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SUMMARY

Gaussian graphical models explore dependence relationships between random variables,
through the estimation of the corresponding inverse covariance matrices. In this paper we develop
an estimator for such models appropriate for data from several graphical models that share the
same variables and some of the dependence structure. In this setting, estimating a single graph-
ical model would mask the underlying heterogeneity, while estimating separate models for each
category does not take advantage of the common structure. We propose a method that jointly esti-
mates the graphical models corresponding to the different categories present in the data, aiming
to preserve the common structure, while allowing for differences between the categories. This is
achieved through a hierarchical penalty that targets the removal of common zeros in the inverse
covariance matrices across categories. We establish the asymptotic consistency and sparsity of
the proposed estimator in the high-dimensional case, and illustrate its performance on a num-
ber of simulated networks. An application to learning semantic connections between terms from
webpages collected from computer science departments is included.
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1. INTRODUCTION

Graphical models represent the relationships between a set of random variables through their
joint distribution. Generally, the variables correspond to the nodes of the graph, while edges
represent their marginal or conditional dependencies. The study of graphical models has attracted
much attention both in the statistical and computer science literature; see, for example, the books
by Lauritzen (1996) and Pearl (2009). These models have proved useful in a variety of contexts,
including causal inference and estimation of networks. Special members of this family of models
include Bayesian networks, which correspond to a directed acyclic graph, and Gaussian models,
which assume the joint distribution to be Gaussian. In the latter case, because the distribution is
characterized by its first two moments, the entire dependence structure can be determined from
the covariance matrix, where off-diagonal elements are proportional to marginal correlations,
or, more commonly, from the inverse covariance matrix, where the off-diagonal elements are
proportional to partial correlations. Specifically, variables j and j ′ are conditionally independent
given all other variables, if and only if the ( j, j ′)th element in the inverse covariance matrix is
zero; thus the problem of estimating a Gaussian graphical model is equivalent to estimating an
inverse covariance matrix.

The literature on estimating an inverse covariance matrix goes back to Dempster (1972), who
advocated the estimation of a sparse dependence structure, i.e., setting some elements of the
inverse covariance matrix to zero. Edwards (2000) gave an extensive review of early work in this
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area. A standard approach is the backward stepwise selection method, which starts by removing
the least significant edges from a fully connected graph, and continues removing edges until all
remaining edges are significant according to an individual partial correlation test. This proce-
dure does not account for multiple testing; a conservative simultaneous testing procedure was
proposed by Drton & Perlman (2004).

More recently, the focus has shifted to using regularization for sparse estimation
of the inverse covariance matrix and the corresponding graphical model. For example,
Meinshausen & Bühlmann (2006) proposed to select edges for each node in the graph by regress-
ing the variable on all other variables using �1-penalized regression. This method reduces
to solving p separate regression problems, and does not provide an estimate of the matrix
itself. A penalized maximum likelihood approach using the �1 penalty has been considered
by Yuan & Lin (2007), Banerjee et al. (2008), d’Aspremont et al. (2008), Friedman et al. (2008)
and Rothman et al. (2008), who have all proposed different algorithms for computing this esti-
mator. This approach produces a sparse estimate of the inverse covariance matrix, which can
then be used to infer a graph, and has been referred to as the graphical lasso (Friedman et al.,
2008) or sparse permutation invariant covariance estimator (Rothman et al., 2008). Theoreti-
cal properties of the �1-penalized maximum likelihood estimator in the large p scenario were
derived by Rothman et al. (2008), who showed that the rate of convergence in the Frobenius
norm is Op[{q(log p)/n}1/2], where q is the total number of nonzero elements in the preci-
sion matrix. Fan et al. (2009) and Lam & Fan (2009) extended this penalized maximum like-
lihood approach to general nonconvex penalties, such as the smoothly clipped absolute devia-
tion penalty (Fan & Li, 2001), while Lam & Fan (2009) also established a so-called sparsistency
property of the penalized likelihood estimator, implying that it estimates true zeros correctly with
probability tending to 1. Alternative penalized estimators based on the pseudolikelihood instead
of the likelihood have been recently proposed by G. V. Rocha, P. Zhao, and B. Yu, in a 2008
unpublished preprint, arXiv:0811.1239, and Peng et al. (2009); the latter paper also established
consistency in terms of both estimation and model selection.

The focus so far in the literature has been on estimating a single Gaussian graphical model.
However, in many applications it is more realistic to fit a collection of such models, due to
the heterogeneity of the data involved. By heterogeneous data we mean data from several cat-
egories that share the same variables but differ in their dependence structure, with some edges
common across all categories and other edges unique to each category. For example, consider
gene networks describing different subtypes of the same cancer: there are some shared path-
ways across different subtypes, and there are also links that are unique to a particular sub-
type. Another example from text mining, which is discussed in detail in §5, is word rela-
tionships inferred from webpages. In our example, the webpages are collected from univer-
sity computer science departments, and the different categories correspond to faculty, student,
course, etc. In such cases, borrowing strength across different categories by jointly estimat-
ing these models could reveal a common structure and reduce the variance of the estimates,
especially when the number of samples is relatively small. To accomplish this joint estimation,
we propose a method that links the estimation of separate graphical models through a hier-
archical penalty. Its main advantage is the ability to discover a common structure and jointly
estimate common links across graphs, which leads to improvements compared to fitting sep-
arate models, since it borrows information from other related graphs. While in this paper we
focus on continuous data, this methodology can be extended to graphical models with cate-
gorical variables; fitting such models to a single graph has been considered by M. Kolar and
E. P. Xing in a 2008 unpublished preprint, arXiv:0811.1239, Hoefling & Tibshirani (2009) and
Ravikumar et al. (2009).
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2. METHODOLOGY

