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SUMMARY

Treatment switching is a frequent occurrence in clinical trials, where, during the course of
the trial, patients who fail on the control treatment may change to the experimental treatment.
Analysing the data without accounting for switching yields highly biased and inefficient esti-
mates of the treatment effect. In this paper, we propose a novel class of semiparametric semicom-
peting risks transition survival models to accommodate treatment switches. Theoretical proper-
ties of the proposed model are examined and an efficient expectation-maximization algorithm
is derived for obtaining the maximum likelihood estimates. Simulation studies are conducted to
demonstrate the superiority of the model compared with the intent-to-treat analysis and other
methods proposed in the literature. The proposed method is applied to data from a colorectal
cancer clinical trial.

Some key words: Expectation-maximization algorithm; Maximum likelihood estimate; Noncompliance; Panitu-
mumab; Partial switching; Transition model; Treatment switching.
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1. INTRODUCTION

Treatment switching commonly occurs in clinical trials such as in cancer or in other diseases,
where patients who fail on the control treatment may begin taking the experimental treatment.
This often happens in cancer clinical trials when the control arm consists of a placebo or no treat-
ment. In such trials, patients in the control arm who experience an intermediate event, such as
disease progression, may begin taking the experimental treatment to receive a rescue medication.
As discussed in Marcus & Gibbons (2001), an intent-to-treat analysis will lead to attenuated treat-
ment effect estimates, and thus one must properly model the data accommodating this switching
effect and then appropriately estimate the treatment effect.

In clinical trials, there are many types of switching possibilities. Drop-in refers to situations
where control subjects start taking an active treatment. There is also switching due to drop-out,
where subjects stop taking the active treatment. Here we focus on the drop-in problem of control
subjects switching to the experimental treatment after experiencing an intermediate event.

Methods have been advocated to compensate for the effects of drop-in, assuming an intent-to-
treat analysis. This could be a viable approach if the drug effect is believed to be sufficiently large
to yield a clinically meaningful intent-to-treat effect. Various methods for sample size adjustment
are described by Lachin & Foulkes (1986), Lakatos (1988), Lu & Pajak (2000), Porcher et al.
(2002), Jiang et al. (2004) and Barthel et al. (2006). Although these approaches manage the risk
of a false-negative error, they may result in a larger than needed sample size and yield an effect
estimate of marginal clinical significance that fails to address the drop-in bias, especially when
appreciable drop-in occurs nonrandomly. In the presence of drop-in, analysis methods to estimate
the treatment’s causal effect that do not respect randomization are potentially confounded. Com-
mon examples include an analysis treating the drop-in time as a censoring time, or the exclusion
of patients with drop-in. Law & Kaldor (1996) proposed a multiplicative Cox model in which
patients are divided into subgroups based on their randomized and observed subsequent ther-
apy. As noted by White (1997), their model is flawed since subgroup membership at a par-
ticular time depends on the future, and estimates will tend to be biased under the null. Other
approaches that respect the randomization include the use of causal models with counterfac-
tuals (Lunceford et al., 2002; White et al., 2003; London et al., 2010). Related approaches are
marginal structural models (Robins et al., 2000). For valid causal inference, these models must
account for all confounders that predict drop-in and there must be no censoring bias. Even when
these conditions apply, model estimates can become unstable when drop-in is certain among
all patients with a specific value of a time-dependent covariate. Examples of applying marginal
structural models are provided by Hernán et al. (2000) and Yamaguchi & Ohashi (2004).

