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SUMMARY

Outlier sums were proposed by Tibshirani & Hastie (2007) and Wu (2007) for detecting outlier genes
where only a small subset of disease samples shows unusually high gene expression, but they did not
develop their distributional properties and formal statistical inference. In this study, a new outlier sum for
detection of outlier genes is proposed, its asymptotic distribution theory is developed, and the p-value
based on this outlier sum is formulated. Its analytic form is derived on the basis of the large-sample theory.
We compare the proposed method with existing outlier sum methods by power comparisons. Our method is
applied to DNA microarray data from samples of primary breast tumors examined by Huang et al. (2003).
The results show that the proposed method is more efficient in detecting outlier genes.

Some key words: Asymptotic distribution; Cancer outlier profile analysis; Gene expression; Outlier robust t-statistic;
Outlier sum; p-value; t-test.

1. INTRODUCTION

DNA microarray technology, which simultaneously probes thousands of gene expression profiles, has
been successfully used in medical research for disease classification (Agrawal et al., 2002; Ohki et al.,
2005). For example, in breast cancer research, Sorlie et al. (2003) used gene expression to classify ma-
lignant breast tumors into five distinct molecular subtypes. In lymphoma research, Alizadeh et al. (2000)
reported that patients with one type of molecular pattern, germinal center B-like diffuse large B-cell
lymphoma, had a significantly better chance of overall survival than those with another molecular pattern,
activated B-like diffuse large B-cell lymphoma. Recently, investigators have extended the disease classifi-
cation capability of microarray analysis to identifying outlier genes that are overexpressed only in a small
number of disease samples. Tomlins et al. (2005) introduced an approach called cancer outlier profile
analysis to identify outlier genes. This approach standardizes gene expression by centring at the median
and scaling by the median absolute deviation. A kth percentile of the standardized expression value is
then used as a cut-off point to determine an outlier gene. Later, two outlier sum approaches, the outlier
sum statistic (Tibshirani & Hastie, 2007) and the outlier robust t-statistic (Wu, 2007), were developed
to improve detection of outlier genes. Both approaches use the summation of extreme high expression
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values, instead of the kth percentile of the standardized gene expression, to identify outlier genes. Em-
pirical studies have shown that both outlier sum approaches are more powerful in detecting outlier genes
than standard approaches, such as the t-test. However, the development of distribution theory for these
statistics is still primitive. In this paper, we derive an explicit form for the p-value of an outlier sum test
statistic. The approach is empirically proven to be generally more powerful than the other methods.

2. THE NEW OUTLIER SUM AND ITS p-VALUE

In a study that consists of n1 subjects in the normal control group and n2 subjects in the disease
group, suppose that there are m genes to be investigated. Their gene expression can be represented as
Xi j (i = 1, . . . , n1, j = 1, . . . , m) for the normal control group and Yi j (i = 1, . . . , n2, j = 1, . . . , m) for
the disease group. For a fixed gene j , let μ j represent the parameter for central tendency that is used for
measuring distance for observations in the disease group, let η j represent the cut-off point that is used for
identifying an observation in the disease group as an outlier, and let σ j represent the scale parameter that
is used for standardizing the sum of outliers. Let μ̂ j , η̂ j and σ̂ j denote their corresponding estimators.

A standardized version of the outlier sum statistic for gene j defined by Tibshirani & Hastie (2007) and
Wu (2007) may be represented as

∑n2
i=1 σ̂−1

j (Yi j − μ̂ j )I (Yi j > η̂ j ). The former uses combined observations
of Xi j s and Yi j s for estimation of μ j , η j and σ j and the latter uses only Xi j s for estimation of the same set
of parameters. In this paper, we present a nonstandardized outlier sum formulated in (1) and use its mean
statistic to derive the p-value based on the large-sample theory of this statistic. In the following, we drop
the gene index j from all mathematical expressions unless otherwise noted. The outlier sum and its mean
statistic for a gene are, respectively, formulated as

L =
n2∑

i=1

Yi I (Yi > η̂), L̄ = 1∑n2
i=1 I (Yi > η̂)

n2∑
i=1

Yi I (Yi > η̂). (1)

Let FX and FY denote the distribution functions, respectively, for variables X and Y . For testing H0 :
FY = FX , we will further assume that there are the unknown location and scale parameters for this outlier
mean, denoted by μ� and σ�, respectively, and they satisfy

prH0

{
n1/2

2 (L̄ − μ�)

σ�

� z

}
→ �(z), n2 → ∞, (2)

for any real number z, where � represents the cumulative distribution function of a standard normal variate.
We also set two constraints on the cut-off point η̂ and the sample sizes n1 and n2, stated in Assumptions 1
and 2 in the Appendix.