2·1. Problem set-up

Suppose we have a heterogeneous dataset with p variables and K categories. The kth category
contains nk observations (x (k)

1 , . . . , x (k)
nk )T, where each x (k)

i = (x (k)
i,1 , . . . , x (k)

i,p) is a p-dimensional
row vector. Without loss of generality, we assume that the observations in the same category are
centred along each variable, i.e.,

∑nk
i=1 x (k)

i, j = 0 for all j = 1, . . . , p and k = 1, . . . , K . We further
assume that x (k)

1 , . . . , x (k)
nk are an independent and identically distributed sample from a p-variate

Gaussian distribution with mean zero, without loss of generality since the data are centred, and
covariance matrix �(k). Let �(k) = (�(k))−1 = (ω

(k)
j, j ′)p×p. The loglikelihood of the observations

in the kth category is

l(�(k)) = −nk

2
log (2π) + nk

2
[log{det(�(k))} − tr(�̂(k)�(k))],

where �̂(k) is the sample covariance matrix for the kth category, and det(·) and tr(·) are the
determinant and the trace of a matrix, respectively.

The most direct way to deal with such data is to estimate K individual graphical models. We
can compute a separate �1-regularized estimator for each category k (k = 1, . . . , K ) by solving

min
�(k)

tr(�̂(k)�(k)) − log{det(�(k))} + λk

∑
j |= j ′

|ω(k)
j, j ′ |, (1)

where the minimum is taken over symmetric positive definite matrices. The �1 penalty shrinks
some of the off-diagonal elements in �(k) to zero and the tuning parameter λk controls the degree
of the sparsity in the estimated inverse covariance matrix. Problem (1) can be efficiently solved
by existing algorithms such as the graphical lasso (Friedman et al., 2008). We will refer to this
approach as the separate estimation method and use it as a benchmark to compare with the joint
estimation method we propose next.

2·2. The joint estimation method

To improve estimation when graphical models for different categories may share some com-
mon structure, we propose a joint estimation method. First, we reparameterize each off-diagonal
element ω

(k)
j, j ′ as ω

(k)
j, j ′ = θ j, j ′γ

(k)
j, j ′ (1 � j |= j ′ � p; k = 1, . . . , K ). An analogous parameteri-

zation in a dimension reduction setting was used in Michailidis & de Leeuw (2001). To avoid
sign ambiguity between θ and γ , we restrict θ j, j ′ � 0, 1 � j |= j ′ � p. To preserve symmetry,

we require that θ j, j ′ = θ j ′, j and γ
(k)
j, j ′ = γ

(k)
j ′, j (1 � j |= j ′ � p; k = 1, . . . , K ). For all diagonal

elements, we also require θ j, j = 1 and γ
(k)
j, j = ω

(k)
j, j ( j = 1, . . . , p; k = 1, . . . , K ). This decompo-

sition treats (ω
(1)
j, j ′, . . . , ω

(K )
j, j ′) as a group, with the common factor θ j, j ′ controlling the presence

of the link between nodes j and j ′ in any of the categories, and γ
(k)
j, j ′ reflects the differences

between categories. Let 
 = (θ j, j ′)p×p and �(k) = (γ
(k)
j, j ′)p×p. To estimate this model, we pro-

pose the following penalized criterion subject to all constraints mentioned above:

min

,(�(k))K

k=1

K∑
k=1

[tr(�̂(k)�(k)) − log{det(�(k))}] + η1

∑
j |= j ′

θ j, j ′ + η2

∑
j |= j ′

K∑
k=1

|γ (k)
j, j ′ |, (2)
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where η1 and η2 are two tuning parameters. The first, η1, controls the sparsity of the common
factors θ j, j ′ and can effectively identify the common zero elements across �(1), . . . , �(K ); i.e.
if θ j, j ′ is shrunk to zero, there will be no link between nodes j and j ′ in any of the K graphs.

If θ j, j ′ is not zero, some of the γ
(k)
j, j ′ , and hence some of the ω

(k)
j, j ′ , can still be set to zero by the

second penalty. This allows graphs belonging to different categories to have different structures.
This decomposition has also been used by N. Zhou and J. Zhu in a 2007 unpublished preprint,
arXiv:1006.2871, for group variable selection in regression problems.

Criterion (2) involves two tuning parameters η1 and η2; it turns out that this could be reduced
to an equivalent problem with a single tuning parameter. Specifically, consider

min

,(�(k))K

k=1

K∑
k=1

[tr(�̂(k)�(k)) − log{det(�(k))}] +
∑
j |= j ′

θ j, j ′ + η
∑
j |= j ′

K∑
k=1

|γ (k)
j, j ′ |, (3)

where η = η1η2. For two matrices A and B of the same size, we denote their Schur–Hadamard
product by A · B. Criteria (2) and (3) are equivalent in the following sense.

