scales introduced due to the non-
adiabaticity9–18. Therefore, the challenge for us is to understand how the biological differentiation and repro-
gramming can be functional under both intrinsic fluctuations and non-adiabatic fluctuations.

Previous studies showed that the change in the self activation regulatory strengths can cause the differentiation
of phenotypes2,3,19. In this article, we used a canonical gene regulatory circuit module to study cell fate decision and
commitment in multipotent stem or progenitor cells2,3,19. We will study a model of cell developmental circuit
(Fig. 1)20, which is composed of a pair of mutually inhibiting but self activating genes. This gene regulatory motif
has been found in various tissues where a pluri/multipotent stem cell has to undergo a binary cell fate decision21,22.
For example, in the multipotent common myeloic progenitor cell (CMP) facing the binary cell fate decision
between the myeloid and the erythroid fate, the fate determining transcription factors (TF), PU.1, and GATA1,
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which promote the myeloid or the erythroid fates, respectively, form
such a gene network circuit. The relative expression levels A (PU.1)
and B (GATA1) of these two reciprocal TFs can bias the decision
toward either lineage20,22.

We found that the change in the time scale of the binding/unbind-
ing of regulatory proteins to the promoters may provide a new
important mechanism for the process of cell differentiation. We
studied the underlying potential landscapes associated with differ-
entiation and development, and found that the underlying land-
scapes developed from un-differentiated multipotent state to the
differentiated states as the binding/unbinding rate decreased to the
slow non-adiabatic binding region. In addition, in the slow non-
adiabatic binding region, we predicted the emergence of multiple
meta-stable states in the development of multipotent stem cells
and explained the origin of this observation in experiments19. We
also calculated the mean first passage transition time for the differ-
entiation and reprogramming. We found that the mean first passage
transition time strongly depends on the time scale of the promoter
binding/unbinding processes. There is an optimal speed for differ-
entiation and development with certain promoter binding/unbind-
ing rates. It will be natural to ask whether the differentiation and
development happens at this optimal speed? Future experimental
and bioinformatics studies might be able to give the answer. In
addition, we quantified the kinetic pathways for the differentiation
and reprogramming, and found that they are irreversible. This cap-
tures the non-equilibrium prosperities for the biological processes of
the underlying gene regulatory networks in multipotent stem or
progenitor cells. It may provide the origin of the arrow of time for
development.

Results
In our calculations, we only consider the A-B symmetric case:

hAA~hBB~hA, hAB~hBA~hR ð1Þ

fAA~fBB~fA, fAB~fBA~fR ð2Þ

kA~kB~k ð3Þ

We define the normalized binding/unbinding rate of the gene states:
vA 5 fA/k, vR 5 fR/k, and equilibrium constants: XA

eq~fA=hA,

XR
eq~fR=hR, which indicate the ratio between unbinding and binding

speed. There are four gene states for each gene and the synthesis rates

from gene A and B are also symmetric: gA
ij ~gB

ji . When gene A is
bound by protein A (self activation) while not bound by protein B
(mutual repression), the synthesis rate of protein for protein A is the
largest: gA

01~FAzgA
11~FRzgA

00~FAzFRzgA
10, where FA is the

activation strength and FR is the repression strength. Here, we chose
equilibrium constants XA

eq~XR
eq~45, symmetric binding/unbinding

speed vA 5 vR 5 v, the repression strength FR 5 60 and scale the
time to make k 5 1.

The potential Landscapes and two mechanisms for cell fate
decision of development and differentiation. Such circuits with
above control parameters can generate asymmetric attractors re-
presenting the differentiated states with almost mutually excluding
expression of protein A (i.e. GATA1) and B (i.e. PU.1). In addition,
central symmetric attractor states characterized by approximately
equal levels of nA and nB expression can also be generated, which
represent the multipotent state that exhibits the characteristic
balanced or promiscuous expression of the two opposing, fate-
determining concentrations-a hallmark of the indeterminacy of the
undecided multipotent stem cell.

Through Gillespie simulations, probability distributions for the
master equations and associated potential landscapes can be calcu-
lated23. We plotted the potential landscapes in nA-nB plane for dif-
ferent activation strength FA and binding/unbinding speed v in
Fig. 2(a), 2(b), 2(c), 2(d), 2(e), 2(f), 2(g), 2(h), 2(i) for the contour
view, and Fig. 2(a), 2(b), 2(c), 2(d), 2(e), 2(f), 2(g), 2(h), 2(i) for the 3-
dimensional view. In these figures, we found two kinds of mechan-
isms for cell differentiation.

