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SUMMARY

The objective of this paper is to quantify the effect of correlation in false discovery rate
analysis. Specifically, we derive approximations for the mean, variance, distribution and quan-
tiles of the standard false discovery rate estimator for arbitrarily correlated data. This is achieved
using a negative binomial model for the number of false discoveries, where the parameters are
found empirically from the data. We show that correlation may increase the bias and variance of
the estimator substantially with respect to the independent case, and that in some cases, such as
an exchangeable correlation structure, the estimator fails to be consistent as the number of tests
becomes large.
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1. INTRODUCTION

Large-scale multiple testing is a common statistical problem in the analysis of high-
dimensional data, particularly in genomics and medical imaging. An increasingly popular global
error measure in these applications is the false discovery rate (Benjamini & Hochberg, 1995),
defined as the expected proportion of false discoveries among the total number of discoveries.
High-dimensional data are often highly correlated; in the microarray data example below, the raw
pairwise correlations range from −0·9 to 0·96. Correlation may greatly inflate the variance of
both the number of false discoveries (Owen, 2005) and common false discovery rate estimators
(Qiu & Yakovlev, 2006). While there exist procedures that control the false discovery rate under
arbitrary dependence (Benjamini & Yekutieli, 2001), they have substantially less power than pro-
cedures that assume independence (Farcomeni, 2008) and the latter are often preferred. Because
of the current widespread use of the false discovery rate, it is important to understand the effect
of correlation in the analysis as it is typically done in practice, both for correct inference using
current methods and as a guide for developing new methods for correlated data.

The goal of this paper is to quantify the effect of correlation in false discovery rate
analysis. As a benchmark, we use the false discovery rate estimator of Storey et al. (2004)
and Genovese & Wasserman (2004), originally proposed by Yekutieli & Benjamini (1999)
and Benjamini & Hochberg (2000). This estimator is appealing because it provides esti-
mates of the false discovery rate at all thresholds simultaneously. Furthermore, threshold-
ing of this estimator is equivalent to the original false discovery rate controlling algorithm
(Benjamini & Hochberg, 1995) under independence (Benjamini & Hochberg, 2000), and under
specific forms of dependence such as positive regression dependence (Benjamini & Yekutieli,
2001) and weak dependence such as dependence in finite blocks (Storey et al., 2004). However,
the generality of the estimator makes it conservative under correlation (Yekutieli & Benjamini,
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1999) and it can perform poorly in genomic data (Qiu & Yakovlev, 2006). We show that cor-
relation increases both the bias and variance of the estimator substantially compared with the
independent case, but less so for small error levels. From a theoretical point of view, we show
that in some cases, such as an exchangeable correlation structure, the estimator fails to be con-
sistent as the number of tests increases.

As related work, Efron (2007a) and Schwartzman (2008) estimated the variance of the false
discovery rate estimator by the delta method but did not consider the bias and skewness of the
distribution. Owen (2005) quantified the variance of the number of discoveries given an arbitrary
correlation structure, but did not provide results about the false discovery rate. Qiu & Yakovlev
(2006) showed the strong effect of correlation on the false discovery rate estimator via simulations
only.

Our contributions are as follows. First, we provide approximations for the mean, variance,
distribution and quantiles of the false discovery rate estimator given an arbitrary correlation
structure. This is achieved by modelling the number of discoveries with a negative binomial
distribution whose parameters are estimated from the data based on the empirical distribution of
the pairwise correlations. Our results are derived for test statistics whose marginal distribution
is either normal or χ2. Secondly, we identify a necessary condition for consistency of the false
discovery rate estimator as the number of tests increases and show that it is violated in situations
such as exchangeable correlation.

2. THEORY

2·1. The false discovery rate estimator

Let H1, . . . , Hm be m null hypotheses with associated test statistics T1, . . . , Tm . The test statis-
tics are assumed to have marginal distributions Tj ∼ F0 if Hj is true and Tj ∼ Fj if Hj is false,
where F0 is a common distribution under the null hypothesis and F1, F2, . . . are specific alter-
native distributions for each test. The test statistics may be dependent with corr(Ti , Tj )= ρi j . In
particular, if the test statistics are z-scores, then this is the same as the correlation between the
original observations.

The fraction p0 = m0/m of tests where the null is true is called the null proportion. The com-
plete null model is the one where p0 = 1 and Tj ∼ F0 for all j . Without loss of generality, we
focus on one-sided tests, where for each hypothesis Hj and a threshold u, the decision rule is
D j (u)= I (Tj > u). Two-sided tests may be incorporated, for example, by defining Tj = T̃ 2

j or

Tj = |T̃ j |, where T̃ j is a two-sided test statistic.
The false discovery rate is the expectation, under the true model, of the proportion of false

positives among rejected null hypothesis or discoveries, i.e.