From the relationship between the outlier mean and the outlier sum in (1) and from Assumption 1
for the proportion of the outlier samples, we can infer from Slutsky’s theorem and equation (2) that
(n1/2

2 βσ�)−1(L − n2βμ�) has an approximate N (0, 1) distribution. This provides a natural candidate for
the test statistic based on the outlier sum statistic:

Z test = L − n2β̂μ̂�

n1/2
2 β̂σ̂�

, (3)

where β̂, μ̂� and σ̂� are estimators for β,μ� and σ�, respectively.
The p-value for the outlier sum can be expressed as

p = 1 − �(ztest), (4)

where ztest is the sample realization of Z test and estimates β̂, μ̂� and σ̂� are computed based on the
observations xi s from the normal group.



248 LIN-AN CHEN, DUNG-TSA CHEN AND WENYAW CHAN

3. ASYMPTOTIC PROPERTIES OF THE OUTLIER MEAN

In a study of the outlier mean or sum, the cut-off point is usually chosen to be a certain multiple of
the interquartile range away from the median. For example, in the outlier robust t-statistic approach, one
interquartile range away from the median is adopted as the cut-off point. In the proposed method, we allow
a flexible selection of the cut-off point and express it as η = F−1

X (0·5) + 1·5k{F−1
X (0·75) − F−1

X (0·25)}
for mathematical convenience, where k > 0 is a constant. To develop the p-value based on large sam-
ple theory, we suggest use of η̂ = F̂−1

X (0·5) + 1·5k × IQRX as the cut-off point for estimating η, where
IQRX = F̂−1

X (0·75) − F̂−1
X (0·25) is the sample interquartile range for the distribution of variables {Xi }.

Consider that the underlying distribution FX is normal, for k = 1, the population cut-off point becomes
η = μX + 1·5{F−1

X (0·75) − F−1
X (0·25)} = F−1

X (0·75) + {F−1
X (0·75) − F−1

X (0·25)}. In this case, the cut-
off point η̂ for the outlier sum is equal to the outlier robust t-statistic approach. Hence, L = ∑n2

i=1 Yi I [Yi >

{F̂−1
X (0·5) + 1·5kIQRX }] for k > 0 may serve as a generalization of the classical outlier sum. However,

one interesting study is to see if k = 1 provides the desired results for gene expression analysis.
Let us now study the asymptotic distribution of the outlier mean L̄ in this specification of η̂. A Bahadur

representation for the outlier mean can be stated in the following theorem.

THEOREM 1. If Assumptions 1, 2, 3 and 4 in the Appendix are true, a Bahadur representation of the
outlier mean is

n1/2
2 (L̄ − μ�) = 1

4
(2b1 + b2 − 3b3) × n−1/2

1

n1∑
i=1

I
{

Xi � F−1
X (0·25)

}

+ 1

4
(2b1 + b2 + b3) × n−1/2

1

n1∑
i=1

I
{

F−1
X (0·25) � Xi � F−1

X (0·5)
}

+ 1

4
(−2b1 + b2 + b3) × n−1/2

1

n1∑
i=1

I
{

F−1
X (0·5) � Xi � F−1

X (0·75)
}

+ 1

4
(−2b1 − 3b2 + b3) × n−1/2

1

n1∑
i=1

I
{

Xi � F−1
X (0·75)

}

+ 1

β
n−1/2

2

n2∑
i=1

{(Yi − μY )I (Yi > η) − μη} + op(1),

where μη = β−1
∫ ∞

η
(y − μY ) fY (y)dy, μ� = β−1

∫ ∞
η

y fY (y)dy, b1 = (η − μY )β−1 fY (η)γ 1/2 f −1
X {F−1

X

(0·5)}, b2 = (1·5k)(η − μY )β−1 fY (η)γ 1/2 f −1
X {F−1

X (0·75)} and b3 = (1·5k)(η − μY )β−1 fY (η)γ 1/2

f −1
X {F−1

X (0·25)}. In this case, β = pr(Y � η).
The asymptotic distribution of the outlier mean can be obtained from the central limit theorem.