LEMMA 1. Let {
̂∗, (�̂(k)∗)K
k=1} be a local minimizer of criterion (3). Then, there exists a local

minimizer of criterion (2), denoted as {
̂∗∗, (�̂(k)∗∗)K
k=1}, such that 
̂∗∗ · �̂(k)∗∗ = 
̂∗ · �̂(k)∗ for

all k = 1, . . . , K . Similarly, if {
̂∗∗, (�̂(k)∗∗)K
k=1} is a local minimizer of criterion (2), then there

exists a local minimizer of criterion (3), denoted as {
̂∗, (�̂(k)∗)K
k=1}, such that 
̂∗∗ · �̂(k)∗∗ =


̂∗ · �̂(k)∗ for all k = 1, . . . , K .

The proof follows closely the proof of the lemma in Zhou and Zhu’s unpublished 2007 preprint,
and is omitted. This result implies that in practice, instead of tuning two parameters η1 and η2,
we only need to tune one parameter η, which reduces the overall computational cost.

2·3. The algorithm

First we reformulate the problem (3) in a more convenient form for computational purposes.

LEMMA 2. Let (�̂(k))K
k=1 be a local minimizer of

min
(�(k))K

k=1

K∑
k=1

[tr(�̂(k)�(k)) − log{det(�(k))}] + λ
∑
j |= j ′

(
K∑

k=1

|ω(k)
j, j ′ |
)1/2

, (4)

where λ = 2η1/2. Then, there exists a local minimizer of (3), {
̂, (�̂(k))K
k=1}, such that �̂(k) =


̂ · �̂(k), for all k = 1, . . . , K . On the other hand, if {
̂, (�̂(k))K
k=1} is a local minimizer of (3),

then there also exists a local minimizer of (4), (�̂(k))K
k=1, such that �̂(k) = 
̂ · �̂(k), for all

k = 1, . . . , K .

The proof follows closely the proof of the lemma in Zhou and Zhu’s unpublished 2007 preprint,
and is omitted. To optimize (4) we use an iterative approach based on local linear approxima-
tion (Zou & Li, 2008). Specifically, letting (ω

(k)
j, j ′)

(t) denote the estimates from the previous iter-

ation t , we approximate (
∑K

k=1 |ω(k)
j, j ′ |)1/2 ∼∑K

k=1 |ω(k)
j, j ′ |/{

∑K
k=1 |(ω(k)

j, j ′)
(t)|}1/2. Thus, at the

(t + 1)th iteration, problem (4) is decomposed into K individual optimization problems:

(�(k))(t+1) = arg min
�(k)

[tr(�̂(k)�(k)) − log{det(�(k))}] + λ
∑
j |= j ′

τ
(k)
j, j ′ |ω(k)

j, j ′ |, (5)
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where τ
(k)
j, j ′ = {∑K

k=1 |(ω(k)
j, j ′)

(t)|}−1/2. Criterion (5) is exactly the sparse inverse covariance
matrix estimation problem with weighted �1 penalty; the solution can be efficiently computed
using the graphical lasso algorithm of Friedman et al. (2008). For numerical stability, we thresh-
old {∑K

k=1 |(ω(k)
j, j ′)

(t)|}1/2 at 10−10. In summary, the proposed algorithm for solving (4) is:

Step 0. Initialize �̂(k) = (�̂(k) + ν Ip)
−1 for all k = 1, . . . , K , where Ip is the identity matrix

and the constant ν is chosen to guarantee �̂(k) + ν Ip is positive definite.

Step 1. Update �̂(k) by (5) for all k = 1, . . . , K using graphical lasso.

Step 2. Repeat Step 1 until convergence is achieved.

2·4. Model selection

The tuning parameter λ in (4) controls the sparsity of the resulting estimator. It can be selected
either by some type of Bayesian information criterion or through crossvalidation. The former
balances the goodness of fit of the model and its complexity, while the latter seeks to optimize
its predictive power. Specifically, for the proposed joint estimation method we define

BIC(λ) =
K∑

k=1

[tr(�̂(k)�̂
(k)
λ ) − log{det(�̂(k)

λ )} + dfk log(nk)],

where �̂
(1)
λ , . . . , �̂

(K )
λ are the estimates from (4) with tuning parameter λ and the degrees of

freedom are defined as dfk = #{( j, j ′) : j < j ′, ω̂(k)
j, j ′ |= 0}. An analogous definition of the degrees

of freedom for the lasso has been proposed by Zou et al. (2007).
The crossvalidation method randomly splits the dataset into D segments of equal size. For

the kth category, we denote the sample covariance matrix using the data in the dth segment
(d = 1, . . . , D) by �̂(k,d) and the inverse covariance matrix estimated using all the data excluding
those in the dth segment and the tuning parameter λ by �̂

(k,−d)
λ . Then we choose λ that minimizes

the average predictive negative loglikelihood as follows:

CV(λ) =
D∑

d=1

K∑
k=1

[tr(�̂(k,d)�̂
(k,−d)
λ ) − log{det(�̂(k,−d)

λ )}].

Crossvalidation can in general be expected to be more accurate than the heuristic BIC; it is much
more computationally intensive however, which is why we consider both options. We provide
some comparisons between the tuning parameter selection methods in §4.