FDR(u)= E

{
Vm(u)

Rm(u) ∨ 1

}
, (1)

where Vm(u)=
∑m

j=1 D j (u)I (Hj is true) is the number of false positives and Rm(u)=∑m
j=1 D j (u) is the number of rejected null hypotheses or discoveries (Benjamini & Hochberg,

1995). The maximum operator ∨ sets the fraction inside the expectation to zero when Rm(u)= 0.
When m is large, FDR(u) is estimated by

ˆFDRm(u)= p̂0mα(u)

Rm(u) ∨ 1
, (2)
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where p̂0 is an estimate of the null proportion p0, and α(u) is the marginal type-I-error level
α(u)= E{D j (u)} = pr(Tj > u), computed under the assumption that Hj is true. This estimator
was proposed by Yekutieli & Benjamini (1999) and its asymptotic properties were studied by
Storey et al. (2004) and Genovese & Wasserman (2004). A heuristic argument for this estima-
tor is that the expectation of the false discovery proportion numerator, E{Vm(u)}, is equal to
p0mα(u) under the true model. There are several ways to estimate p0 (Genovese & Wasserman,
2004; Storey et al., 2004; Efron, 2007b; Jin & Cai, 2007). In applications p0 is often close to 1
and setting p̂0 = 1 biases the estimate only slightly and in a conservative fashion (Efron, 2004).
In this article, we focus on the effect that correlation has on the estimator (2) via the number of
discoveries Rm(u).

2·2. The number of discoveries

As a stepping stone towards studying the estimator (2), we first study the number of rejected
null hypotheses or discoveries Rm(u). Under the complete null model, and if the tests are inde-
pendent, Rm(u) is binomial with number of trials m and success probability α(u). In general,
under the true model and allowing dependence, we have

E{Rm(u)} =
m∑

i=1

E{Di (u)} =
m∑

i=1

βi (u),

var{Rm(u)} =
m∑

i=1

m∑
j=1

cov{Di (u), D j (u)} =
m∑

i=1

m∑
j=1

ψi j (u),

(3)

where

βi (u)= pri (Ti > u), ψi j (u)= pr(Ti > u, Tj > u)− pr(Ti > u)pr(Tj > u). (4)

The quantity βi (u) is the per-test power. For those tests where the null hypothesis is true, this
is equal to the marginal type-I-error level α(u). Summing over the diagonals in (3) reveals the
mean-variance structure

E{Rm(u)} = mβ̄(u), var{Rm(u)} = m{β̄(u)− β̄2(u)} + m(m − 1)�m(u), (5)

where

β̄(u)= 1

m

m∑
i=1

βi (u), β̄2(u)= 1

m

m∑
i=1

β2
i (u), �m(u)= 2

m(m − 1)

∑
i< j

ψi j (u). (6)

The quantities β̄(u) and β̄2(u) are empirical moments of the power, while �m(u) is the average
covariance of the decisions Di (u) and D j (u) for i |= j , a function of the pairwise correlations
{ρi j }.

The dependence between the test statistics does not affect the mean of Rm(u) but does affect its
variance. It does so by adding the overdispersion term m(m − 1)�m(u) to the independent-case
variance m{β̄(u)− β̄2(u)}. Expression (5) under the complete null is an unconditional version
of the conditional variance in expression (8) of Owen (2005). Similar expressions have appeared
before in estimation problems with correlated binary data (Crowder, 1985; Prentice, 1986).

Another observation from (4) is that ψi j (u) vanishes asymptotically as u → ∞, so the effect
of the correlation becomes negligible for very high thresholds. We will see in § 2·4 that the rate
of decay is a quadratic exponential times a polynomial.
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2·3. Inconsistency of the false discovery rate estimator

The overdispersion of the number of discoveries Rm(u) has implications for the behaviour of
the estimator (2). We consider the asymptotic case m → ∞ in this section and treat the finite m
case in § 2·4 and 2·5.

As m → ∞, a sufficient condition for consistency of the estimator (2) is that the test statistics
are independent or weakly dependent, e.g. dependent in finite blocks (Storey et al., 2004). On the
other hand, taking m in (2) to the denominator, we see that a necessary condition for consistency
is that the fraction of discoveries Rm(u)/m has asymptotically vanishing variance. By (5), the
variance of Rm(u)/m is

var

{
Rm(u)

m

}
= β̄(u)− β̄2(u)

m
+

(
1 − 1

m

)
�m(u) (7)

and is asymptotically zero if and only if the overdispersion �m is asymptotically zero, provided
that β̄ and β̄2 grow slower than linearly with m.

THEOREM 1. Assume {β̄(u)− β̄2(u)}/m → 0 as m → ∞. Fix an ordering of the test statistics
T1, . . . , Tm and assume the autocovariance sequence ψi,i+k(u)=ψi+k,i (u) in (7) has a limit
�∞(u)� 0 as k → ∞ for every i . Then, as m → ∞, var{Rm(u)/m} →�∞(u)� 0.

Example 1. Exchangeable correlation. Suppose the test statistics Ti have an exchangeable
correlation structure so that ρi j = ρ > 0 is a constant for all i |= j . For any fixed threshold, u,
ψi j (u)=ψ(u) > 0 in (6) does not depend on i , j . As a consequence,�m(u)=ψ(u)=�∞(u) >
0, and the estimator (2) is inconsistent. The case ρ < 0 is asymptotically moot because positive
definiteness of the covariance of the Ti s requires ρ >−1/(m − 1), so ρ cannot be negative in
the limit m → ∞.

