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SUMMARY

This paper extends the induced smoothing procedure of Brown & Wang (2006) for the semi-
parametric accelerated failure time model to the case of clustered failure time data. The resulting
procedure permits fast and accurate computation of regression parameter estimates and standard
errors using simple and widely available numerical methods, such as the Newton–Raphson algo-
rithm. The regression parameter estimates are shown to be strongly consistent and asymptotically
normal; in addition, we prove that the asymptotic distribution of the smoothed estimator coincides
with that obtained without the use of smoothing. This establishes a key claim of Brown & Wang
(2006) for the case of independent failure time data and also extends such results to the case of
clustered data. Simulation results show that these smoothed estimates perform as well as those
obtained using the best available methods at a fraction of the computational cost.

Some key words: Censoring; Convex optimization; Multivariate survival data; Rank regression.

1. INTRODUCTION

The need to analyze failure time data, possibly subject to right-censoring, arises in a number of
fields, including medicine, economics, epidemiology, demography and engineering. Semipara-
metric regression models are commonly used for characterizing the relationship between failure
time and covariates, with the Cox proportional hazards regression model (Cox, 1972) being used
almost exclusively in practice. The accelerated failure time model (e.g. Kalbfleisch & Prentice,
2002) provides a useful but infrequently used alternative to the Cox proportional hazards model.
Letting T̄i and Xi respectively denote the failure time and vector of observed covariates for sub-
ject i (i = 1, . . . , n), the accelerated failure time model specifies that log T̄i = X ′

iβ + εi , where
the error terms are independent and identically distributed with an unspecified distribution. The
regression coefficient β has a nice interpretation and a variety of simple estimators are available
when T̄1, . . . , T̄n are fully observed. The infrequent use of this model in applications involving
censored failure time data may be largely attributed to the computational challenges that arise in
both regression parameter and covariance matrix estimation.

In the presence of censoring, the observed data for subject i can be described by the triplet
(Ti ,�i , Xi ) where Ti = min(T̄i , Ci ), �i = I (T̄i � Ci ), and Ci denotes the censoring time for
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subject i . Tsiatis (1990) proposes to estimate β using a weighted estimating equation of the form

W ∗
n (β) =

n∑
i=1

wi (β)�i

[
Xi −

∑n
j=1 X j I {e j (β) � ei (β)}∑n

j=1 I {e j (β) � ei (β)}

]
, (1)

where ei (β) = log(Ti ) − X ′
iβ and wi (·) are nonnegative weight functions (i = 1, . . . , n). Due

to the fact that β appears in this expression only inside indicator functions, W ∗
n (β) is not a

continuous function of β and a solution to W ∗
n (β) = 0 typically does not exist. Parameter estimates

may instead be obtained by minimizing ‖W ∗
n (β)‖, where ‖v‖ denotes (v′v)1/2 for a vector v.

However, this minimization problem may admit several solutions and, because W ∗
n (β) is not

necessarily monotone in β, the resulting set of minimizers is not even guaranteed to be convex.
Hence, despite the existence of a consistent and asymptotically normal sequence of generalized
solutions (e.g. Tsiatis, 1990), identifying this sequence can be challenging in practice.

Fygenson & Ritov (1994) show that using the Gehan weight function wi (β) =∑n
j=1 I {e j (β) � ei (β)} (i = 1, . . . , n) leads to the monotone estimating equation

Wn(β) =
n∑

i=1

n∑
j=1

�i (Xi − X j )I {ei (β) − e j (β) � 0}. (2)

Recognizing that Wn(β) is the gradient of the convex objective function

On(β) =
n∑

i=1

n∑
j=1

�i {e j (β) − ei (β)}I {ei (β) − e j (β) � 0}, (3)

a regression parameter estimate may be obtained by minimizing On(β) with respect to β. The
resulting set of solutions is convex and thus easier to locate than in the general case. However,
even in this comparatively nice setting, the associated lack of smoothness continues to present
computational challenges. Numerous methods have been proposed for finding parameter esti-
mates derived from (2) and (3). The most promising methods to date utilize linear programming
techniques (e.g. Jin et al., 2003). However, while such methods can be implemented with relative
ease, the computational burden can be high, especially with large datasets.

Estimating the covariance matrix of the regression parameter estimate obtained under the ac-
celerated failure time model remains a challenging problem. Fygenson & Ritov (1994) show that
the regression parameter estimate derived from (3) is asymptotically normal with a covariance
matrix that involves the hazard function of the unspecified error distribution. Direct estimation
of the covariance matrix thus requires an estimate of this hazard function. Tsiatis (1990) suggests
kernel-based estimation, whereas Fygenson & Ritov (1994) suggest a form of numerical differ-
entiation. Both have proven to be unstable choices in the presence of censored data and several
authors have since tackled this problem in other ways; see, for example, Jones (1997) and Jin et al.
(2003). Jin et al. (2003) propose to randomly reweight the Gehan log-rank objective function (3)
and then minimize the resulting perturbed objective function. Repeating this process a large num-
ber of times, the covariance matrix may then be estimated using the empirical covariance matrix
of these parameter estimates. This interesting and useful approach eliminates the need to estimate
the indicated hazard function. However, the computationally intensive nature of this procedure
quickly becomes unwieldy, particularly with large datasets. Huang (2002), Strawderman (2005)
and Jin et al. (2006a) propose useful alternatives in three related problems.