3. ASYMPTOTIC PROPERTIES

Next, we derive the asymptotic properties of the joint estimation method, including consis-
tency, as well as sparsistency, when both p and n go to infinity and the tuning parameter goes to
zero at a certain rate. First, we introduce the necessary notation and state certain regularity condi-
tions on the true precision matrices (�

(1)
0 , . . . , �

(K )
0 ), where �

(k)
0 = (ω

(k)
0, j, j ′)p×p (k = 1, . . . , K ).

Let Tk = {( j, j ′) : j |= j ′, ω(k)
j, j ′ |= 0} be the set of indices of all nonzero off-diagonal elements

in �(k), and let T = T1 ∪ · · · ∪ TK . Let qk = |Tk | and q = |T | be the cardinalities of Tk and T ,
respectively. In general, Tk and qk depend on p. In addition, let ‖ · ‖F and ‖ · ‖ be the Frobenius
norm and the 2-norm of matrices, respectively. We assume that the following regularity
conditions hold.
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Condition 1. There exist constants τ1, τ2 such that for all p � 1 and k = 1, . . . , K , 0 < τ1 <

φmin(�
(k)
0 ) � φmax(�

(k)
0 ) < τ2 < ∞, where φmin and φmax indicate the minimal and maximal

eigenvalues.

Condition 2. There exists a constant τ3 > 0 such that mink=1,...,K min( j, j ′)∈Tk |ω(k)
0, j, j ′ | � τ3.

Condition 1 is standard, and is also used in Bickel & Levina (2008) and Rothman et al. (2008),
which guarantees that the inverse exists and is well conditioned. Condition 2 ensures that nonzero
elements are bounded away from zero.

THEOREM 1 (CONSISTENCY). Suppose Conditions 1 and 2 hold, (p + q)(log p)/n = o(1)

and �1{(log p)/n}1/2 � λ � �2{(1 + p/q)(log p)/n}1/2 for some positive constants �1 and �2.
Then there exists a local minimizer (�̂(k))K

k=1 of (4), such that

K∑
k=1

‖�̂(k) − �
(k)
0 ‖F = Op

[{
(p + q) log p

n

}1/2
]

.

THEOREM 2 (SPARSISTENCY). Suppose all conditions in Theorem 1 hold. We further assume∑K
k=1 ‖�̂(k) − �

(k)
0 ‖2 = Op(ηn), where ηn → 0 and {(log p)/n}1/2 + η

1/2
n = O(λ). Then with

probability tending to 1, the local minimizer (�̂(k))K
k=1 in Theorem 1 satisfies ω̂

(k)
j, j ′ = 0 for all

( j, j ′) ∈ T c
k , k = 1, . . . , K .

This theorem is analogous to Theorem 2 of Lam & Fan (2009). The consistency requires
both an upper and a lower bound on λ, whereas sparsistency requires consistency and an addi-
tional lower bound on λ. To make the bounds compatible, we require {(log p)/n}1/2 + η

1/2
n =

O[{(1 + p/q)(log p)/n}1/2]. Since ηn is the rate of convergence in the operator norm, we can
bound it using the fact that ‖M‖2

F/p � ‖M‖2 � ‖M‖2
F . This leads to two extreme cases. In

the worst-case scenario,
∑

k ‖�̂(k) − �
(k)
0 ‖ has the same rate as

∑
k ‖�̂(k) − �

(k)
0 ‖F and thus

ηn = O{(p + q)(log p)/n}. The two bounds are compatible only when q = O(1). In the best-
case scenario,

∑
k ‖�̂(k) − �

(k)
0 ‖ has the same rate as

∑
k ‖�̂(k) − �

(k)
0 ‖F/p1/2. Then, ηn =

O{(1 + q/p)(log p)/n} and we have both consistency and sparsistency as long as q = O(p).

4. NUMERICAL EVALUATION

4·1. Simulation settings

In this section, we assess the performance of the joint estimation method on three types of
simulated networks: a chain, a nearest-neighbour and a scale-free network. In all cases, we set
p = 100 and K = 3. For each k = 1, . . . , K , we generate nk = 100 independently and identically
distributed observations from a multivariate normal distribution N {0, (�(k))−1}, where �(k) is
the inverse covariance matrix of the kth category. The details of the three simulated examples are
as follows.

In the first example, we follow the simulation set-up in Fan et al. (2009) to generate a chain
network, which corresponds to a tridiagonal inverse covariance matrix. The covariance matrices
�(k) are constructed as follows: let the ( j, j ′)th element σ

(k)
j, j ′ = exp(−|s j − s j ′ |/2), where s1 <

s2 < · · · < sp and s j − s j−1 ∼ Un(0·5, 1) ( j = 2, . . . , p).
Further, let �(k) = (�(k))−1. The K precision matrices generated by this procedure share the

same pattern of zeros, i.e. the common structure, but the values of their nonzero off-diagonal
elements may be different. The left panel of Fig. 1 shows the common link structure across
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Chain network Nearest-neighbour network Scale-free network

Fig. 1. The common links present in all categories in the three simulated networks.

the K categories. Further, we add heterogeneity to the common structure by creating additional
individual links as follows: for each �(k) (k = 1, . . . , K ), we randomly pick a pair of symmetric
zero elements and replace them with a value uniformly generated from the [−1, −0·5] ∪ [0·5, 1]
interval. This procedure is repeated ρM times, where M is the number of off-diagonal nonzero
elements in the lower triangular part of �(k) and ρ is the ratio of the number of individual links
to the number of common links. In the simulations, we considered values of ρ = 0, 1/4, 1 and 4,
thus gradually increasing the proportion of individual links.