Example 2. Stationary ergodic covariance. Suppose the index i represents time or posi-
tion along a sequence, and suppose the test statistic sequence Ti is a stationary ergodic process,
e.g., M-dependent or autoregressive moving average, with Toeplitz correlation ρi j = ρi− j . Then
ρi,i+k = ρk → 0 for all i as k → ∞, and so �∞(u)= 0, pointwise for all u. By Theorem 1, the
variance (7) converges to zero as m → ∞.

Example 3. Finite blocks. Suppose the test statistics Ti are dependent in finite blocks, so
that they are correlated within blocks but independent between blocks. Suppose the largest block
has size K . If K increases with m such that K/m → 0 as m → ∞ then �∞(u)= 0 for all u. On
the other hand, if K/m → γ > 0 then �∞(u) > 0 and the estimator (2) is inconsistent.

Example 4. Strong mixing. Suppose the test statistics Ti have a strong mixing or α-mixing
dependence; that is, the supremum over k of |pr(A ∩ B)− pr(A)pr(B)|, where A is in the σ -
field generated by T1, . . . , Tk and B is in the σ -field generated by Tk+1, Tk+2, . . ., tends to 0 as
m → ∞ (Zhou & Liang, 2000). By taking A = {Ti > u} and B = {Tj > u} in (4), we have that
�∞ = 0 and therefore, by Theorem 1, the variance (7) converges to zero as m → ∞.

Example 5. Sparse dependence. Suppose the test statistics Ti are pairwise independent
except for M1 out of the M = m(m − 1)/2 distinct pairs. If the dependence is asymptotically
sparse in the sense that M1/M → 0 as m → ∞, then�∞(u)= 0 and the variance (7) goes to zero.
However, if M1/M → γ > 0, then the result will depend on the dependence structure among the
M1 dependent pairs. If this dependence goes away asymptotically as in one of the cases above,



Effect of correlation in false discovery rate estimation 203

then the variance (7) goes to zero. Otherwise, if the dependence persists such that �∞(u) > 0,
the estimator (2) is inconsistent.

2·4. Quantifying overdispersion for finite m

We are interested in estimating the distributional properties of the false discovery rate estima-
tor. This requires estimating the overdispersion�m(u) in (5) and (7). This quantity is easy to write
in terms of the pairwise correlations between the decision rules, as in (3), but not necessarily as
a function of the pairwise test statistic correlations ρi j . In this section we provide expressions for
�m(u) for finite m assuming a specific bivariate probability model for every pair of test statis-
tics, but without the need to assume a higher order correlation structure. We consider commonly
used z and χ2 tests.

Suppose first that every pair of test statistics (Ti , Tj ) has the bivariate normal density with
marginals N (μi , 1) and N (μ j , 1), and corr(Ti , Tj )= ρi j . Denote by φ(t) and φ2(ti , t j ; ρi j )

the univariate and bivariate standard normal densities. Mehler’s formula (Patel & Read, 1996;
Kotz et al., 2000) states that the joint density fi j (ti , t j )= φ2(ti − μi , t j − μ j ; ρi j ) of (Ti , Tj )

can be written as

fi j (ti , t j )= φ(ti − μi )φ(t j − μ j )

∞∑
k=0

ρk
i j

k!
Hk(ti − μi )Hk(t j − μ j ), (8)

where Hk(t) are the Hermite polynomials: H0(t)= 1, H1(t)= t , H2(t)= t2 − 1 and so forth.

THEOREM 2. Let μ= (μ1, . . . , μm)
T. Under the bivariate normal model (8), the overdisper-

sion term in (6) is

�m(u;μ)=
∞∑

k=1

ρ∗
k (u;μ)

k!
, (9)

where

ρ∗
k (u;μ)= 2

m(m − 1)

∑
i< j

ρk
i jφ(u − μi )φ(u − μ j )Hk−1(u − μi )Hk−1(u − μ j ). (10)

Under the complete null model μ= 0, (9) reduces to

�m(u)=�m(u; 0)= φ2(u)
∞∑

k=1

ρ̄k

k!
H2

k−1(u), (11)

where ρ̄k (k = 1, 2, . . .) are the empirical moments of the m(m − 1)/2 correlations ρi j (i < j).

Another common null distribution in multiple testing problems is the χ2 distribution. Let fν(t)
and Fν(t) be the density and distribution functions of the χ2(ν) distribution with ν degrees of
freedom. Under the complete null, the pair of test statistics (Ti , Tj ) admits a Lancaster bivariate
model where Ti and Tj have the same marginal density fν , their correlation is ρi j , and their joint
density is

fν(ti , t j ; ρi j )= fν(ti ) fν(ti )
∞∑

k=0

ρk
i j

k!

�(ν/2)

�(ν/2 + k)
L(ν/2−1)

k

(
ti
2

)
L(ν/2−1)

k

(
t j

2

)
, (12)
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where L(ν/2−1)
k (t) are the generalized Laguerre polynomials of degree ν/2 − 1: L(ν/2−1)

0 (t)=
1, L(ν/2−1)

1 (t)= −t + ν/2, L(ν/2−1)
2 (t)= t2 − 2(ν/2 + 1)t + (ν/2)(ν/2 + 1) and so forth

(Koudou, 1998). The χ2 distribution is not a location family with respect to the non-centrality
parameter, so the Lancaster expansion does not hold in the non-central case.