THEOREM 2. If Assumptions 2, 3 and 4 in the Appendix are true, then n1/2
2 (L̄ − μ�) converges in

distribution to N (0, σ 2
� ), where

σ 2
� = σ 2

� (b1, b2, b3, v)

= 3

256
{(2b1 + b2 − 3b3)2 + (2b1 + b2 + b3)2 + (−2b1 + b2 + b3)2 + (−2b1 − 3b2 + b3)2} + v,

v = 1

β2
var{(Y − η)I (Y > η)}.

After replacing the population parameters by their corresponding estimators in the formulas of
Theorem 2 and in (3), the p-value in (4) can be computed.

There are two scenarios that require different approaches to find estimators of β,μ� and σ�. When
distributions FX and FY are known but involve some unknown parameters, maximum likelihood estimation
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can be used. When the distributions FX and FY are unknown, a nonparametric technique can be used for
estimating β,μ� and σ� by first estimating the mean μY , percentile F−1

X (α), truncated mean μ�, truncated
variance σ 2

� and densities fX and fY . Theorem 2, along with equation (4), provides a new method for
computing the p-value that can be useful in different scenarios. Although the nonparametric approach can
broaden the application areas, this paper focuses on the parametric model.

In the rest of this section, we develop an explicit form for the p-value under an added assumption that
variables X and Y have normal distributions N (μX , σ 2

X ) and N (μY , σ 2
Y ). Under these assumptions, we

have F−1
X (α) = μX + zασX , which implies F−1

X (0·5) + 1·5k{F−1
X (0·75) − F−1

X (0·25)} = μX + 3kz0·75σX ,
where zα is the 100αth percentile of the standard normal distribution. This gives the outlier sum

L =
n2∑

i=1

Yi I (Yi > μ̂X + 3kz0·75σ̂X ) (5)

after replacing μX and σX by their estimators. Using equation (5) and the aforementioned properties and
substituting the population parameters by their estimates, i.e. γ̂ = n2/n1, μ̂X = x̄ = n−1

1

∑n1
i=1 xi , σ̂

2
X =

s2
x = (n1 − 1)−1

∑n1
i=1(xi − x̄)2, we obtain

� =
n2∑

i=1

yi I (yi > x̄ + 3kz0·75sx ), β = 1 − �(3kz0·75),

μ̂� = x̄ + sx

β

∫ ∞

(3kz0·75)
zφ(z)dz, b̂1 = (2π )1/2

β
3kz0·75sxφ(3kz0·75)γ̂ 1/2,

b̂2 = b̂3 = 1·5kb̂1φ
−1(z0·75)

(2π )1/2
, v̂ = s2

x

β2

[∫ ∞

(3kz0·75)
z2φ(z)dz −

{∫ ∞

(3kz0·75)
zφ(z)dz

}2
]

,

where β is a known constant in this parametric setting.
With the above formulas, Theorem 2 permits the computation of σ̂ 2

� = σ 2
� (b̂1, b̂2, b̂3, v̂). By plotting

estimates of μx and σx , the p-value of (4) can be obtained. This technique can be extended to other known
population distributions of X and Y .

4. SIMULATION STUDY

4·1. Type I error

This simulation study examines whether the location of the cut-off point affects Type I error. From (5),
we will make comparisons based on the value of k. We assume that gene expression in both control and
disease groups follows a standard normal distribution, and each has a sample size n = 20. The p-value is
computed based on (4). Type I error is calculated as the proportion of the p-values less than 0·05 among
simulation runs. The results show that as k increases, or equivalently, the cut-off point shifts more away
from the median, Type I error gets smaller and the chance of rejecting the null hypothesis decreases. Type
I errors are 0·058, 0·0075, 0·00043, 0·00002 and 0·000002 for k = 1, 1·5, 2, 2·5 and 3, respectively, at
α = 0·05. Clearly, when k = 1, Type I error is closest to the targeted significance level. When the adjusted
p-value cut-off is 0·038, Type I error reaches 0·05 for k = 1. Thus, we opt for k = 1 for the distribution-
based p-value approach to compare with other outlier statistics and choose 0·038 as the significance level
to control for Type I error at 0·05 in the power study.