In the second example, the nearest-neighbour networks are generated by modifying the data
generating mechanism described in Li & Gui (2006). Specifically, we generate p points ran-
domly on a unit square, calculate all p(p − 1)/2 pairwise distances, and find m nearest neigh-
bours of each point in terms of this distance. The nearest neighbour network is obtained by linking
any two points that are m-nearest neighbours of each other. The integer m controls the degree of
sparsity of the network and the value m = 5 was chosen in our study. The middle panel of Fig. 1
illustrates a realization of the common structure of a nearest-neighbour network. Subsequently,
K individual graphs were generated, by adding some individual links to the common graph with
ρ = 0, 1/4, 1, 4 by the same method as described in Example 1, with values for the individual
links ω

(k)
j, j ′ generated from a uniform distribution on [−1, −0·5] ∪ [0·5, 1].

In the last example, we generate the common structure of a scale-free network using the
Barabasi–Albert algorithm (Barabasi & Albert, 1999); a realization is depicted in the right
panel of Fig. 1. The individual links in the kth network (k = 1, . . . , K ), are randomly added
as before, with ρ = 0, 1/4, 1, 4 and the associated elements in �(k) are generated uniformly on
[−1, −0·5] ∪ [0·5, 1].

We compare the joint estimation method to the method that estimates each category separately
via (1). A number of metrics are used to assess performance, including receiver operating char-
acteristic curves, average entropy loss, average Frobenius loss, average false positive and average
false negative rates, and the average rate of misidentified common zeros among the categories.
For the receiver operating characteristic curve, we plot sensitivity, the average proportion of cor-
rectly detected links, against the average false positive rate over a range of values of the tuning
parameter λ. The average entropy loss and average Frobenius loss are defined as

EL = 1

K

K∑
k=1

tr{(�(k))−1�̂(k)} − log[det{(�(k))−1�̂(k)}] − p,

FL = 1

K

K∑
k=1

‖�(k) − �̂(k)‖2
F/‖�(k)‖2

F .

(6)
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The average false positive rate gives the proportion of false discoveries, that is, true zeros esti-
mated as nonzero; the average false negative rate gives the proportion of off-diagonal nonzero
elements estimated as zero; and the common zeros error rate gives the proportion of common
zeros across �(1), . . . , �(K ) estimated as nonzero. The respective formal definitions are

FP = 1

K

K∑
k=1

∑
1� j< j ′�p I(ω(k)

j, j ′ = 0, ω̂
(k)
j, j ′ |= 0)∑

1� j< j ′�p I(ω(k)
j, j ′ = 0)

,

FN = 1

K

K∑
k=1

∑
1� j< j ′�p I(ω(k)

j, j ′ |= 0, ω̂
(k)
j, j ′ = 0)∑

1� j< j ′�p I(ω(k)
j, j ′ |= 0)

, (7)

CZ =
∑

1� j< j ′�p I(
∑K

k=1 |ω(k)
j, j ′ | = 0,

∑K
k=1 |ω̂(k)

j, j ′ | |= 0)∑
1� j< j ′�p I(

∑K
k=1 |ω(k)

j, j ′ | = 0)
.

4·2. Simulation results

Figure 2 shows the estimated ROC, receiver operating characteristic, curves averaged over 50
replications for all three simulated examples, obtained by varying the tuning parameter. It can
be seen that the curves estimated by the joint estimation method dominate those of the separate
estimation method when the proportion of individual links is low. As ρ increases, the structures
become more and more different, and the joint and separate methods move closer together, with
the separate method eventually slightly outperforming the joint method at ρ = 4, although the
results are still fairly similar. This is precisely as it should be, since the joint estimation method
has the biggest advantage with the most overlap in structure. In order to assess the variability of
the two methods, we drew the boxplots of the sensitivity of the two models with the false positive
rate controlled at 5%; the results indicate that as long as there is a substantial common structure,
the joint method is superior to the separate method and the difference is statistically significant.

Table 1 summarizes the results based on 50 replications with the tuning parameter selected by
BIC(λ) and crossvalidation as described in §2·4. In general, the joint estimation method produces
lower entropy and Frobenius norm losses for both model selection criteria, with the difference
most pronounced at low values of ρ. For the joint method, the two model selection criteria exhibit
closer agreement in false positive and false negative rates and the proportion of misidentified
common zeros. For the separate method, however, crossvalidation tends to select more false pos-
itive links, which result in more misidentified common zeros.