Several authors have recently proposed useful smoothing methods for nonsmooth estimat-
ing equations arising in the accelerated failure time model; see, for example, Brown & Wang
(2005; 2006), Heller (2007) and Song et al. (2007). Each of these smoothing methods leads to a
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continuously differentiable objective or estimating function that can be dealt with using stan-
dard numerical methods. Of direct relevance to this paper are Brown & Wang (2006) and Heller
(2007). Building on Brown & Wang (2005), Brown & Wang (2006) propose the use of induced
smoothing for the Gehan estimating equation (2). This method, described in more detail in § 2,
involves solving the equation EZ {Wn(β + �n Z )} = 0, where Wn(·) is given in (2), Z is a con-
tinuous, mean zero normal random vector independent of all of the data, and �n is a sequence of
matrices converging to zero with elements �n,i j = Op(n−1/2). The smoothed estimating equation
EZ {Wn(β + �n Z )} reduces to

W̃n(β) =
n∑

i=1

n∑
j=1

�i (Xi − X j )�

{
e j (β) − ei (β)

rn,i j

}
, (4)

where r2
n,i j = (Xi − X j )′�n(Xi − X j ), �n = �2

n , and �(·) denotes the standard normal cumu-
lative distribution function. In a related vein, Heller (2007) directly approximates the indicator
function I (u � 0) in Wn(β) with 1 − ϒ(u/h), where ϒ(·) denotes a local distribution function
satisfying certain conditions and the fixed scalar parameter h is used to control the accuracy of
approximation. The resulting estimating equation,

W ∗∗
n (β) =

n∑
i=1

n∑
j=1

�i (Xi − X j )ϒ
{

e j (β) − ei (β)

h

}
, (5)

has the same structure as (4). In fact, upon taking ϒ(·) to be the standard normal distribution
function �(·), (5) is essentially a special case of (4), utilizing a fixed bandwidth h in place of the
covariate-dependent bandwith rn,i j . Heller (2007) also proposes a robust version of (5) having
a bounded influence function. A potential difference between (4) and (5) lies in the ability of
the former to employ a smoothing parameter that respects the scaling and covariance structure
of the solution sequence. Brown & Wang (2006) claim but do not prove that the sequence of
solutions obtained under (4) has the same asymptotic distribution as that obtained in the absence
of smoothing. Heller (2007) proves that the solution sequence obtained under (5) is consistent and
asymptotically normal, provided that h satisfies nh → ∞ and nh4 → 0 as n → ∞. Interestingly,
Heller (2007) further proves that (2) and (5) are asymptotically equivalent but does not establish
the equivalence result posited in Brown & Wang (2006).

The problem of regression parameter estimation under the accelerated failure time model with
correlated survival data has also been considered. For example, Lin & Wei (1992), Lee et al.
(1993) and Jin et al. (2006b) consider the setting in which failure times are grouped into clusters,
such that observations within a cluster may be correlated but observations in distinct clusters
may be considered independent. Each proposes a marginal method for rank-based estimation of
regression parameters, avoiding the need to model the correlation structure among observations.
Jin et al. (2006b) also devise a suitable extension of the resampling procedure proposed in
Jin et al. (2003). Pan (2001) and Zhang & Peng (2007) instead propose frailty models, handling
the dependence among failure times within a cluster using an additive cluster level random effect;
see also Strawderman (2006) for related work in the case of a recurrent event outcome. These
various methods suffer from estimation and computational challenges that equal or exceed those
experienced in the case of independent failure time data. However, to our knowledge, the validity
and utility of smoothing methods like those developed in Brown & Wang (2006) and Heller
(2007) have not been investigated in connection with the clustered data problem.

This paper extends the smoothing procedure of Brown & Wang (2006) to the problem of
marginal estimation of the regression parameter in the presence of clustered data. We prove
that the resulting estimator is consistent and asymptotically normal in both the independent and
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correlated data settings. We further establish the equivalence of these limiting distributions with
those arising in the unsmoothed case, providing rigorous justification of the equivalence claim
made in Brown & Wang (2006) for the case of independent failure times and its extension to the
setting of clustered data. Several possible methods of covariance matrix estimation are evaluated,
among them a generalization of the Brown & Wang (2006) procedure and a modification of the
resampling procedure due to Jin et al. (2006b). A useful consequence of developing the extended
Brown & Wang (2006) estimator is an easy-to-compute sandwich estimator that avoids the need
for resampling. The proposed methods substantially ease the computational burden of previously
proposed methods for parameter and covariance matrix estimation.

2. METHODOLOGY AND KEY RESULTS

2·1. Notation and assumptions

Consider a random sample of n independent clusters with Ki members in the i th cluster. Let
T̄ik and Cik denote the failure time and censoring time for the kth member of the i th cluster,
and let Xik denote the corresponding p × 1 vector of covariates. We assume that (T̄i1, . . . , T̄i Ki )

′
and (Ci1, . . . , Ci Ki )

′ are independent conditional on the covariates (Xi1, . . . , Xi Ki )
′. Let the

survival data for the kth member of i th cluster be denoted Wik = (log Tik,�ik, Xik)′, where
Tik = min(T̄ik, Cik) and �ik = I (T̄ik � Cik).

We assume that the marginal distribution of Tik follows the accelerated failure time model

log T̄ik = X ′
ikβ0 + εik,

where β0 is a p × 1 vector of unknown regression parameters contained in a compact subset B of
R

p and (εi1, . . . , εi Ki )
′ (i = 1, . . . , n) are independent random error vectors. Within each cluster

i , the error terms εi1, . . . , εi Ki may be correlated; however, as in Jin et al. (2006b, § 4), we assume
that these error terms are exchangeable with a common, unknown marginal distribution. That
is, for any i, j = 1, . . . , n and K � min(Ki , K j ), the vectors (εi1, . . . , εi K )′ and (ε j1, . . . , ε j K )′
have the same distribution. Evidently, the case of independent failure time data follows as a
special case of the above model upon setting Ki = 1 for all i .