During the developmental process, the self activation regulation
coming from an effective regulation and its change is due to the
regulations on these transcription factors mediated by other regula-
tors such as Klf4. When the self activation is strong (large FA), the
system is mono-stable with one un-differentiated central basin, as in
Fig. 2(a) (or 3(a)). As self activation strength FA decreases, the central
basin gets weaker and differentiated basins on both sides start to
develop, which results tri-stability as in Fig. 2(d) (or 3(d)). When
self activation strength FA R 0, the circuit will reduce to a normal
symmetric toggle switch. For the toggle switch, nA and nB can not be
both large in adiabatic limit, because they suppress each other. Then
the un-differentiated central basin disappeares and two differen-
tiated basins on both sides survives, which gives bi-stability as in
Fig. 2(g) (or 3(g)). Therefore, decreasing the self activation regulatory
strength FA will lead the cell system to differentiate. Changing of the
effective self activation regulatory strengths of transcription factors
binding to the genes therefore provides a possible differentiation
mechanism which is currently under investigation2,3,20,22.

We would like to point out that there is another possible mech-
anism of the cell differentiation from the slow binding/unbinding of
protein regulators to gene promoters. We noticed that for a fixed
activation strength FA, cells can develop more stable differentiated
states on both sides. As shown in Fig. 2(a) (or 3(a)), 2(b) (or 3(b)),
2(c) (or 3(c)) and Fig. 2(d) (or 3(d)), 2(e) (or 3(e)), 2(f) (or 3(f)), when
the binding/unbinding rate v decreases, the un-differentiated central
basin becomes weaker and less stable, while differentiated basins on
both sides become stronger and more stable. We also noticed that in
the non-adiabatic slow binding limit (small binding/unbinding rate
v), multiple meta-stable basins show up. In addition, in the non-
adiabatic slow binding limit, cells have chances to extinct and there
are ‘‘extinct basins’’ near (nA 5 0, nB 5 0), as shown in Fig. 2(c) (or
3(c)), 2(f) (or 3(f)), 2(i) (or 3(i)). These behaviors are directly due to
the non-adiabatic effect: slow binding/unbinding of protein regula-
tors to promoters. When the binding/unbinding rate v is small, the
interactions (either repressions or activations) between gene states
are weak and different gene states statistically co-exist in cells. Each
gene state will give a basin in the concentration and the sum of these
basins will give a multiple stable potential landscape. This leads to

Figure 1 | Network diagram of canonical gene regulatory circuit of two
mutually opposing proteins that positively self-regulate themselves. Two

types of genes, A and B are translated into proteins A and B respectively.

The proteins A(B) can bind to the promoter of the gene A(B) to activate the

synthesis rate of A(B), which makes a self-activation feedback loop. The

proteins A(B) can bind to the gene B(A) to repress the synthesis rate of

B(A), which makes a mutual repression loop. Both protein A and protein B

bind to promoters as a dimer with the binding rate

haA~
1
2

haAnA nA{1ð Þ,haB~
1
2

haBnB nB{1ð Þ respectively, and the

unbinding rate faA, faB respectively, with a 5 (A, B).
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development and differentiation with slow binding from the original
undifferentiated equally populated single basin of attraction with fast
binding. Slow binding provides another possible mechanism for dif-
ferentiation and development.

Kinetic and optimal speed for development and differentiation.
To quantitatively characterize the dynamics of differentiation and
the reverse process as reprogramming, we study the speed of
differentiation and reprogramming in terms of mean first passage
time (MFPT) , as shown in Fig. 4(a), 4(b) and 4(c). In an attractor
landscape, the lifetime of an attractor reflects its stability, which can
be measured by MFPT. MFPT is the average transition time induced
by intrinsic statistical fluctuations of molecule numbers between
attractors on a landscape, since the traversing time represents how
easy to switch from one place to another. When the binding/
unbinding rate v is relatively large, the un-differentiated central
basin becomes more stable, as in Fig. 2(a) (or 3(a)), 2(d) (or 3(d)),
2(g) (or 3(g)), and cells have more chances to stay in the
undifferentiated state. Therefore, the differentiation process will be
more difficult and MFPT is longer for faster binding. For the
differentiation process, it is noticed that, as the binding/unbinding
rate v increases, the MFPT decreases first, and then increases. In
the nonadiabatic limit (small binding/unbinding rate v), the di-
fferentiation limiting steps are the binding/unbinding events.
Therefore, increasing binding/unbinding speed v will accelerate the
kinetics from the un-differentiated central basin to the differentiated
side basins. So for the differentiation process, resulting from the shift
from faster binding to slower binding of regulatory proteins to the

genes, we notice that the speed for differentiation is slow when the
landscape is dominated by the undifferentiated state for faster binding.
In addition, it is also slower for slower binding, which is due to the
occasional binding being the rate limiting step for differentiation.
There is an optimal speed for differentiation. As binding becomes
faster from low speed end (non-adiabatic limit), the speed of
differentiation is controlled by the binding speed and therefore
increases. As the binding becomes even faster, the differentiation is
dominated by the escape from the undifferentiated basin of attraction
and therefore is significantly slowed down. This creates an optimal
speed for differentiation and development.