5. UNIVERSITY WEBPAGES EXAMPLE

The dataset was collected in 1997 and includes webpages from computer science depart-
ments at Cornell, the University of Texas, University of Washington and University of Wis-
consin. The original data have been pre-processed using standard text processing procedures,
such as removing stopwords and stemming the words. The pre-processed dataset can be
downloaded from http://web.ist.utl.pt/∼acardoso/datasets/. The webpages were manually clas-
sified into seven categories, from which we selected the four largest for our analysis: stu-
dent, faculty, course and project, with 544, 374, 310 and 168 webpages, respectively. The log-
entropy weighting method (Dumais, 1991) was used to calculate the term-document matrix
X = (xi, j )n×p, with n and p denoting the number of webpages and distinct terms, respec-
tively. Let fi, j (i = 1, . . . , n; j = 1, . . . , p) be the number of times the j th term appears in
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====

====

====

Fig. 2. Receiver operating characteristic curves. The horizontal and vertical axes in each panel are false positive
rate and sensitivity, respectively. The solid line corresponds to the joint estimation method, and the dashed line
corresponds to the separate estimation method. ρ is the ratio of the number of individual links to the number

of common links.

the i th webpage and let pi, j = fi, j/
∑n

i=1 fi, j . Then, the log-entropy weight of the j th term is
defined as e j = 1 +∑n

i=1 pi, j (log pi, j )/ log n. Finally, the term-document matrix X is defined
as xi, j = e j log(1 + fi, j ) (i = 1, . . . , n; j = 1, . . . , p) and it is normalized along each column.
We applied the proposed joint estimation method to n = 1396 documents in the four largest
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Table 1. Results from the three simulated examples. In each cell, the numbers before
and after the slash correspond to the results from selected by BIC and crossvalidation,

respectively

Example ρ Method EL FL FN (%) FP (%) CZ (%)

Chain

0
S 20·7 / 21·9 0·5 / 0·5 0·8 / 0·1 5·7 / 21·8 14·5 / 51·0
J 12·8 / 6·6 0·3 / 0·3 0·0 / 0·0 4·3 / 0·5 7·0 / 1·2

1/4
S 21·3 / 16·6 0·5 / 0·5 41·3 / 9·0 1·3 / 18·7 3·8 / 46·0
J 9·5 / 8·7 0·3 / 0·3 15·6 / 17·6 1·7 / 0·7 3·2 / 1·4

1
S 23·0 / 17·1 0·5 / 0·5 73·7 / 24·4 0·7 / 18·8 1·9 / 46·4
J 12·5 / 12·4 0·4 / 0·4 44·2 / 45·8 1·6 / 1·1 3·0 / 2·0

4
S 29·8 / 20·2 0·6 / 0·5 97·3 / 47·5 0·1 / 19·5 0·3 / 47·8
J 20·0 / 20·7 0·5 / 0·5 75·5 / 76·2 1·9 / 1·8 3·2 / 3·0

Nearest-neighbour

0
S 11·9 / 15·9 0·4 / 0·5 40·1 / 33·5 2·2 / 16·1 6·1 / 40·5
J 6·1 / 11·3 0·3 / 0·4 18·5 / 52·7 1·6 / 0·6 3·2 / 1·3

1/4
S 13·9 / 17·1 0·4 / 0·5 44·0 / 32·5 2·4 / 17·6 6·9 / 43·9
J 8·1 / 14·5 0·3 / 0·4 27·4 / 57·5 1·7 / 1·0 2·9 / 1·7

1
S 18·5 / 18·0 0·5 / 0·5 48·5 / 45·3 4·0 / 17·8 11·2 / 44·3
J 13·0 / 19·0 0·4 / 0·5 40·0 / 77·3 2·8 / 1·2 3·8 / 2·0

4
S 24·8 / 20·1 0·5 / 0·5 98·7 / 65·5 0·1 / 18·1 0·3 / 44·9
J 19·3 / 23·8 0·7 / 0·5 80·8 / 95·0 3·2 / 1·0 4·8 / 1·6

Scale-free

0
S 16·9 / 15·5 0·5 / 0·5 20·7 / 6·4 1·9 / 17·1 5·3 / 42·1
J 8·1 / 7·0 0·3 / 0·3 9·4 / 11·2 1·5 / 0·5 2·8 / 1·0

1/4
S 17·1 / 14·5 0·5 / 0·4 49·6 / 17·5 1·2 / 16·6 3·7 / 41·8
J 9·4 / 9·1 0·3 / 0·3 29·3 / 32·2 1·3 / 0·8 2·4 / 1·4

1
S 22·3 / 18·1 0·5 / 0·5 51·8 / 22·5 2·8 / 19·3 8·2 / 47·4
J 15·2 / 15·3 0·4 / 0·4 42·5 / 43·1 2·2 / 2·0 3·2 / 2·9

4
S 27·9 / 20·0 0·6 / 0·5 99·6 / 49·6 0·0 / 19·1 0·0 / 47·0
J 23·0 / 23·8 0·5 / 0·5 82·5 / 84·1 2·1 / 1·8 3·2 / 2·7

S, the separate method; J, the joint method; EL, FL, FN, FP and CZ are defined in equations (6) and (7); ρ

the ratio of the number of individual links to the number of common links.

categories and p = 100 terms with the highest log-entropy weights out of a total of 4800 terms.
The resulting common network structure is shown in Fig. 3(a). The area of the circle rep-
resenting a node is proportional to its log-entropy weight, while the thickness of an edge is
proportional to the magnitude of the associated partial correlation. The plot reveals the exis-
tence of some high degree nodes, such as research, data, system, perform, that are part of
the computer science vocabulary. Further, some standard phrases in computer science, such as
home-page, comput-scienc, program-languag, data-structur, distribut-system and high-perform,
have high partial correlations among their constituent words in all four categories. A few sub-
graphs extracted from the common network are shown in Fig. 3(b)–(d); each graph clearly has its
own semantic meaning, which we loosely label as webpage generic, research area/lab and parallel
programming.