2·2. Estimation for clustered data using the Gehan weight

Let eik(β) = log(Tik) − X ′
ikβ. Under the assumptions of § 2·1, the relevant extension of (3) to

the clustered data setting may be written

Ln(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

�ik{e jl(β) − eik(β)}I {eik(β) − e jl(β) � 0}; (6)

see, for example, Jin et al. (2006b, § 4). Observe that Ln(β) is a continuous convex function for
β ∈ B and thus differentiable almost everywhere. The derivative of the objective function with
respect to β, or Sn(β) = ∇Ln(β), is the discontinuous function

Sn(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

�ik(Xik − X jl)I {eik(β) − e jl(β) � 0}. (7)

Let β̂n = argminβ∈B Ln(β). The solution to this minimization problem may not be unique;
however, the convexity of Ln(β) implies that the set of minimizers on B is convex (e.g.
Fygenson & Ritov, 1994). The lack of smoothness makes minimization of Ln(β) computation-
ally challenging, particularly with multiple covariates. However, under regularity conditions to
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be described later, the results of Jin et al. (2006b, Theorem 5) imply that there exists a sequence
of solutions that is strongly consistent for β0 and, in addition, such that n1/2(β̂n − β0) converges
in distribution to a N (0, A−1	A−1) random vector, where 	 = limn→∞ var{n1/2Sn(β0)} and
A = ∇S0(β0) for S0(β) = limn→∞ Sn(β). An explicit formula for A is provided in (A1). In ad-
dition to the numerical challenges that arise in computing the solution β̂n , variance estimation is
difficult due to the dependence on A and the fact that Sn(β) is not differentiable in β.

2·3. Induced smoothing for clustered data

Brown & Wang (2005) propose an induced smoothing method for approximating discontin-
uous but monotone estimating functions using continuously differentiable functions. Assuming
independent failure time observations, Brown & Wang (2006) apply this smoothing method to the
problem of estimating the regression parameter in the accelerated failure time model, using (4)
in place of (2). As shown below, the extension of this methodology to the problem of estimating
β in the clustered data setting under the assumptions of § 2·1 is straightforward.

Let Z be a N (0, Ip) random vector independent of the data, where Ip denotes the p × p
identity matrix. Let � be a p × p matrix such that ‖�‖ = O(1) and �2 = �, where � is some
symmetric, positive definite matrix. Then, similarly to Brown & Wang (2005, 2006), a smoothed
score function may be constructed by adding the random perturbation n−1/2�Z to the argument
of the score function Sn(β) in (7) and then taking the expectation with respect to Z . Specifically,
with S̃n(β) = EZ {Sn(β + n−1/2�Z )}, an easy calculation shows that

S̃n(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

�ik(Xik − X jl)�

[
n1/2

{
e jl(β) − eik(β)

rik jl

}]
, (8)

where r2
ik jl = (Xik − X jl)′�(Xik − X jl). With Ki = K j = 1 for i, j = 1, . . . , n, this estimating

equation reduces to (4). Alternatively, one might work directly with the smoothed objective
function L̃n(β) = EZ {Ln(β + n−1/2�Z )}. Let φ(·) denote the standard normal density function.
Then, using standard results for normal random variables and integration by parts, we have

L̃n(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

�ik

[
{e jl(β) − eik(β)}H (n)

ik jl(β) + rik jl

n1/2
h(n)

ik jl(β)
]
, (9)

where

H (n)
ik jl(β) = �

[
n1/2

{
e jl(β) − eik(β)

rik jl

}]
, h(n)

ik jl(β) = φ

[
n1/2

{
e jl(β) − eik(β)

rik jl

}]
. (10)

A straightforward calculation shows that ∇ L̃n(β) = S̃n(β).
Let β̃n = argminβ∈B L̃n(β). The smoothed objective function, L̃n(β), is convex and contin-

uously differentiable and standard numerical methods can be used to efficiently compute β̃n .
Alternatively, β̃n can be found as the multivariate root of S̃n(β). The asymptotic results, summa-
rized below and proved in the Appendix, also imply that inference for β̃n is straightforward.

THEOREM 1. Let � = �2 be any symmetric and positive definite matrix with ‖�‖ < ∞. Under
conditions A1–A4 of the Appendix, β̃n is a strongly consistent estimator of β0.

THEOREM 2. Let � = �2 be any symmetric and positive definite matrix with ‖�‖ < ∞. Under
conditions A1–A6 of the Appendix, n1/2(β̃n − β0) converges in distribution to N (0, �), where
� = A−1	A−1, 	 = limn→∞ var{n1/2Sn(β0)} and A = ∇S0(β0) is defined in (A1).
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The above results provide theoretical justification for the proposed smoothing procedure when
estimating regression parameters under the marginal accelerated failure time model with clustered
failure time data. Importantly, the matrices A and 	 in Theorem 2 are defined in terms of the
limiting behaviour (7), demonstrating that the limiting distribution of n1/2(β̃n − β0) coincides
with that for n1/2(β̂n − β0), where β̂n is obtained via the unsmoothed objective function (6).
Since justification for the independent data case follows directly from the above theorems upon
setting Ki = 1 (i = 1, . . . , n), Theorems 1 and 2 also provide rigorous justification for the claims
made in Brown & Wang (2006).

Remark 1. The above results hold for a general smoothing matrix � that satisfies certain
minimal conditions. Brown & Wang (2006) propose an iterative procedure for estimating β0, in
which � = �2 is updated at each iteration using successive estimates of �. One implementation
of this procedure in the clustered data setting is provided in § 3·2.