4·2. Power analysis

In the power study, we compare the distribution-based p-value approach with four other approaches:
two-sample t-test, the cancer outlier profile analysis approach, the outlier sum approach, and the outlier
robust t-statistic approach. Three scenarios are examined: (a) the genes in the control and disease groups
follow the N (0, 1) distribution, except for the first gene in the n0 outlier samples from the disease group
that follows the N (d, 1) distribution, where d is the effect size; (b) the genes in the control and disease
groups follow the t-distribution with four degrees of freedom, except for the first gene in the n0 outlier
samples from the disease group, which follows the noncentral t-distribution with four degrees of freedom
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Fig. 1. Power comparison of various effect sizes with equal variance for (a)–(c) normal distribution with an effect
size of 1, 2 and 3, respectively, and for (d)–(f ) t-distribution with 4 degrees of freedom and noncentrality of 1, 2 and
3, respectively. The following approaches are illustrated: distribution-based p-value for the outlier sum (◦); outlier

robust t-statistic (�); outlier sum (+); cancer outlier profile analysis (×); and two-sample t-test (�).

and noncentrality d; (c) the genes in the control and disease groups follow the N (0, σ 2) distribution, except
for each gene in the n0 outlier samples from the disease group that follows the N (2σ, σ 2) distribution.
For scenarios (a) and (b), we evaluate how the effect size, noncentrality, and number of outlier samples
affect the power. Specifically, we simulate 1000 genes for each of the 20 control and 20 disease samples
and choose d from 1, 1·5, 2, 3, to 4. In addition, we let n0 vary from 1 to 20. For scenario (c), each gene
has a different variance, but the effect size, the ratio of mean and standard deviation, is each fixed at 2.
To replicate our data sample presented in § 5, we simulate 12 625 genes for each of the 19 control and 18
disease samples and allow each gene to have a separate σ , estimated from the data sample and ranging
from 0·1 to 2·4. In this scenario, we let n0 vary from 1 to 18.

Power is calculated as the proportion of 1000 simulation runs that have a significant difference based
on Type I error 0·05. For scenarios (a) and (b), power calculation is based on the first gene. For scenario
(c), the average power of all genes is used. Significance is determined by the p-value when methods have
a p-value formula available. Otherwise, significance is determined by whether the test statistic is greater
than the 95th percentile of the outlier statistic, based on the parametric bootstrapping method.

From Fig. 1, the distribution-based p-value approach has the highest power when the number of outlier
samples is smaller than 10. In contrast, when the number of outlier samples becomes large, such as greater
than 15, the t-test yields the highest power. Interestingly, the distribution-based p-value approach and the
outlier robust t-statistic approach also perform well. On the other hand, the cancer outlier profile analysis
and the outlier sum have low power overall. From Fig. 2, with three outlier samples or less, power increases
as effect size increases in the distribution-based p-value, the outlier robust t-statistic, and the outlier sum
approaches, but not in the other two approaches for both normal and t-distributions. The distribution-based
p-value approach performs best in most cases. As the number of outlier samples increases to 15 or more,
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Fig. 2. Power comparison for various numbers of outlier tissues for (a)–(c) normal distribution with an effect size
of 1, 2 and 3, respectively, and for (d)–(f ) t-distribution with 4 degrees of freedom and noncentrality of 1, 2 and
3, respectively. The following approaches are illustrated: distribution-based p-value for the outlier sum (◦); outlier

robust t-statistic (�); outlier sum (+); cancer outlier profile analysis (×); and two-sample t-test (�).

the t-test performs best, but the distribution-based p-value approach and the outlier robust t-statistic
approach yield a comparable power. In contrast, the other two approaches have a power less than 0·4.
The results demonstrate that the distribution-based p-value approach has better power to identify outliers.
When the number of outlier samples is large, the strength of identifiability diminishes. For example, when
all disease samples are outliers in the extreme case, the statistical issue becomes a standard two-group
comparison and hence the identifiability of the outlier approaches disappears. For scenario (c) of differing
variances, the results, not presented, are similar to those of Fig. 1 at the effect size equal to 2. Moreover, all
five approaches show a very weak correlation between power and standard deviation. This phenomenon
indicates that the power to detect outliers is independent of the variance as long as the effect size is fixed.

5. DATA EXAMPLE

We apply all five approaches discussed in § 4 to the breast cancer microarray data reported by Huang et al.
(2003). This dataset contains the expression levels of 12 625 genes from 37 breast tumor samples: 19 of
them have no positive nodes discovered and are treated as the control group and the other 18 samples have
identifiably positive nodes and are treated as the disease group. Since we test 12 625 genes simultaneously,
errors in inference are more likely to occur without p-value adjustment. To account for multiple testing,
the false discovery rate method (Benjamini & Hochberg, 1995) is used to correct for the p-value at the
0·05 level for the distribution-based p-value approach and the t-test. For the other three approaches, the
99th percentile of each outlier statistic is used as the cut-off point to identify significant outlier genes based
on the parametric bootstrapping method.