THEOREM 3. Assume the complete null. Under the bivariate χ2 model (12), the overdisper-
sion term in (6) is

�m(u)= f 2
ν+2(u)

∞∑
k=1

ρ̄k

k!

ν2�(ν/2)

k2�(ν/2 + k)

{
L(ν/2)k−1

(u

2

)}2
, (13)

where ρ̄k (k = 1, 2, . . .) are the empirical moments of the m(m − 1)/2 correlations ρi j (i < j).

Theorems 2 and 3 show that the overdispersion is a function of modified empirical moments
of the pairwise correlations ρi j and depends on m only through these moments. This provides
an efficient way to evaluate �m(u) for a given set of pairwise correlations, as the expansions
(11) and (13) may be approximated evaluating only the first few terms. This is in contrast to
direct computation of (6), which requires m(m − 1)/2 evaluations of the bivariate probabilities
in (4), one for each value of ρi j . In addition, as a function of u, both (11) and (13) decay as a
quadratic exponential times a polynomial, implying that the effect of correlation quickly becomes
negligible for high thresholds. Finally, under the complete null, (11) and (13) indicate that the
overdispersion, and thus also the variance (7), vanish asymptotically as m → ∞ for all u if and
only if ρ̄k → 0 as m → ∞ for all k = 1, 2, . . ..

2·5. Distributional properties of the false discovery rate estimator

We now apply the above results towards quantifying the distributional properties of the false
discovery rate estimator (2). Our strategy is to model Rm(u) as a negative binomial variable and
derive the properties of the estimator based on this model.

Seen as a function of m, the mean-variance structure (5) resembles that of the beta-binomial
distribution, which has been used to model overdispersed binomial data (Prentice, 1986;
McCullagh & Nelder, 1989). Because the beta-binomial distribution is difficult to work with,
we propose instead to model Rm(u) using a negative binomial distribution. The rationale is as
follows. A binomial distribution with number of trials n and success probability p can be approx-
imated by a Poisson distribution with mean parameter np when n is large and p is small. If p
has a beta distribution with mean μ, then when n is large and μ is small, the distribution of np
can be approximated by a gamma distribution with mean nμ. Therefore, the beta-binomial mix-
ture model can be approximated by a gamma-Poisson mixture model, which is equivalent to a
negative binomial distribution (Hilbe, 2007).

It is convenient to parameterize the negative binomial distribution with parameters λ� 0 and
ω� 0, such that the mean and variance of R ∼ N B(λ, ω) are

E(R)= λ, var(R)= λ+ ωλ2. (14)

See the proof of Theorem 4 below for details. Here λ is a mean parameter, whereas ω controls
the overdispersion with respect to the Poisson distribution. When ω→ 0 with λ constant, the
negative binomial distribution becomes Poisson with mean λ; when λ= 0, it becomes a point
mass at R = 0.
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We describe how to estimate λ and ω from data in § 2·6. Given λ and ω, the moments, dis-
tribution and quantiles of the estimator (2) can be obtained directly from the negative binomial
model as follows. For simplicity of notation, we omit the indices m and u.

THEOREM 4. Suppose R ∼ N B(λ, ω) if λ� 0, ω > 0, or R ∼ Po(λ) if λ� 0, ω= 0, with
moments (14), cumulative distribution function F(k)= pr(R � k), and quantiles F−1(q)=
inf{x : pr(R � x)� q}. Assume p0 is known and define the probability of discovery to be

γ (λ, ω)= pr(R > 0)=
{

1 − (1 + ωλ)−1/ω (ω > 0),

1 − exp(−λ) (ω= 0).

The mean and variance of ˆFDR = p0mα/(R ∨ 1) are

E( ˆFDR)= p0mα{1 − γ (λ, ω)+ γ (λ, ω)ζ(λ, ω)},
var( ˆFDR)= (p0mα)2{1 − γ (λ, ω)+ γ (λ, ω)ζ2(λ, ω)} − E2( ˆFDR),

where

ζ(λ, ω)= E

(
1

R

∣∣∣∣ R > 0

)
=

∫ λ

0

γ−1(λ, ω)− 1

γ−1(x, ω)− 1
· dx

x(1 + ωx)
,

ζ2(λ, ω)= E

(
1

R2

∣∣∣∣ R > 0

)
=

∫ λ

0

γ−1(λ, ω)− 1

γ−1(x, ω)− 1
· ζ(x, ω) dx

x(1 + ωx)
.

The distribution and quantiles of ˆFDR = p0mα/(R ∨ 1) are

pr( ˆFDR � x)=
{

1 − F(k) (ak+1 � x < ak; k = 1, 2, . . .),

1 (a1 � x),

inf{x : pr( ˆFDR � x)� q} =
{

aF−1(1−q)+1 (q � 1 − F(1)),

a1 (q > 1 − F(1)),

where ak = p0mα/k.