Remark 2. The smoothing bandwidth employed in (8) and (9) is O(n−1/2), where n denotes
the number of independent clusters. In the absence of clustering, Heller (2007) recommends
the choice h = σ̂n−0·26 in (5), where σ̂ is an estimate of the residual variance obtained using a
minimizer of the unsmoothed equation (3). The selection h = O(n−0·26) is motivated as that which
provides “the quickest rate of convergence while satisfying the bandwidth constraint nh4 → 0”.
In asymptotic terms, Theorem 2 suggests that such oversmoothing is unnecessary.

3. METHODS OF VARIANCE ESTIMATION

3·1. The sandwich variance estimator

The sandwich form of the covariance matrix of n1/2(β̃n − β0) in Theorem 2 suggests a natural
estimator provided that suitable estimates of both A and 	 can be found. In the independent
data case, Brown & Wang (2006) suggest estimating A with Ãn = ∇ S̃n(β̃n); Theorems 1 and 2
imply that this remains a consistent estimator in the clustered data setting. Brown & Wang (2006)
further suggest several estimates of 	, including the asymptotic variance of n1/2Sn(β0) provided
in Jin et al. (2003) and an estimator of 	 based on the U-statistic structure of the estimating
function (4). However, neither estimator of 	 properly accounts for the correlation between
observations within a cluster. Lee et al. (1993) show that the asymptotic variance of n1/2Sn(β0)
in the clustered data case can be consistently estimated via 	̂n = 	̂n(β̂n), where

	̂n(β) = 1

n

n∑
i=1

Ki∑
k=1

Ki∑
l=1

{ξ̂ik(β)}⊗2,

v⊗2 = vv′ for any vector v, and

ξ̂ik(β) =
n∑

j=1

K j∑
l=1

(
�ik

n
(Xik − X jl)I {eik(β) < e jl(β)}

−� jl

n

[∑n
r=1

∑Kr
s=1 (Xik − Xrs) I {ers(β) � e jl(β)}∑n

m=1
∑Km

k=1 I {emk(β) � e jl(β)}

]
I {eik(β) � e jl(β)}

)
.

Conditions A1–A5 of the Appendix ensure that 	̂n is a consistent estimator of 	; with the
addition of condition A6, � can be consistently estimated in the clustered data setting using

�̂n = Ã−1
n 	̂n Ã−1

n . (11)
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3·2. The Brown & Wang (2006) procedure for clustered data

As suggested in Brown & Wang (2006), an iterative procedure can be used to simultaneously
estimate the regression parameters and their covariance matrix. Denoting Ãn(β) = ∇ S̃n(β), the
proposed procedure consists of the following steps in the clustered data setting:

Step 1. Set i = 0 and initialize �̂(0) such that ‖�̂(0)‖ = O(1); for example, �̂(0) = Ip.

Step 2. Set i = i + 1 and solve S̃n(β) = 0 for β̃(i) using � = (�̂(i−1))1/2 in equation (8).

Step 3. Using β̃(i), calculate Ã(i) = Ãn(β̃(i)) and 	̂(i) = 	̂(β̃(i)).

Step 4. Compute �̂(i) = Ã−1
(i) 	̂(i) Ã−1

(i) .

Step 5. Repeat steps 2–4 until convergence of both β̃(i) and �̂(i) is achieved to a specified
tolerance.

In our experience, convergence of this algorithm typically occurs with relatively few iterations,
the value of �̂(∗) at convergence being very close to �̂n in (11).

Remark 3. The above procedure makes use of a data-dependent smoothing parameter.
The proofs of Theorems 1 and 2 assume that the matrix � is known; however, since
‖�̂(∗) − (A−1	A−1)1/2‖ = Op(n−1/2), replacing � by �̂(∗) does not alter these asymptotic results.

3·3. The resampling variance estimator

Jin et al. (2006b, § 4) propose a useful resampling method for estimating � in the presence of
correlated data. This method, which can be motivated by the conditional multiplier central limit
theorem (e.g. Martinussen & Scheike, 2006, p. 43), involves randomly reweighting the Gehan
log-rank objective function (6) and then minimizing the resulting perturbed objective function.
Specifically, let

L∗
n(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

Zi Z j�ik{e jl(β) − eik(β)}I {eik(β) − e jl(β) � 0},

where Z1, . . . , Zn are independent positive random variables with E(Zi ) = var(Zi ) = 1 (i =
1, . . . , n). Let β̂∗

n = argminβ∈B L∗
n(β). Jin et al. (2006b, Theorem 5) prove that, conditional on

the data {Wik ; k = 1, . . . , Ki ; i = 1, . . . , n}, the limiting distribution of n1/2(β̂∗
n − β̂n) converges

almost surely to the limiting distribution of n1/2(β̂n − β0). Thus, the distribution of β̂n can be
approximated by repeatedly generating random samples Z1, . . . , Zn and then minimizing L∗

n(β)
to obtain realizations of β̂∗

n . The covariance matrix of β̂n can be approximated directly by the
empirical covariance matrix of the realizations of β̂∗

n .
Jin et al. (2006b, § 4) work directly with the unsmoothed Gehan objective function and utilize

linear programming methods in combination with resampling in order to obtain regression pa-
rameter and covariance matrix estimates. Specifically, linear programming is used to minimize
Ln(β), obtaining the estimated regression parameter β̂n; it is then applied repeatedly in minimiz-
ing each of the realizations of L∗

n(β) generated for the purposes of covariance matrix esimation.
The use of linear programming methods can be avoided by randomly reweighting the smoothed
objective function L̃n(β) in (9). Such an approach allows for standard numerical methods to be
used for minimization, resulting in the potential for computational savings with larger datasets.
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With Z1, . . . , Zn defined as above, let