When marginal structural models are not applicable, a structural nested model may be used
(Yamaguchi & Ohashi, 2004; Greenland et al., 2008) In particular, based on the methods of
Robins & Tsiatis (1991), Branson & Whitehead (2002) developed an estimation method for an
accelerated failure-time model similar to a structural nested model to estimate the true effect.
Their model assumes that the effect of the experimental treatment is the same at randomization
in the test arm as at drop-in in the control arm. In addition, their model assumes that patients
who receive drop-in therapy are comparable to those who do not, although the authors noted
that baseline covariates could be incorporated, and thus their model could include factors that
predict drop-in. Shao et al. (2005) extended the Branson & Whitehead (2002) methodology to
allow the effect of drop-in to vary with time receiving the drop-in therapy, and also defined a
latent hazard rate model with the same features. White (2006) noted that the recensoring pro-
cedure of Branson & Whitehead (2002) needs to be modified when the control arm survival
time without drop-in depends on the drop-in time, otherwise a bias towards the null results if
drop-in patients have a poor prognosis, and away from the null if they have a good prognosis.
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White (2006) also pointed out that the estimation procedure proposed in Shao et al. (2005) is
biased when the drop-in time is prognostic. For the structural nested modelling approaches, such
as those of Branson & Whitehead (2002) and Shao et al. (2005), one major concern is that the
assumed model for the true survival time does not account for the disparity that some subjects
experience the intermediate event while others do not. Furthermore, assuming a constant exper-
imental treatment effect between treatment arms may be questionable since the disease course is
more advanced among drop-in patients that receive delayed therapy.

In this paper, we tackle this practical problem from a completely different modelling perspec-
tive than the aforementioned methods. Instead of modelling the true survival time using either the
accelerated failure time model or the proportional hazards model, we model the observed event
times using a semiparametric hazards model. To account for the fact that some subjects do not
experience the intermediate event, we introduce a mixture model to characterize the progression
and nonprogression subpopulation. Furthermore, for the progression population, we separately
model the time to the intermediate event and the time from the intermediate event to death.
We also include baseline covariates and prognostic covariates in both time-to-event regression
models. In this way, we not only account for the heterogeneity at baseline, but also capture the
heterogeneity at treatment switching. Finally, our model assumes a parametric switching effect at
the time of the intermediate event, which may be different from the baseline treatment effect. The
advantages of our model are clear: we model only observed event times which makes it possible
to assess model assumptions and check model fit using the observed data; we allow the treatment
effect at switching to be completely different from the baseline treatment effect; and the model
can handle both baseline covariates and prognostic covariates at switching.

2. PANITUMUMAB STUDY

Our proposed methodology was motivated by the panitumumab colorectal cancer clinical trial
conducted by Amgen Inc. (Amado et al., 2008). This clinical trial was an open label, randomized,
phase III multicentre study designed to compare the efficacy and safety of panitumumab plus best
supportive care versus best supportive care alone in colorectal cancer patients. One objective was
to compare the treatment effect on the overall survival time in this subject population.

Subjects were randomly assigned to receive treatment or control. Panitumumab was adminis-
tered until disease progression, inability to tolerate the investigational product, or other reasons
for discontinuation. During the study, subjects in the control group who had disease progres-
sion at any time were eligible to receive panitumumab at 6 mg/kg administered once every 2
weeks as part of a separate protocol. Figure 1 shows the counts for each group in the follow-
up period. Among the 223 patients on the control arm, 201 patients had disease progression, of
which 167 switched over to the treatment arm. Due to this substantial switching percentage, this
study provides strong motivation for developing new statistical models as well as new methods
for estimating the true causal effect of the treatment in the presence of a semicompeting risk.

3. PROPOSED METHOD

3·1. Models and assumptions

In cancer clinical trials, some subjects experience the intermediate event of disease progres-
sion and others do not and these subjects are censored for the event. To address this issue, we
propose a mixed semicompeting risks transition model. We assume that the population consists
of two subpopulations, where one population will eventually develop disease progression before
death, but the other population will never experience disease progression. For the no-progression
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Fig. 1. Graphical representation of the panitumumab data: total n = 454.

population, the only event time of interest is time-to-death, but for the progression population,
both the time to disease progression and the event of death need to be considered.

To introduce our statistical models, we use the following notation: a dichotomous variable U
is used to denote the lifetime disease progression status of the subjects, U = 1 if the subject has
disease progression before death and 0 otherwise; we let TD denote the time to death for the
no-progression subjects with U = 0; for the other subjects with U = 1, we use TU to denote their
time to disease progression and let G denote the time from disease progression to death.