As a notational choice, the functions ζ(λ, ω) and ζ2(λ, ω) above were defined so that both are
bounded, tend to 0 as λ→ 0, and tend to 1 as λ→ ∞. When ω= 0, they are the same as (27) in
Schwartzman (2008) divided by λ.

2·6. Estimation of the distributional properties of the false discovery rate estimator

We estimate the parameters λ and ω of the negative binomial model for Rm(u) by the method
of moments. Based on (5) but respecting the form (14), we use the approximations E{Rm(u)} ∼
mα(u) and var{Rm(u)} ∼ mα(u)+ m2�m(u; 0) for large m under the complete null. The form
of the variance ensures that it is greater or equal to the mean as required by the negative binomial
model. In the normal case, using (11), the overdispersion term �m(u; 0) is estimated by

�̂m(u; 0)= φ2(u)
K∑

k=1

¯̂ρk

k!
H2

k−1(u),
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Fig. 1. Simulation results for Example 6: number of discoveries under the complete null, sparse cor-
relation, m = 100. Expectation (a) and standard deviation (b) of Rm(u)/m. Plotted in both panels:
the true value under independence (solid), the true value under dependence (dashed) and the value

calculated using the polynomial expansion (11) (dotted).

where ¯̂ρk (k = 1, . . . , K ) denote the empirical moments of the m(m − 1)/2 empirical pairwise
correlations ρ̂i j (i < j), after correction for sampling variability. In practice, K = 3 suffices.
The overdispersion (13) is estimated similarly in the χ2 case.

Matching the estimated moments of Rm(u) to those of the negative binomial model (14) leads
to the parameter estimates

λ̂m(u)= mα(u), ω̂m(u)= �̂m(u; 0)

α2(u)
. (15)

Finally, the moments and quantiles of ˆFDR are estimated using the formulas in Theorem 4 by
plugging in the parameter estimates (15).

3. NUMERICAL STUDIES AND DATA EXAMPLES

3·1. Numerical studies

The following simulations illustrate the effect of correlation on the estimator (2) and show the
accuracy of the negative binomial model in quantifying that effect. In the following simulations,
N = 10 000 datasets were drawn at random from the model Y j =μ j + Z j ( j = 1, . . . ,m), where
each Z j has marginal distribution N (0, 1). The tests were set up as H0 :μ j = 0 vs. Hj :μ j > 0.
The test statistics were taken as the z-scores Tj = Y j , the signal-to-noise ratio being controlled
by the strength of the signal μ j . The true false discovery rate was computed according to (1)
where the expectation was replaced by an average over the N simulated datasets. Similarly, the
true moments and distribution of Rm(u) and ˆFDRm(u) (2) were obtained from the N simulated
datasets.

Example 6. Sparse correlation, complete null. A sparse correlation matrix � = {ρi j } was
generated as follows. First, a lower triangular matrix A was generated with diagonal entries equal
to 1 and 10% of its lower off-diagonal entries randomly set to 0·6, zero otherwise. Then, � was
computed as the covariance matrix AA′, normalized to be a correlation matrix. This process
guarantees that� is positive definite. The resulting matrix� had 68% of its off-diagonal entries
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Fig. 2. Simulation results for Example 6: false discovery rate estimator under the complete null,
sparse correlation, m = 100. (a) and (b) Expectation and quantiles 0·05 and 0·95 of ˆFDR as a function
of threshold under independence (solid plain), under dependence (dashed plain) and estimated by the
negative binomial model (dotted). Also plotted: true false discovery rate under independence (solid
crossed) and under dependence (dashed crossed). (c) and (d) Bias and standard error of ˆFDR as a
function of the true false discovery rate under independence (solid), under dependence (dashed) and

estimated by the negative binomial model (dotted).

equal to zero, and empirical moments ρ̄ = 0·0588, ρ̄2 = 0·0134, ρ̄3 = 0·0037. The correlated
observations Z = (Z1, . . . , Zm)

′ were generated as Z =�1/2ε, where ε∼ N (0, Im). The signal
was set to μ j = 0 for all j = 1, . . . ,m.

Figure 1 shows the effect of dependence on the discovery rate Rm(u)/m for m = 100 under
the complete null. According to (5), dependence does not affect the mean, as all the lines overlap
in Figure 1(a), but affects the variance substantially for low thresholds. The estimated nega-
tive binomial mean and standard deviation coincide with the true values by design because the
moments were matched, except that only three terms were used in the polynomial expansion (11)
for �m(u). The first of these terms is the largest by far.

Figure 2 shows the effect of dependence on the false discovery rate estimator (2) for m = 100
under the complete null. Figure 2(a) shows that the estimator is always positively biased. It may
even be greater than 1 if the denominator is smaller than the numerator. Dependence causes the
true false discovery rate to go down, further increasing the bias. Dependence also causes the
variability of the estimator to increase dramatically, as indicated by the 0·05 and 0·95 quantiles
in Fig. 2(b). Here, the ragged and non-monotone lines are a consequence of the discrete nature of
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the distribution. In both panels (a) and (b), the expectation and quantiles of ˆFDR under dependency
are reasonably well approximated by the negative binomial model.