L̃∗
n(β) = 1

n(n − 1)

n∑
i=1

Ki∑
k=1

n∑
j=1

K j∑
l=1

Zi Z j�ik

[
{e jl(β) − eik(β)}H (n)

ik jl(β) + rik jl

n1/2
h(n)

ik jl(β)
]
,

where H (n)
ik jl(β) and h(n)

ik jl(β) are defined in (10), and define β̃∗
n = argminβ∈B L̃∗

n(β). Theorems 1
and 2 imply that an argument identical to the one given in Jin et al. (2006b, Theorem 5) can
be used to show that the limiting distribution of n1/2(β̃∗

n − β̃n) converges almost surely to the
limiting distribution of n1/2(β̃n − β0). The covariance matrix of β̃n can then be approximated
exactly as described above, using the simulated realizations of β̃∗

n in place of the β̂∗
n s.

4. SIMULATION STUDY

Simulation studies were carried out to assess the performance of β̃n as well as to evaluate the
covariance matrix estimators described in § 3. The proposed simulation studies are modelled after
that described in Jin et al. (2006b, § 5), allowing for a direct comparison between their simulation
results and those to be summarized below.

Specifically, for each cluster, we use the algorithm of Johnson (1987, § 10·1) to generate two
failure times from the bivariate Gumbel distribution

F(t1, t2) = F1(t1)F2(t2) [1 + θ {1 − F1(t1)} {1 − F2(t2)}] ,

where −1 � θ � 1, Fk(·) is the cumulative distribution function for an exponential random variable
with hazard function λk = exp(β1 X1k + β2 X2k), X1k is Ber(0·5), and X2k is standard normal
truncated at ±2 (k = 1, 2). All covariates are generated independently and the correlation between
T̄1 and T̄2 is θ/4. The resulting failure time model is a special case of the accelerated failure
time model of § 2·1 with true regression parameters β1 = 1 and β2 = 0·5. Censoring times are
independently generated from a Un(0,τ ) distribution, where τ is selected to achieve a desired
level of censoring. Similarly to Jin et al. (2006b, § 5), we consider the cases θ = 0 and θ = 1, 50
clusters of size two, and censoring percentages of 0%, 25% and 50%.

Two different estimation methods are considered. Method 1 refers to the iterative method of
§ 3·2 for simultaneously estimating the regression parameters and covariance matrix. Method 2
refers to estimating the regression parameter by minimizing the smoothed objective function (9)
with the fixed choice � = I2. Within Method 2, we consider estimating the covariance matrix
using the resampling-based variance estimate of § 3·3 and also using the sandwich variance
estimator (11). All simulations were conducted in R and use the routine nlm for optimization
(R Development Core Team, 2005); the simulation code is available upon request.

Table 1 summarizes the results of two simulation studies. Each row of the table is based on
the same 1000 simulated datasets. In the first simulation study, the semiparametric accelerated
failure time model of § 2·1 is fitted using the covariates X1k and X2k . We report the results for
the estimation of the regression parameters β1 = 1 and β2 = 0·5 and associated standard errors
using Methods 1 and 2. The second simulation study repeats the first simulation study, fitting
a model that uses the covariates X∗

1k = X1k and X∗
2k = X2k/500. The underlying failure time

model is identical to that used in the first simulation study, the true regression parameters now
being β∗

1 = β1 = 1, β∗
2 = 500 and β2 = 250. However, in contrast to the first simulation study,

the magnitudes of X∗
2k and β∗

2 are quite different from those of X∗
1k and β∗

1 . The results for β∗
1 ,

not shown, are very similar to those reported in Table 1 for β1; hence, we only report the results
for β∗

2 . The intent of the second study is to investigate the impact of using the fixed smoothing
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Table 1. Simulation results based on 1000 replications and n = 50 pairs for regression
parameter and standard error estimates obtained using the induced smoothing method-
ology. The results for β1 and β2 are based on an accelerated failure time model that
depends on covariates X1 and X2; the results for β∗

2 are based on an accelerated failure
time model that depends on covariates X∗

1 = X1 and X∗
2 = X2/500

Regression Method 1 Method 2
parameter θ Censoring % RBIAS RSE RSEE1 RBIAS RSE RSEE2A RSEE2B

β1 = 1 0 0 0·32 0·25 0·25 0·21 0·25 0·25 0·25
25 3·91 0·28 0·28 3·41 0·28 0·28 0·28
50 4·30 0·35 0·36 2·22 0·34 0·36 0·35

1 0 0·91 0·26 0·25 0·78 0·25 0·25 0·25
25 1·58 0·27 0·28 1·12 0·27 0·27 0·27
50 5·52 0·37 0·36 3·38 0·36 0·36 0·35

β2 = 0·5 0 0 0·74 0·28 0·26 0·78 0·28 0·26 0·26
25 1·89 0·30 0·30 1·58 0·30 0·30 0·30
50 5·13 0·38 0·38 3·40 0·38 0·38 0·38

1 0 1·23 0·26 0·26 1·20 0·26 0·26 0·26
25 1·99 0·30 0·30 1·69 0·28 0·30 0·30
50 4·40 0·40 0·38 2·70 0·38 0·38 0·38

β∗
2 = 250 0 0 0·28 0·27 0·27 0·00 0·27 0·26 0·29

25 2·99 0·29 0·30 1·96 0·29 0·29 0·35
50 5·77 0·38 0·38 2·76 0·37 0·38 0·46

1 0 5·80 0·26 0·27 2·40 0·26 0·26 0·30
25 1·56 0·29 0·29 5·60 0·29 0·29 0·35
50 5·25 0·37 0·38 2·20 0·36 0·37 0·46