The proposed statistical model has three components. The first component models the distri-
bution of the progression status given the baseline covariates X and randomized treatment R:

logit{pr(U = 1 | R, X)} = α0 + α1 R + α2 X, (1)

where R = 1 if the patient is on the experimental treatment arm and 0 otherwise, and the αs are
unknown regression coefficients. The second component models the survival distribution for the
no-progression population given X and R:

hD(t | R, X, U = 0) = h0(t) exp(β0 R + γ0 X), (2)

where hD(t | R, X, U = 0) is the conditional hazard function of TD given the covariates, h0(t) is
an unknown baseline hazard function and (β0, γ

T
0 )T are unknown regression coefficients. In the

third component, we model the distributions of time to disease progression, TU , and time from
disease progression to death, G, in the progression population, given treatment switching or not,
by assuming a transition model structure:

hU (t | R, X, U = 1) = h1(t) exp(β1 R + γ1 X),

hG(t | R, Z , V, U = 1, TU ) = h2(t) exp{β21 R + β22V (1 − R) + γ T
2 (Z T, TU )T}, (3)
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where hU (t | R, X, U = 1) is the conditional hazard function for TU , hG(t | R, Z , U = 1, TU ) is
the conditional hazard function of G, both h1(t) and h2(t) are unknown baseline hazard functions,
and βs and γ s are regression coefficients. Here, V indicates the treatment switching and Z , which
contains X , reflects covariates collected at baseline and at disease progression, which could be
prognostic factors for the switching decision.

Our models naturally account for the situation that some subjects may or may not experience
disease progression for reasons other than ignorable censoring and also include the gap time
between disease progression and death, thereby automatically implying that disease progression
occurs before death. Because we condition on the disease progression status, our model can be
considered as a type of pattern-mixture model. As one reviewer points out, our method can also
be viewed as an illness-death model with four states: alive with/without progression, and dead
with/without progression (Fix & Neyman, 1951; Sverdrup, 1965), but with a pattern-mixture
parameterization (Larson & Dinse, 1985). However, our current hazard models have different
interpretations in the survival context. For example, all the models are the hazard models for
some specific survival events so that all the β parameters give the treatment effects on the risk
of these events. Specifically, β21 represents the logarithm of the hazard ratio of treatment post-
disease progression while the coefficient of TU gives the effect of the disease progression time
on future death. In the second model of (3), since the switching only happens to some subjects
on the control arm; V (1 − R) is used in the regression. Furthermore, our model (3) assumes
that, for the same subjects, the hazard function after the switching at disease progression would
change by exp(β22), when compared with the case when they had no switching. Obviously, the
latter is a structural assumption, which is acceptable in practice.

Our goal is to compare the survival function of death time in the setting when no subjects
have switching. To see how to use the proposed models for achieving this goal, we adopt a coun-
terfactual outcome framework by defining T ∗

D(a) as a potential survival time when a subject
receives treatment a and never changes treatment status and letting Sa(t) = pr{T ∗

D(a) > t}. Thus,
we are interested in comparing S1(t) and S0(t). As in the usual causal framework, we assume the
following consistency assumption and no unobserved confounder assumption:

Assumption 1. Treatment R is completely randomized and T ∗
D(a) = TD(a) if a subject never

changes treatment.

Assumption 2. Given (R = 0, Z , TU = s), that is, a subject in the control arm has disease
progression at time s and covariates Z , or (R = 1, Z , TU = s), V is independent of the potential
outcomes {T ∗

D(0), T ∗
D(1)}.

Let fX (x) and fZ (z) denote the density functions for X and Z , respectively. Then by the
randomization of R, we obtain the potential survival function of treatment a, pr{T ∗

D(a) > t}, as

pr{T ∗
D(a) > t | R = a}

=
∫

x
pr{T ∗

D(a) > t | X, U = 0, R = a}pr(U = 0 | X, R = a) fX (x | R = a)dx

+
∫

x,z,s
pr{T ∗

D(a) > t | TU = s, Z , U = 1, R = a}dpr(TU � s | Z , U = 1, R = a)

× fZ (z | X, U = 1, R = a)pr(U = 1 | X, R = a) fX (x | R = a)dzdx .