The bias and standard error of the false discovery rate estimator (2) are easier to assess when
plotted against the true false discovery rate in each case, as shown in Fig. 2(c) and (d). At practical
false discovery rate levels such as 0·2, the bias of the estimator under independence is about
10% while under correlation is 25%, about 2·5 times larger. Similarly, the standard error under
independence is about 9% while under correlation is 14%, about 1·7 times larger. The negative
binomial model gives slight overestimates.

Other simulations for increasing m from m = 10 to m = 10 000 indicate that, when plotted
against the true false discovery rate as in Fig. 2(c) and (d), the bias and standard error of the
estimator increase slightly as a function of m both under independence and correlation. This
is because increasing m increases the expectation and variance of the estimator for any fixed
threshold, but the threshold required for controlling false discovery rate at a given level also
increases accordingly.

Example 7. Sparse correlation, non-complete null. Keeping the same correlation structure
as before with m = 100, the signal was set to μ j = 1 ( j = 1, . . . , 5), providing a null fraction
p0 = 0·95. Figure 3 shows the effect of dependence on the false discovery rate estimator (2).
Figure 3(a) shows that the bias up persists as in the complete null case, while the overshoot has
been diminished. Figure 3(b) shows that correlation increases the variability of the estimator. This
is visible in this panel mostly in terms of the 0·05 quantile, as the 0·95 quantile lines coincide.

When plotted against the true false discovery rate, Fig. 3(c) and (d) shows that the bias and
variance of the estimator are higher than in the complete null case, about twice as much at a
false discovery rate level of 0·2. This is a consequence of the increased variance of Rm(u)/m
at medium-high thresholds, itself a consequence of the increased mean of Rm(u)/m according
to (5). In this regard, the effect of the signal is stronger than that of dependence. This explains
why the negative binomial line, which was fitted assuming the complete null, does not match the
simulations as well as when no signal is present.

3·2. Data example

We use the genetic microarray dataset from Mootha et al. (2003), which has m = 10 983
expression levels measured among diabetes patients. For the purposes of this article, standard
two-sample t-statistics were computed at each gene between the group with Type 2 diabetes mel-
litus, n1 = 17, and the group with normal glucose tolerance, n2 = 17. The t-statistics, having
32 degrees of freedom, were converted to the normal scale by a bijective quantile transforma-
tion (Efron, 2004, 2007a). The histogram of the m = 10 983 test statistics in Fig. 4(a) is almost
standard normal; its mean and standard deviation are 0·059 and 0·977. Thus the effect of corre-
lation on the null distribution (Efron, 2007a) is minimal.

Figure 4(b) shows a histogram of 499 500 sample pairwise correlations computed from 1000
randomly sampled genes out of m = 10 983. The pairwise correlations were computed between
the gene expression levels across all 34 subjects after subtracting the means of both groups sep-
arately. These are approximately the same as the correlations between the z-scores given the
moderate sample size of 34. The first three empirical moments of the sample pairwise corre-
lations, obtained from a random sample of 2000 genes, were 0·0044, 0·0846 and 0·0020. To
correct for sampling variability, empirical Bayes shrinking of the sample correlations towards
zero (Owen, 2005; Efron, 2007a) resulted in the superimposed black histogram, with first three
empirical moments 0·0029, 0·0586 and 0·0012.
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Fig. 3. Simulation results for Example 7: false discovery rate estimator with 5% signal atμ= 1, sparse
correlation, m = 100. Same quantities plotted as in Fig. 2. The negative binomial line (dotted) was

fitted assuming the complete null.

Figure 4(c) shows the false discovery rate estimator (2) as a function of the threshold u.
Superimposed are the 0·05 and 0·95 quantiles of the estimator according to the negative bino-
mial model under the complete null. The 0·05 quantile line is much lower when correlation is
taken into account, while the 0·95 quantile lines coincide. At u = 4, the estimated false dis-
covery rate is 0·17, but the bands under correlation indicate that with 90% probability it could
have been as low as 0·12 or as high as 0·35. For reference, we superimposed the 0·05 and 0·95
quantiles of the empirical distribution of the estimator obtained by permuting the subject labels
between the two groups, while keeping genes belonging to the same subject together. We see
that the permutation estimates closely resemble those of the negative binomial model under
correlation.

4. DISCUSSION

The distribution of the false discovery rate estimator (2) is discrete and highly skewed, so
rather than standard errors, as in Efron (2007a) and Schwartzman (2008), we chose to indicate the
variability of the estimator by its quantiles. The 0·05 quantile indicates how deceptively low the
estimates can be even when there is no signal. The 0·95 quantile is almost always equal to mα(u),
the Bonferroni-adjusted level, showing that the estimator can be sometimes as conservative as
the Bonferroni method. We emphasize that the negative binomial bands between the 0·05 and
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Fig. 4. The diabetes microarray data. (a) Histogram of the m = 10 983 test statistics converted to
normal scale; superimposed is the N (0, 1) density times m. (b) Histogram of 499 500 pairwise sample
correlations from 1000 randomly sampled genes; superimposed in black: histogram corrected for
sampling variability. (c) False discovery rate curves: ˆFDR (solid crossed); quantiles 0·05 and 0·95
estimated by the negative binomial model assuming independence (solid) and assuming the pairwise
correlations from the data (dashed); 0·05 and 0·95 quantiles estimated by permutations (dotted). All

the 0·95 quantile lines overlap at the right edge.