RBIAS, 1000 × absolute relative bias; RSE, empirical standard error, relative to parameter; RSEE1, standard
error relative to parameter, with standard error estimate obtained using iterative method of § 3·2 with
�̂(0) = I2; RSEE2A, standard error relative to parameter, with standard error estimate obtained using the
resampling procedure of § 3·3 with 500 random reweightings and regression parameters estimated using
the induced smoothing procedure of § 2·3 with the fixed choice � = I2; RSEE2B, standard error relative to
parameter, with standard error estimate based on (11) and regression parameters estimated as described for
RSEE2A.

parameter � = I2 versus the data-dependent smoothing parameter of § 3·2, a choice that better
reflects the covariance structure and scaling of the regression parameter.

Considering only β1 and β2, the relative biases are observed to be small, comparable in
magnitude, and generally increase with the censoring percentage. In addition, estimates obtained
using Method 1 frequently exhibit greater bias than those obtained using Method 2, with no
apparent reduction in standard error. The standard error estimates for β1 and β2 are accurate and
similar across all estimation methods. Remarkably, the results reported here are also comparable
to those summarized in the right panel of Table 1 in Jin et al. (2006b) for the Gehan weight
function, where no smoothing is employed.

Turning to the comparison of results for β2 and β∗
2 , biases generally follow the patterns

described above. In addition, all methods of standard error estimation perform well, though some
evidence of inflation in the relative standard error RSEE2B is now present. Overall, the results
suggest that the smoothing parameter has a minimal impact on the bias or actual standard error
of the regression parameter estimates. However, given the relative accuracy of both RSEE1 and
RSEE2A, the discrepancy observed in RSEE2B suggests that the scaling of the problem, hence choice
of smoothing parameter, can adversely impact the accuracy of (11).
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On the basis of these results, we recommend using Method 1 as described in § 3·2; in comparison
with the simulation-based methodology of Jin et al. (2006b), it requires far less computational
effort with no evidence of penalty in bias or accuracy of standard error estimation.

5. CONCLUDING REMARKS AND FURTHER EXTENSIONS

The attractive nature of the induced smoothing procedure, in both computational and theoretical
terms, stems largely from the convexity of the Gehan-weighted objective function (9). The
asymptotic results obtained in this paper make significant use of this convexity. A minor extension
of these results can also be used to justify an alternative smoothing methodology for the bounded
influence estimator introduced in Heller (2007). Variations on this smoothing methodology may
facilitate simpler and more stable estimation procedures for accelerated failure time frailty models;
see, for example, Pan (2001); Strawderman (2006) and Zhang & Peng (2007).

The use of the Gehan weight function in (2) has frequently been criticized for the inefficiency
of the resulting estimator. The selection of an alternative weight function may result in efficiency
improvements at the expense of monotonicity, resulting in weaker asymptotic statements and
increased computational challenges. To counteract these drawbacks, Jin et al. (2003) propose
to use the Gehan estimator as a starting point for successively solving a sequence of convex
optimization problems derived from (1). Jin et al. (2006b) extend these results to the setting of
multivariate failure time data. The resulting class of estimation procedures is computationally
stable and yields a consistent and asymptotically normal sequence of estimators with reasonably
general weight functions. However, it does not lend itself to a simple method of variance estima-
tion. Use of the resampling method described in § 3·3 is recommended for this purpose but only
amplifies the required computational effort. Jin et al. (2006a) propose a strongly related class of
procedures for the Buckley–James estimator. Starting from the Gehan estimator, Strawderman
(2005) demonstrates how one may instead use one-step estimation to achieve the same goal
and introduces an alternative simulation-based method of variance computation that requires no
additional optimization. The results of this paper show that the induced smoothing methodology
provides an asymptotically valid and computationally convenient starting point for each of these
other methods of estimation. In addition, the methodology itself can be directly incorporated as
part of the iterative methods developed in Jin et. al. (2003, 2006a, b); the asymptotic results of
this paper guarantee that their results also remain valid for the corresponding smoothed version.

A direct extension of this smoothing methodology is available for general weight functions.
However, it lacks the same computational convenience due to important structural differences
between the Gehan-weighted estimating equation and those used for general weight functions.
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APPENDIX

Proofs

We impose the following regularity conditions:

1. Condition A1. The parameter space B containing β0 is a compact subset of R
p.

2. Condition A2.
∑Ki

k=1 ‖Xik‖ + Ki is bounded almost surely by a nonrandom constant (i = 1, . . . , n).
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3. Condition A3. The assumptions of § 2·1 hold with var(ε11) < ∞.
4. Condition A4. The matrix A = ∇S0(β0), where S0(β) = limn→∞ Sn(β), exists and is nonsingular.
5. Condition A5. Let f0(·) denote the marginal density associated with model error term ε11 and let λ0(·)

denote its corresponding hazard function. Then, f0(·) and f ′
0(·) are bounded functions on R with∫

R

{
f ′
0(t)

f0(t)

}2

f0(t)dt < ∞.

6. Condition A6. The marginal distribution of Crs is absolutely continuous and has a bounded density
grs(·) on R (r = 1, . . . , n; s = 1, . . . , Kr ).

As indicated in the statements of Theorems 1 and 2, � = �2 is assumed to be a symmetric and positive
definite matrix with ‖�‖ < ∞. Conditions A1, A2, A4, A5 and A6 are standard and ensure consistency
and asymptotic normality of the unsmoothed Gehan estimator (Tsiatis, 1990; Ying, 1993; Jin et al., 2006b,
for example). Condition A3 implies |cov(εik, εil )| � var(ε11) (i = 1, . . . , n; k, l = 1, . . . , Ki ); hence, the
covariances between all error terms within a cluster are bounded.