From Assumption 2, pr{T ∗
D(a) > t | TU = s, X, Z , U = 1, R = a} = pr{T ∗

D(a) > t | V = 0, TU =
s, X, Z , U = 1, R = a}. On the other hand, (R = a, U = 0) or (R = a, U = 1, V = 0) implies



172 D. ZENG, Q. CHEN, M.-H. CHEN, J. G. IBRAHIM AND AMGEN GROUP

that the treatment status is never switched so T ∗
D(a) can be replaced by the observed TD in the

above expression by Assumption 1. Since TD = G + TU for subjects with U = 1, we obtain the
survival functions Sa(t) as follows:∫

x
pr(TD > t | X, U = 0, R = a)pr(U = 0 | X, R = a) fX (x | R = a)dx

+
∫

x,z,s
pr(G > t − s | TU = s, V = 0, Z , U = 1, R = a)dpr(TU � s | Z , U = 1, R = a)

× fZ (z | X, U = 1, R = a)pr(U = 1 | X, R = a) fX (x | R = a)dzdx

=
∫

x
pr(TD > t | X, U = 0, R = a)pr(U = 0 | X, R = a) fX (x | R = a)dx

+
∫

x,z

{
pr(TU > t | Z , U = 1, R = 1)

+
∫ t

0
pr(G > t − s | TU = s, V = 0, Z , U = 1, R = a)dpr(TU � s | Z , U = 1, R = a)

}
× fZ (z | X, U = 1, R = a)pr(U = 1 | X, R = a) fX (x | R = a)dzdx .

In other words, Sa(t) can be expressed in terms of the parameters in our models (1)–(3) and
the distributions of X and Z given (X, U = 1, R). Hence, by inserting the estimates of these
parameters into the above expression, we will be able to estimate Sa(t), and thus the causal effect
of treatment.

In real applications, there is often some potential bias due to censoring and obtaining the
differential prognostic covariates at disease progression. To eliminate such bias, we need the
following assumptions:

Assumption 3. The censoring time is independent of TD, G and TU given the observed
covariates.

Assumption 4. For progression subjects, TU is independent of Z given R and X .

Assumptions 3 and 4 discard the contribution of the censoring distribution. Assumption 4 is
plausible if the part of Z excluding X is collected after disease progression.

3·2. Inference procedure

Let Y denote the observed event if no disease progression occurs; otherwise, we use Y to
denote the second event time and W to denote the disease progression time. Let � be the cen-
soring indicator. The observed data can be divided into four groups of observations:

Group 1. Subjects are observed to die at time Y and no disease progression has been
observed. Clearly, these subjects belong to the first subpopulation with U = 0 and TD = Y . The
observed data are (Y, � = 1, U = 0, X, R). Thus, the contribution to the likelihood function is
h0(t) exp(β0 R + γ0 X) exp{−H0(t)eβ0 R+γ0 X }pr(U = 0 | R, X) fX (x | R)pr(R).

Group 2. Subjects are observed to have disease progression at W and die at Y . These
subjects belong to the second subpopulation (U = 1) and TU = W, TD = Y so G = Y − W .
The observed data are (TU , G, � = 1, U = 1, V, Z , X, R). Thus, the contribution to the
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likelihood function is

h1(W ) exp(β1 R + γ1 X) exp{−H1(W ) exp(β1 R + γ1 X)}h2(G) exp{β21 R + β22V (1 − R)

+ γ2(Z , W )} exp [−H2(G) exp{β21 R + β22V (1 − R) + γ2(Z , W )}] fZ (z | X, R, U = 1)

× pr(U = 1 | R, X) fX (x | R)pr(R),

where pr(Z | X, R, U = 1) = pr(Z without X | X, R, U = 1). We will use this notation for all
conditional distributions of Z given X thereafter.