The reverse process of cell differentiation is the reprogramming
of differentiated cells back to a multi- or pluripotent state. In
Fig. 4(a), 4(b) and 4(c), the MFPT for the reprogramming for
different self activation strength FA and binding/unbinding speed
v is plotted. We observed that, for a typical differentiated system,
as in Fig. 2(c) (or 3(c)) and Fig. 2(g) (or 3(g)), the reprogramming
chance is very low and requires a very long time. For self activation
strength FA 5 20 (Fig. 4(a)) and FA 5 13 (Fig. 4(b)), the MFPT for
the reprogramming decreases as the increasing of the binding/
unbinding speed v, because the stability of un-differentiated sym-
metric central state increases with the binding/unbinding speed v
as we can see in potential landscapes, Fig. 2(a) (or 3(a)), 2(b) (or
3(b)), 2(c) (or 3(c)), 2(d) (or 3(d)), 2(e) (or 3(e)) and 2(f) (or 3(f)).
While in Fig. 4(c), since there is no self-activation and no stable
symmetric central basin in the landscape, the reprogramming is
difficult and the MFPT is very long for different the binding/
unbinding speed v.

Figure 2 | The potential landscape (contour view) in the nA-nB plane for different self activation strength FA and binding/unbinding speed v.
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Biological dynamic pathways of differentiation and reprogram-
ming. Both the differentiation and reprogramming can be caused by
the change of genetic regulations during the developmental process.
Here we consider the evolution of the binding/unbinding rate from
fast to slow v(t) 5 1000e2kt 1 0.001 from 1000 R 0.001 for the
differentiation and the evolution of the binding/unbinding rate v(t)
5 1000[1 2 e2kt]10.001 from 0.001 R 1000 for the reprogramming
from slow to fast. The transition paths from Gillespie simulation are
plotted in Fig. 5, accompanied with the potential landscapes for the
binding/unbinding speed v 5 0.001, 1, 1000. It is interesting to
observe that the biological dynamic paths are irreversible, i.e. the
differentiation path and reprogramming path are totally different.
In the differentiation process, the system remains on the multipotent
undifferentiated state for a while until binding becomes slower. As

the binding becomes slower, the undifferentiated state becomes less
stable. Furthermore, the gene state can be switched through binding/
unbinding event of regulatory proteins to the promoters and the
system will then be evolved from the undifferentiated basin to the
differentiated basin of attraction. In the reprogramming process, the
system will be gradually attracted into the undifferentiated basin as
the increasing of the binding/unbinding rate v. The paths of
differentiation do not follow the gradient steepest descent of the
potential landscape, nor do they follow the paths of the repro-
gramming (the reverse differentiation process). This irreversibility
reflects the underlying non-equilibrium nature of the differentiation
and developmental network systems3. It can give us the fundamental
understanding of the biological origin of the arrow of time in cell
development.

Figure 3 | The potential landscape (3 dimensional view) in the nA-nB plane for different self activation strength FA and binding/unbinding speed v.

Figure 4 | The MFPT of the differentiation and reprogramming for different self activation strength FA and binding/unbinding speed v.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 550 | DOI: 10.1038/srep00550 4



Discussion
We developed a theoretical framework to quantify the potential
landscape and biological paths for cell development and differenti-
ation. We found a new mechanism for differentiation. The differen-
tiated state can emerge from the slow promoter binding/unbinding
processes. We found under slow promoter binding, there can be
many meta-stable differentiated states. This has been observed
experimentally19. Our theory gives a possible explanation for the
origins of those meta-stable states in the experiments.

We show that the developmental process can be quantitatively
described and uncovered by the biological paths on the potential
landscape and the dynamics of the developmental process is con-
trolled by a combination of the intrinsic fluctuations of protein con-
centrations and gene state fluctuations through promoter binding.
We also show that the biological paths of the reverse differentiation
process or reprogramming are irreversible and different from those
ones of the differentiation process.