Results show that the t-test does not identify any significant outlier genes. In contrast, the other four
approaches identify 584, 535, 740 and 695 outlier genes, respectively, for the distribution-based p-value
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approach, the outlier robust t-statistic approach, the outlier sum approach and the cancer outlier profile
analysis approach. We further find that four disease samples are consistently ranked in the top four in
number of outlier genes by the distribution-based p-value approach, the outlier robust t-statistic approach
and the outlier sum approach. Each of these four disease samples has at least 20% of the outlier genes with
a higher expression, suggesting abnormal up-regulation in gene expression. In addition, there are eight
outlier genes consistently showing high expression in all four samples.

This application highlights the strength of the four outlier approaches, which identify many significant
outlier genes and point out several disease samples with an abnormally large number of outlier genes.
On the other hand, the t-test fails to detect any outlier gene. In addition, computation of the p-value
is easier with the distribution-based p-value approach than the other three outlier approaches. These
three approaches lack a distribution theory and hence need special procedures, such as the parametric
bootstrapping method, to define a cut-off point for each outlier gene as the variance changes.
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APPENDIX

Four assumptions for the outlier sum test statistic are as follows.

Assumption 1. The proportion of outlier samples, n−1
2

∑n2
i=1 I (Yi > η̂), converges in probability to β

with 0 < β < 1.

Assumption 2. The limit γ = limn2,n1→∞n2/n1 exists.

Assumption 3. The probability density function fX is bounded away from zero in a neighbourhood of
F−1

X (α) for α ∈ (0, 1).

Assumption 4. The probability density function fY is bounded away from zero in a neighbourhood of
the population cut-off point η.

Proof of Theorem 1. With Assumption 3, a representation of F̂−1
X (α) such as

n1/2
1

{
F̂−1

X (α) − F−1
X (α)

} = f −1
X

{
F−1

X (α)
}

n−1/2
1

n1∑
i=1

[
α − I

{
Xi � F−1

X (α)
}] + op(1), (A1)

implies that η̂ = F̂−1
X (0·5) + 1·5k × IQRX satisfies T = n1/2

1 (η̂ − η) = Op(1) (Ruppert & Carroll, 1980).
From the expression of the outlier mean in (1), we have

L̄ =
{

n2∑
i=1

I (Yi > η̂)

}−1 n2∑
i=1

Yi I (Yi > η̂)

=
{

n2∑
i=1

I (Yi > η̂)

}−1 n2∑
i=1

Yi I
(
Yi > η + n−1/2

1 T
)

= μY +
{

n2∑
i=1

I (Yi > η̂)

}−1 n2∑
i=1

(
Yi − μY )I (Yi > η + n−1/2

1 T
)
.

The above expression can be rewritten as

n1/2
2 (L̄ − μY ) =

{
n2∑

i=1

I (Yi > η̂)

}−1

n1/2
2

n2∑
i=1

(Yi − μY )I
(
Yi > η + n−1/2

1 T
)
. (A2)



Miscellanea 253

With (A1), Assumptions 2 and 4, and techniques from Ruppert & Carroll (1980) and Chen & Chiang
(1996), a modified second term on the right-hand side of (A2), can be expressed as

n−1/2
2

n2∑
i=1

(Yi − μY )
{

I
(
Yi > η + n−1/2

1 T
) − I (Yi > η)

} + n−1/2
2

n2∑
i=1

(Yi − μY )I (Yi > η)

= −n−1/2
2

n2∑
i=1

(Yi − μY )
{

I
(
Yi � η + n−1/2

1 T
) − I (Yi � η)

} + n−1/2
2

n2∑
i=1

(Yi − μY )I (Yi > η)

= −(η − μY ) fY (η)γ 1/2T + n−1/2
2

n2∑
i=1

(Yi − μY )I (Yi > η) + op(1). (A3)

By the same rationale and the weak law of large numbers, we can derive

n−1
2

n2∑
i=1

I
[
Yi > F̂−1

X (0·5) + 1·5k
{

F̂−1
X (0·75) − F̂−1

X (0·75)
}] = n−1

2

n2∑
i=1

I (Yi > η) + op(1) (A4)

which converges to pr(Y � η).
Combining (A2), (A3) and (A4), a Bahadur representation of the outlier mean is

n1/2
2 (L̄ − [μY + β−1 E{(Y − η)I (Y � η)}]) = −β−1(η − μY ) fY (η)γ 1/2

× n1/2
1 (η̂ − η) + β−1n−1/2

2

n2∑
i=1

{(Yi − μY )I (Yi > η) − E{(Y − η)I (Y � η)} + op(1). �
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