0·95 quantiles describe the behavior under the complete null and are not 90% confidence bands
for the true false discovery rate. It is interesting that, in our data example, correlation played an
important role but did not cause a departure from the null distribution, as may have been predicted
by Efron (2007a).

The negative binomial parameters can be computed via (5) and (15) for any pairwise distri-
bution of the test statistics. The main motivation for assuming the normal and χ2 models was
to reduce computations, as the Mehler and Lancaster expansions of § 2·4 allowed reducing the
correlation structure to the first few empirical moments of the pairwise correlations. A similar
reduction was used by Owen (2005) and Efron (2007a). As shown in the data example, t-statistics
can be handled easily by a quantile transformation to z-scores (Efron, 2007a). Similarly, F statis-
tics can be transformed to χ2-scores (Schwartzman, 2008).

Summarizing the effect of the pairwise correlations by their empirical moments allows a
gross comparison between different correlation structures. For example, the simulated scenario
in Examples 6 and 7 of a sparse correlation structure with 68% pairwise correlations equal to
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zero has nearly the same first moment but higher second moment as a fully exchangeable cor-
relation with ρ = 0·06. Simulations show that both correlation structures have similar effects on
the false discovery rate estimator.

Further work is required for the estimation of λm(u) andωm(u) in the negative binomial model,
not assuming the complete null. This is difficult but important because the effect of the signal
may be stronger than that of the correlation. Since λm(u) is the expected number of discoveries,
one could estimate it by Rm(u), but this estimate is too noisy. In terms of ωm(u), one could
estimate the required overdispersion term using Theorem 2, but the provided expression depends
on the true signal, which is unknown. Estimating the signal as null may be appropriate if the
signal is weak and/or p0 is close to 1. Other options include using a highly regularized estimator
of the signal vector μ. From the form of (10), it is expected that more weight would be given to
pairwise correlations where the signal is large.

The negative binomial model was based on an approximation to a beta-binomial model when m
is large and α is small. For larger α, the approximation may continue to hold as both distributions
approach normality. Another approach sometimes used when strong dependency is suspected
is to first transform the data to weak dependency via linear combination and then apply the
false discovery rate procedure (Klebanov et al., 2008). This approach does not test the original
marginal means but linear combinations of them. We chose not to do this so that the inference
would continue to be about the original hypotheses.

The false discovery rate estimator is inherently biased and highly variable. It has been recog-
nized before that under high correlation, the estimator ‘might become either downward biased or
grossly upward biased’ (Yekutieli & Benjamini, 1999). The exchangeable correlation structure
is a special case of positive regression dependence and therefore thresholding of the estimator
guarantees control of the false discovery rate control (Benjamini & Yekutieli, 2001). The con-
servativeness of the thresholding procedure is reflected in the positive bias of the estimator, a
consequence of overdispersion in the number of discoveries. In general, however, a positive bias
is not enough to guarantee false discovery rate control as it makes the thresholding procedure
conservative only on average, not uniformly over thresholds (Yekutieli & Benjamini, 1999). A
correlation structure that produced underdispersion and negative bias might not provide control
of the false discovery rate. Because the false discovery rate estimator was derived from the point
of view of control, it is possible that better estimators might be found in the future by approaching
the problem directly as an estimation problem.
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APPENDIX

Technical details

Proof of Theorem 1. Define a mapping of the matrix {ψi j } to the unit square [0, 1)2 by the function

gm(x, y)=
m∑

i=1

m∑
j=1

ψi j 1

(
i − 1

m
� x <

i

m
,

j − 1

m
� y <

j

m

)
.
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Then the variance (3) is equal to the integral
∫ 1

0

∫ 1
0 gm(x, y) dx dy. The limit assumptions onψi j imply that

as m → ∞, gm(x, y)→�∞ pointwise for every (x, y). Therefore, by the bounded convergence theorem,
the integral converges to

∫ 1
0

∫ 1
0 �∞ dx dy =�∞. �

Proof of Theorem 2. Let �+(u) be the standard normal survival function and �+
2 (u, v; ρ) be the

bivariate standard normal survival function with marginals N (0, 1) and correlation ρ. Integrating (8) over
the quadrant [ti − μi ,∞] × [t j − μ j ,∞] gives

�+
2 (ti − μi , t j − μ j ; ρi j )=�+(ti − μi )�

+(t j − μ j )

+ φ(ti − μi )φ(t j − μ j )

∞∑
k=1

ρk
i j

k!
Hk−1(ti − μi )Hk−1(t j − μ j ),

where we have used the property that the integral of φ(t)Hk(t) over [u,∞) is −φ(u)Hk−1(u) for k � 1.
Replacing in (4) and then (6) gives the overdispersion term (11). �

Proof of Theorem 3. Let Fν(u, v; ρ) denote the bivariate χ2 survival function with ν degrees of free-
dom corresponding to the density (12). Integrating (12) over the quadrant [u,∞] × [v,∞] gives

Fν(u, v; ρi j )= Fν(u)Fν(v)+ fν+2(u) fν+2(v)

∞∑
k=1

ρk
i j

k!