The proof of Theorem 1 relies on the following pair of lemmas, both of which hold under conditions
A1–A3. The proof of Lemma 1 is a direct consequence of the strong law of large numbers for U-statistics
and results in Andersen & Gill (1982, Theorem II.1). The proof of Lemma 2 relies on this result and
properties of the normal cumulative distribution and density functions. These proofs are available in a
technical report.

LEMMA 1. supβ∈B
|Ln(β) − L0(β)| → 0 almost surely, where L0(β) is convex for β ∈ B.

LEMMA 2. supβ∈B
|L̃n(β) − L0(β)| → 0 almost surely, where L0(·) is defined in Lemma 1.

Proof of Theorem 1. Lemmas 1 and 2, respectively, establish the uniform almost sure convergence of
Ln(β) and L̃n(β) to the convex function L0(β) for β ∈ B. By condition A4, L0(β) is strictly convex at
β0 and β0 is a unique minimizer. The respective minimizers β̂n and β̃n of Ln(β) and L̃n(β) thus converge
almost surely to β0 (Andersen & Gill, 1982, Corollary II.2). �

The next lemma is required in order to prove Theorem 2; an abbreviated proof of this result and also
Theorem 2 are provided below, with expanded versions of these arguments available in a technical report.
A fact used in proving Lemma 3 is that condition A4, in conjunction with (A1), implies that the probability
that X1k � X2l for at least one (k, l) pair must be positive.

LEMMA 3. Under A1–A6 and as n → ∞, ‖∇ S̃n(β0) − A‖ → 0 almost surely, where A = ∇S0(β0),

∇S0(β0) = 1

2

K1∑
k=1

K2∑
l=1

∫ ∞

−∞
E{(X1k − X2l )(X1k − X2l)

′Ḡ1k(u) Ḡ2l(u)} {
f 2
0 (u) + f ′

0(u)F̄0(u)
}

du, (A1)

Ḡrs(·) denotes the survivor function of log Crs − X ′
rsβ0 and F̄0(s) = ∫ ∞

s f0(u)du for every s.

Proof of Lemma 3. Using calculations analogous to those found in Fygenson & Ritov (1994), it can be
shown that E{Sn(β)} = S0(β) + O(n−1), where the O(·) term holds uniformly on β ∈ B and

S0(β) = E

[
K1∑

k=1

K2∑
l=1

{M1k,2l(β) − M2l,1k(β)}
]

(A2)

for

Mab,cd (β) =
∫ ∞

−∞
Ḡab(u) Ḡcd{u + (β0 − β)′(Xab − Xcd )} F̄0{u + (β0 − β)′(Xab − Xcd )} f0(u)du.

The outer expectation in (A2) is understood to be taken over the joint distribution of the covariates.
Evidently, S0(β0) = 0. Conditions A1–A6 permit us to differentiate (A2) directly; doing so and evaluating
the result at β = β0, we obtain (A1) (Fygenson & Ritov, 1994, p. 737).
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Recalling notation from § 2·1, let the survival data for cluster i be denoted Wi = {Wik, k = 1, . . . , Ki }.
The smoothed equation (8) may then be written as

S̃n(β) = 1

cn

1

n2

n∑
i=1

h̃β(Wi ,Wi ) + 1(n
2

) ∑
i< j

ψ̃β(Wi ,W j ),

where cn = 1 − n−1, ψ̃β(Wi ,W j ) = (1/2){h̃β(Wi ,W j ) + h̃β(W j ,Wi )} and

h̃β(Wi ,W j ) =
Ki∑

k=1

K j∑
l=1

�ik(Xik − X jl )�

[
n1/2

{
e jl (β) − eik(β)

rik jl

}]
.

Differentiating this representation with respect to β, setting β = β0, and then using both the strong law of
large numbers for independent observations and for U-statistics, we find

∇ S̃n(β0) → 1

2

K1∑
k=1

K2∑
l=1

E{(X1k − X2l)(X1k − X2l)
′ (A1k,2l + A2l,1k)} (A3)

almost surely as n → ∞. The random variable Aab,cd is defined to be zero with probability one if
Xab = Xcd ; otherwise, one may write

Aab,cd =
∫ ∞

−∞
Ḡab(u) f0(u)ξcd (u)du + lim

n→∞

(mn

π

)1/2
∫ ∞

−∞
τ (w)e−mnw2

dw,

where mn = n/(2r2
abcd ), r2

abcd > 0, τ (w) = ∫ ∞
−∞ Ḡab(u) f0(u){ξcd (w + u) − ξcd (u)}du and ξcd (s) =

f0(s)Ḡcd (s) + F̄0(s)gcd (s). Under conditions A1–A6, τ (·) is integrable, continuous and bounded on R

with τ (0) = 0 and the second term on the right-hand side therefore vanishes (e.g. Kanwal, 1998, p. 11).
Using the resulting formula for Aab,cd and integration by parts, it can now be shown that

A1k,2l + A2l,1k =
∫ ∞

−∞
Ḡ1k(u) Ḡ2l(u)

{
f 2
0 (u) + f ′

0(u)F̄0(u)
}

du.

Substituting this last result into (A3), we observe agreement with (A1), proving the result. �

Proof of Theorem 2. Using notation introduced in § 2·2, we have that A−1n1/2Sn(β0) is asymptotically
normal with mean zero and variance A−1	A−1 under assumptions A1–A5 (Jin et al., 2006b, Theorem 5).
Suppose that

n1/2(β̃n − β0) + A−1n1/2Sn(β0) → 0 (A4)

in probability. Then, n1/2(β̃n − β0) → N (0, A−1	A−1) in distribution, establishing the desired asymptotic
result as well as the equality of the limiting distributions of the smoothed and unsmoothed estimators.