We explored the kinetic speed for differentiation. We found that
the cell differentiation and reprogramming dynamics strongly
depends on the binding/unbinding rate of the regulatory proteins
to the gene promoters. We found an optimal speed for differentiation
and development with certain binding/unbinding rates of regulatory
proteins to the gene promoters. We found an optimal speed for
differentiation and development with certain binding/unbinding
rates of regulatory proteins to the gene promoters. Such optimal
speed for differentiation is in the non-adiabatic region with relatively
slow promoter binding/unbinding processes. It can be hardly found
in previous framework of Waddington landscapes in the adiabatic
limit, where the binding/unbinding rate is not tunable3. Therefore,
there are two mechanisms of the stem cell differentiation and repro-
graming. For previous work, the stem cell differentiation and repro-
graming are through the change of the self-regulation strengths. For
the present work, the stem cell differentiation and reprograming are
through the change of the binding/unbinding of regulators to the
genes relative to the synthesis and degradation of the proteins. An
interesting question we may ask is whether differentiation and
development happen at their optimal speed? More experimental
and bioinformatics studies might be able to pin down the answer.
Furthermore, the irreversibility in cell development gives biological
examples, which can be easily observed in experiments, for the
understanding of the origin of the arrow of time in general non-
equilibrium systems.

Methods
As shown in Fig. 1, the gene regulatory circuit that governs the binary cell fate decision
module consists of mutual regulation of two opposing fate determining master TFs A
and B. The module has been shown to control developmental cell fate decision and
commitment in several instances of multipotent stem or progenitor cells that faces a
binary fate decision (i.e. GATA1 and PU.1)21,22. A and B are coexpressed in the
multipotent undecided cell and commitment to either one of the two alternative
lineages is associated with one factor dominating over the others, leading to mutually

exclusive expression patterns21,24. Importantly, in many cases the genes A and B also
self-activate (positive autoregulate) themselves (Fig. 1). Here, the hybrid promoter a
can be bound by the regulatory protein b with the binding rate hab and dissociation
rate fab (both hab and fab can depend on protein concentration nb). The synthesis of
protein a is controlled by the gene state of promoter a. There are two types of genes, A
and B, to be translated into proteins A and B respectively. The proteins A(B) can bind
to the promoter of gene A(B) to activate the synthesis rate of A(B), which makes a self-
activation feedback loop. Protein A(B) can bind to the gene B(A) to repress the
synthesis rate of B(A), which makes a mutual repression loop. Here, both protein A

and protein B bind to promoters as a dimer with the binding rate
1
2

haAnA nA{1ð Þ and
1
2

haBnB nB{1ð Þ respectively. Therefore, each gene has 4 states with self activator

binding or non-binding and with mutual repression from another gene binding or
non-binding (assuming we have two different binding sites, one for the self activator
and one for the other gene). The whole system has 16 gene states in total. For
simplicity, we neglect the roles of mRNAs by assuming translation processes are very
fast. The model can be expressed by the following chemical reactions:

O11
a z2A'

haA

faA

O01
a , O10

a z2A'
haA

faA

O00
a ð4Þ

O11
a z2B'

haB

faB

O10
a , O01

a z2B'
haB

faB

O00
a ð5Þ

Oij
A {

gij
A?A, Oij

B {
gij

B?B, A {
kA?� B{?

kB
� ð6Þ

with a 5 A(B) for the hybrid promoter of gene A(B). For the gene state index ij of
gene Oa, the first index i 5 1(0) stands for the activator protein A unbound(bound) to
the promoter a; the second index j 5 1(0) stands for the repressor protein R
unbound(bound) to the promoter a. gij

A (gij
B ) is the synthesis rate of the protein A(B)

when the gene A(B) is in state ij. The probability distribution of the microstate is
indicated as Pijkl(nA, nB) where nA and nB are the concentration of the activator A and
the repressor B respectively. The index i(j) represents the gene A occupation state by
the protein A(B) and the index k(l) represents the gene B occupation state by the
protein A(B). This results sixteen master equations for the probability distribution
which are shown explicitly in Supporting Material (SM).

The steady state probability distribution satisfies
dP ssð Þ

ijkl nA,nRð Þ
dt

~0 for all i, j, k, l.

The total probability distribution is P ssð Þ~
X

ijkl
P ssð Þ

ijkl . The generalized potential

function U of the non-equilibrium network can be quantified as: U(nA, nB) 5

2ln P(ss). It maps to the potential landscape, which gives a quantitative measure of the
global stability and function of the underlying network25. Above equations are dif-
ficult to deal with because each one actually represents an infinite number of equa-
tions (n range from 0 to ‘). A direct way to find the steady state Pss is through kinetic
simulations following Gillespie algorithm23. There are four steps in the Gillespie
algorithm for kinetic Monte Carlo simulations23: 1. initialize the state in the system; 2.
generate random numbers to determine the next reaction to occur as well as the time
interval. The probability of a given reaction to be chosen is based on the current state;
3. increase the time step by the time interval generated in step 2 and update the state
based on the reaction that occurred; 4. iterate step 2 unless the simulation time has
been exceeded. Here, we used Gillespie simulation to find the stead state distribution
of master equations (see Supporting Material (SM)).
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