ν2�(ν/2)

k2�(ν/2 + k)
L(ν/2)k−1

(u

2

)
L(ν/2)k−1

(v
2

)
,

where we have used the property that the integral of fν(t)L(ν/2−1)
k (t/2) over [u,∞) is

(ν/k) fν+2(u)L(ν/2)k−1 (u/2) for k � 1. Replacing in (4) and then (6) gives the overdispersion term
(13). �

Proof of Theorem 4. Let R ∼ N B(r, p) denote the common parameterization of the negative binomial
distribution with probability mass function

pr(R = k)= �(k + r)

k!�(r)
pr (1 − p)k (k = 0, 1, 2, . . .), (A1)

where 0< p< 1 and r � 0. This parameterization is related to ours by

λ= r
1 − p

p
� 0, ω= 1

r
> 0 ⇐⇒ r = 1

ω
, p = 1

1 + ωλ
. (A2)

The case ω= 0, R ∼ Po(λ), is obtained as the limit of the above negative binomial distribution as ω→ 0
such that λ remains constant. The same is true for the moments of R, which are continuous functions of
ω.

From (A1), γ (λ, ω)= pr(R > 0)= 1 − pr = 1 − (1 + ωλ)−1/ω, which becomes 1 − exp(−λ) in the
limit as ω→ 0. For the mean, we have that

E( ˆFDR)= E
( p0mα

R ∨ 1

)
= p0mα

{
pr(R = 0)+ E

(
1

R
| R > 0

)
pr(R > 0)

}
,

where pr(R > 0)= γ (λ, ω) and pr(R = 0)= 1 − γ (λ, ω) by definition. All that remains is the conditional
expectation, which for ω> 0 is equal to

E

(
1

R
| R > 0

)
= 1

1 − pr

∞∑
k=1

1

k

�(k + r)

k!�(r)
pr (1 − p)k = pr

1 − pr

∞∑
k=1

�(k + r)

k!�(r)

∫ 1

p
(1 − t)k−1 dt

= pr

1 − pr

∫ 1

p

dt

(1 − t)tr

∞∑
k=1

�(k + r)

k!�(r)
tr (1 − t)k = pr

1 − pr

∫ 1

p

1 − tr

(1 − t)tr
dt.
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Replacing (A2) and making the change of variable t = 1/(1 + ωx) gives the expression for ζ(λ, ω). The
case ω= 0 is obtained by similar calculations for the Poisson distribution or by taking the limit as ω→ 0.

For the second moment, we have

E( ˆFDR2
)= E

{( p0mα

R ∨ 1

)2
}

= (p0mα)2
{

pr(R = 0)+ E

(
1

R2
| R > 0

)
pr(R > 0)

}
.

Again, we only need the conditional expectation, which for ω> 0 is equal to

E

(
1

R2

∣∣∣∣ R > 0

)
= 1

1 − pr

∞∑
k=1

1

k2

�(k + r)

k!�(r)
pr (1 − p)k = pr

1 − pr

∞∑
k=1

�(k + r)

k!�(r)

∫ 1

p

(1 − t)k−1

k
dt

= pr

1 − pr

∫ 1

p

dt

(1 − t)tr

∞∑
k=1

1

k

�(k + r)

k!�(r)
tr (1 − t)k .

Following the argument in part (ii) of the proof, the last sum above is equal to (1 − tr )E{(1/S)|S > 0},
where S ∼ N B(r, t). Then the change of variable t = 1/(1 + ωx) and replacing (A2) gives the expression
for ζ2(λ, ω).

For the distribution, ˆFDR takes values the discrete values ak = p0mα/k (k = 1, 2, . . .). If ak+1 � x <
ak (k = 1, 2, . . .), then

pr( ˆFDR� x)= P

(
p0mα

R ∨ 1
� p0mα

k + 1

)
= pr(R � k + 1)= 1 − pr(R � k)= 1 − F(k).

If x � a1 = p0mα, then x is greater than the largest value that ˆFDR can take, so pr( ˆFDR� x)= 1.
For the quantiles, let ε > 0. If q � 1 − F(1), k = F−1(1 − q), then

pr( ˆFDR� ak+1)= pr

(
ˆFDR� p0mα

k + 1

)
= pr(R � k + 1)= 1 − F(k)� q,

pr( ˆFDR� ak+1 − ε)= pr

(
ˆFDR� p0mα

k + 2

)
= pr(R � k + 2)= 1 − F(k + 1) < q.

If q > 1 − F(1),

pr( ˆFDR� a1)= pr( ˆFDR� p0mα)= pr(R ∨ 1 � 1)= 1 � q,

pr( ˆFDR� a1 − ε)= pr
(

ˆFDR� p0mα

2

)
= pr(R � 2)= 1 − F(1) < q. �
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