To prove that (A4) holds, we can make use of Theorem 3 of Arcones (1998). Using notation
from Arcones (1998), define Gn(β) = nL̃n(β) for all β in B. For n � 1, define the sequence of p × 1
random vectors ηn = n1/2Sn(β0) and sequences of nonsingular, symmetric p × p matrices Mn = n1/2 Ip

and Vn = (1/2)A. The required result (A4) becomes

Mn(β̃n − β0) + 1

2
V −1

n ηn → 0. (A5)

in probability. The result (A5) follows directly from Arcones (1998, Theorem 3) provided that conditions
A1–A6 are sufficient to ensure that the following regularity conditions hold:

1. Condition B1. Gn(β) is convex and β̃n is a sequence satisfying Gn(β̃n) � infβ∈B Gn(β) + op(1).
2. Condition B2. ηn = Op(1), lim infn→∞ inf |β|=1 β ′Vnβ > 0 and lim supn→∞ sup|β|=1 β ′Vnβ < ∞.

3. Condition B3. For each β ∈ R
p, Gn(β0 + M−1

n β) − Gn(β0) − β ′ηn − β ′Vnβ = op(1).
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Conditions B1 and B2 are immediate consequences of conditions A1–A6. For example, condition B1
follows because Gn(β) is easily shown to be convex, β̃n = argminβ∈B L̃n(β) = argminβ∈B Gn(β), Gn(β) is
continuous, and B is compact. In addition, conditions A1–A5 are sufficient to ensure that ηn = n1/2Sn(β0)
converges in distribution, hence Op(1) as required. Since Vn = (1/2)A is a positive definite matrix for
every n, condition B2 is also satisfied.

It remains to establish condition B3. Using the definitions of Mn, Gn(·), L̃n(·) and S̃n(·), and a Taylor
series expansion, we may write

Gn

(
β0 + M−1

n β
) − Gn(β0) − β ′{n1/2 S̃n(β0)} − 1

2
β ′{∇ S̃n(β∗

n )}β = op(1), (A6)

where ‖β∗
n − β0‖� ‖M−1

n β‖. The triangle inequality, Lemma 3, and the fact that {S̃n} form a sequence of
bounded, continuously differentiable functions implies that we can replace ∇ S̃n(β∗

n ) in (A6) by the matrix
A without altering this result. Therefore, if

n1/2‖S̃n(β0) − Sn(β0)‖ → 0 (A7)

in probability, the definitions of Vn and ηn imply that condition B3 holds. To see that (A7) holds, write

S̃n(β0) − Sn(β0) =
∫

Rp

{Sn(β0 + n−1/2u) − Sn(β0)}ψ(u)du,

where ψ(·) denotes the pdf of �Z .
Let � be a fixed matrix such that ‖�‖� M for some M < ∞ and define for suitable u the function

Kn(u; β0,�) = ‖Sn(β0 + n−1/2u) − Sn(β0) − n−1/2� u‖. Then, since
∫

Rp u ψ(u) du = 0, the triangle in-
equality implies

‖S̃n(β0) − Sn(β0)‖�
∫

‖u‖� εn

Kn(u; β0,�)ψ(u) du +
∫

‖u‖>εn

Kn(u; β0,�)ψ(u) du (A8)

for any εn > 0. The result (A7) therefore holds if we can find εn > 0 such that both integrals on the
right-hand side of (A8) converge in probability to zero.

Following Ying (1993, Theorem 2) and Jin et al. (2006b, Theorem 5), the matrix A satisfies

sup
‖b−β0‖ � dn

‖Sn(b) − Sn(β0) − A(b − β0)‖
1 + n1/2‖b − β0‖ = op(n−1/2) (A9)

for any positive sequence dn → 0. Suppose εn = o(n1/2). Then, taking b = β0 + n−1/2u, dn = n−1/2εn

and � = A, (A9) implies

sup
u � εn

‖Kn(u; β0, A)‖
1 + ‖u‖ = op(n−1/2). (A10)

An easy calculation, in combination with (A10), now shows that the first integral on the right-hand side of
the inequality in (A8) converges in probability to zero, even if εn → ∞. With regard to the second term on
the right-hand side of (A8), we may use the definition of Kn(·; β0, A) and the triangle inequality to write
n1/2

∫
‖u‖>εn

Kn(u; β0, A)ψ(u) du � Q3 + Q4, where

Q3 =
{

sup
‖u‖>εn

‖Sn(β0 + n−1/2u) − Sn(β0)‖
}

n1/2
∫

‖u‖>εn

ψ(u)du, Q4 = ‖A‖
∫

‖u‖>εn

‖u‖ψ(u)du.

For all β ∈ B, ‖Sn(β)‖� Q for some constant Q < ∞ by condition A2; hence, Q3 � 2Qn1/2 p(‖�Z‖ >

εn). Letting εn → ∞, it follows that n1/2 p(‖�Z‖ > εn) → 0 as n → ∞. Similarly,
∫

‖u‖>εn
‖u‖ψ(u)du →

0. Thus, provided that n, εn → ∞, the bounds Q3 and Q4, hence, the second integral on the right-hand side
of the inequality in (A8), also converge in probability to zero. Since we can select a sequence εn = o(n1/2)
such that both n, εn → ∞, it follows that (A8) converges in probability to zero as n → ∞, establishing
(A7) and concluding the proof. �
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