The model also allows us to explore the heterogeneity between different categories. As an
example, we show the graphs for the student and faculty categories in Fig. 4. It can be seen that
terms teach and assist are only linked in the student category, since many graduate students are
employed as teaching assistants. On the other hand, some term pairs only have links in the faculty
category, such as select-public, faculti-student, assist-professor and associ-professor. Similarly,
we illustrate the differences between the course and project categories in Fig. 5. Some teaching-
related terms are linked only in the course category, such as office-hour, office-instructor and
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person

topic

gener

interest

parallel

parallel

support

instructor

Fig. 3. Common structure in the webpages data. Panel (a) shows the estimated common structure for the four cat-
egories. The nodes represent 100 terms with the highest log-entropy weights. The area of the circle representing a
node is proportional to its log-entropy weight. The width of an edge is proportional to the magnitude of the associated

partial correlation. Panels (b)–(d) show subgraphs extracted from the graph in panel (a).
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instructor

person person

topic topic

gener

support

interest

professor

Fig. 4. ‘Student’ and ‘Faculty’ graphs. The thin light lines are the links appearing in both categories, and the thick
dark lines are the links only appearing in one category.

support support

topic

gener

professor professor

person person

topic

gener

interest

Fig. 5. ‘Course’ and ‘Project’ graphs. The thin light lines are the links appearing in both categories, and the thick
dark lines are the links only appearing in one category.

teach-assist, while pairs in the project category are connected to research, such as technolog-
center, technolog-institut, research-scienc and research-inform. Overall, the model captures the
basic common semantic structure of the websites, but also identifies meaningful differences
across the various categories. When each category is estimated separately, individual links dom-
inate, and the results are not as easy to interpret. The graphical models obtained by separate
estimation are not shown for lack of space.
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APPENDIX

In the beginning, we state some results used in the proof of Theorem 1 that were established in
Rothman et al. (2008, Theorem 1). We use the following notation: for a matrix M = (m j, j ′)p×p, |M |1 =∑

j, j ′ |m j, j ′ |, M+ is a diagonal matrix with the same diagonal as M , M− = M − M+ and MS is M with

all elements outside an index set S replaced by zeros. We also write M̃ for the vectorized p2 × 1 form of
M , and ⊗ for the Kronecker product of two matrices. In addition, we denote �

(k)
0 = (�

(k)
0 )−1 as the true

covariance matrix of the kth category (k = 1, . . . , K ).

LEMMA A1. Let l(�(k)) = tr(�̂(k)�(k)) − log {det(�(k))}. Then for any k = 1, . . . , K , the following
decomposition holds:

l(�(k)
0 + �(k)) − l(�(k)

0 ) = tr{(�̂(k) − �
(k)
0 )�(k)} + (�̃(k))T

{∫ 1

0
(1 − v)(�

(k)
0 + v�(k))−1

⊗ (�
(k)
0 + v�(k))−1dv

}
�̃(k). (A1)

Further, there exist positive constants C1 and C2 such that with probability tending to 1

|tr{(�̂(k) − �
(k)
0 )�(k)}| � C1

(
log p

n

)1/2

|�(k)−|1 + C2

(
p log p

n

)1/2

‖�(k)+‖F , (A2)

(�̃(k))T

{∫ 1

0
(1 − v)(�

(k)
0 + v�(k))−1 ⊗ (�

(k)
0 + v�(k))−1dv

}
�̃(k) � 1

4τ 2
2

‖�(k)‖2
F . (A3)

Proof of Theorem 1. In a slight abuse of notation, we will write � = (�(k))K
k=1, �0 = (�

(k)
0 )K

k=1, and
� = (�(k))K

k=1, where �(k) = (δ
(k)
j, j ′)p×p is defined as �(k) = �(k) − �

(k)
0 (k = 1, . . . , K ). Let Q(�) be the

objective function of (4), and let G(�) = Q(�0 + �) − Q(�0). If we take a closed bounded convex set
A which contains 0, and show that G is strictly positive everywhere on the boundary ∂A, then it implies
that G has a local minimum inside A, since G is continuous and G(0) = 0. Specifically, we define A=
{� : (

∑K
k=1 ‖�(k)‖F ) � Mrn}, with boundary ∂A= {� : (

∑K
k=1 ‖�(k)‖F ) = Mrn}, where M is a positive

constant and rn = {(p + q)(log p)/n}1/2.
By the decomposition (A1) in Lemma A1, we can write G(�) = I1 + I2 + I3 + I4, where

I1 =
K∑

k=1

tr{(�̂(k) − �
(k)
0 )�(k)},

I2 =
K∑

k=1

(�̃(k))T

{∫ 1

0
(1 − v)(�

(k)
0 + v�(k))−1 ⊗ (�

(k)
0 + v�(k))−1dv

}
�̃(k),

I3 = λ
∑

( j, j ′)∈T c

(
K∑

k=1

|δ(k)
j, j ′ |
)1/2

,

I4 = λ
∑

j |= j ′:( j, j ′)∈T

⎧⎨⎩
(

K∑
k=1

|ω(k)
j, j ′ |
)1/2

−
(

K∑
k=1

|ω(k)
0, j, j ′ |

)1/2
⎫⎬⎭ .
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We first consider I1. By applying inequality (A2) in Lemma A1, we have |I1| � I1,1 + I1,2,
where I1,1 = C1{(log p)/n}1/2

∑K
k=1 |�(k)−

T |1 + C2{(p log p)/n}1/2
∑K

k=1 ‖�(k)+‖F and I1,2 =
C1{(log p)/n}1/2

∑K
k=1 |�(k)−

T c |1. By applying the bound |�(k)−
T |1 � q1/2

k ‖�(k)−
T ‖F , we have

I1,1 � C1

(
q log p

n

)1/2 K∑
k=1

‖�(k)−
T ‖F + C2

(
p log p

n

)1/2 K∑
k=1

‖�(k)+‖F

� (C1 + C2)

{
(p + q) log p

n

}1/2 K∑
k=1

‖�(k)‖F � M(C1 + C2)
(p + q) log p

n

on the boundary ∂A.
Next, since for rn small enough we have I3 � λ

∑K
k=1 |�(k)−

T c |1, the term I1,2 is dominated by the positive
term I3:

I3 − I1,2 � λ

K∑
k=1

|�(k)−
T c |1 − C1

(
log p

n

)1/2 K∑
k=1

|�(k)−
T c |1

� (�1 − C1)

(
log p

n

)1/2 K∑
k=1

|�(k)−
T c |1.

The last inequality uses the condition λ � �1{(log p)/n}1/2. Therefore, I3 − I1,2 � 0 when �1 is
large enough. Next we consider I2. By applying inequality (A3) in Lemma A1, we have I2 �
(1/4τ 2

2 )
∑K

k=1 ‖�(k)‖2
F � {M2/(8τ 2

2 )}{(p + q)(log p)/n}. Finally consider the remaining term I4. Using
Condition 2, we have

|I4| � λ
∑

j |= j ′:( j, j ′)∈T

∑K
k=1 ‖ω(k)

j, j ′ | − |ω(k)
0, j, j ′ ‖(∑K

k=1 |ω(k)
j, j ′ |
)1/2

+
(∑K

k=1 |ω(k)
0, j, j ′ |

)1/2

� λ

τ
1/2
3

K∑
k=1

∑
j |= j ′:( j, j ′)∈T

|ω(k)
j, j ′ − ω

(k)
0, j, j ′ | � λ

τ
1/2
3

q1/2
K∑

k=1

‖�(k)‖F � M�2

τ
1/2
3

(p + q)(log p)

n
.

The last inequality uses the condition λ � �2{(1 + p/q)(log p)/n}1/2. Putting everything together and
using I2 > 0 and I3 − I1,2 > 0, we have

G(�) � I2 − I1,1 − |I4| � M2 (p + q) log p

n

(
1

8τ 2
2

− C1 + C2 + �2/τ
1/2
3

M

)
.

Thus for M sufficiently large, we have G(�) > 0 for any � ∈ ∂A. �

Proof of Theorem 2. It suffices to show that for all ( j, j ′) ∈ T c
k (k = 1, . . . , K ), the derivative

∂ Q/∂ω
(k)
j, j ′ at ω̂

(k)
j, j ′ has the same sign as ω̂

(k)
j, j ′ with probability tending to 1. To see that, suppose that for

some ( j, j ′) ∈ T c
k , the estimate ω̂

(k)
j, j ′ |= 0. Without loss of generality, suppose ω̂

(k)
j, j ′ > 0. Then there exists

ξ > 0 such that ω̂
(k)
j, j ′ − ξ > 0. Since �̂ is a local minimizer of Q(�), we have ∂ Q/∂ω

(k)
j, j ′ < 0 at ω̂

(k)
j, j ′ − ξ

for ξ small, contradicting the claim that ∂ Q/∂ω
(k)
j, j ′ at ω̂

(k)
j, j ′ has the same sign as ω̂

(k)
j, j ′ .

The derivative of the objective function can be written as

∂ Q

∂ω
(k)
j, j ′

= 2{α(k)
j, j ′ + β j, j ′sgn(ω

(k)
j, j ′)}, (A4)

where α
(k)
j, j ′ = σ̂

(k)
j, j ′ − σ

(k)
j, j ′ and β j, j ′ = λ/(

∑K
k=1 |ω(k)

j, j ′ |)1/2. Arguing as in Lam & Fan (2009, Theorem

2), one can show that maxk=1,...,K max j, j ′ |α(k)
j, j ′ | = Op[{(log p)/n}1/2 + η1/2

n ]. On the other hand, by
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Theorem 1, we have
∑K

k=1 |ω(k)
j, j ′ − ω

(k)
0, j, j ′ | �∑K

k=1 ‖�(k) − �
(k)
0 ‖F = Op(ηn) = o(1). Then for any ε >

0 and large enough n we have
∑K

k=1 |ω(k)
j, j ′ | �∑K

k=1 |ω(k)
0, j, j ′ | + ε. Then we have |β j, j ′ | � λ/(1 +∑K

k=1 |ω(k)
0, j, j ′ |)−1/2. By assumption, {(log p)/n}1/2 + η1/2

n = O(λ), and thus the term β j, j ′ dominates α
(k)
j, j ′

in (A4) for any ( j, j ′) ∈ T c
k (k = 1, . . . , K ). Therefore, sgn{(∂ Q/∂ω

(k)
j, j ′)|ω(k)

j, j ′ =ω̂
(k)

j, j ′
} = sgn(ω̂

(k)
j, j ′). �
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