Group 3. Subjects are observed to have disease progression at W and censored at C . The sub-
jects belong to the second subpopulation with U = 1 and TU = W, TD > C = Y so G > Y − W .
The observed data are (TU , G > Y, � = 0, U = 1, V, Z , X, R). Thus, the contribution to the like-
lihood function is

h1(W ) exp(β1 R + γ1 X) exp{−H1(W ) exp(β1 R + γ1 X)} exp [−H2(Y − W ) exp{β21 R

+ β22V (1 − R) + γ2(Z , W )}] fZ (z | X, R, U = 1)pr(U = 1 | R, X) fX (x | R)pr(R).

Group 4. Subjects are only observed to be censored at Y and no disease progres-
sion occurs before Y . These subjects may belong to the first subpopulation, U = 0,
with TD > Y ; or, they may belong to the second subpopulation, U = 1, with TU > Y .
The observed data are {U TU + (1 − U )TD > Y, X, R}. Thus, the contribution to the likeli-
hood function is [exp{−H0(Y )eβ0 R+γ0 X }pr(U = 0 | R, X) + exp{−H1(Y )eβ1 R+γ1 X }pr(U = 1 |
R, X)] fX (x | R)pr(R).

For inference, we estimate all the model parameters, including the βs, γ s and Hs, via the
nonparametric maximum likelihood approach. In this approach, the baseline hazard functions,
H0, H1 and H2, are assumed to be step functions with jumps at the observed event times. To com-
pute the nonparametric maximum likelihood estimates, we will use the expectation-maximization
algorithm to facilitate the computation of the nonparametric maximum likelihood estimates.
Specifically, we treat Ui for subject i as potential missing data. Then it is clear that only for
subjects in Group 4, Ui is not observed. To estimate the asymptotic covariance matrix of the
parameter estimates, we treat all the αs, βs, γ s and the jump sizes of the Hs as parameters and
use their observed information matrix. In particular, the observed information matrix can be cal-
culated using the Louis formula (Louis, 1982) and its inverse is used as the estimator for the
asymptotic covariance matrix.

3·3. Prediction of the survival function with partial treatment crossover

To estimate Sa(t), we can estimate each term on the right-hand side of Sa(t), given in § 3·1,
using the parameter estimates. Specifically, the estimators are

p̂r(TD > t | R = a, X, U = 0) = exp
{
−Ĥ0(t) exp(β̂0 R + γ̂0 X)

}
,

p̂r(U = 0 | R = a, X) = {
1 + exp(α̂0 + α̂1 R + α̂2 X)

}−1
,

f̂ X (x | R = a) =
n∑

j=1

I (X j = x, R j = a)/

n∑
j=1

I (R j = a),

p̂r(TU > t | Z , U = 1, R = 1) = exp
{
−Ĥ1(t) exp(β̂1a + γ̂1 X)

}
,

p̂r(G > s′ | TU = s, V = 0, Z , U = 1, R = a) = exp
[
−Ĥ2(s

′) exp{β̂21a + γ̂2(Z , s)}
]
,
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f̂ Z (z | X, R = a, U = 1) =
∑

j∈(groups 2, 3) δ(Z j = z)Kan (‖X j − X‖)I (R j = a)∑
j∈(groups 2, 3) Kan (‖X j − X‖)I (R j = a)

,

where in the final expression, δ is the Dirac delta function and Kan is a kernel weight with band-
width an . Either the delta method or resampling techniques like the bootstrap will be used to
derive the confidence band of Ŝa(t). As demonstrated in the simulation studies in § 5, we find, in
practice, that the bootstrap is easy to implement and performs well for moderate sample sizes. In
addition, our experience also shows that even though kernel estimation of pr(Z | X, R, U = 1)

may be biased if the dimension of the Xs is not small, the final estimate of Sa(t) is not that
sensitive to the dimension of X due to the averaging operations used in calculating Ŝa(t).

To compare the experimental arm survival function with the control arm survival function
without switching, we examine the weighted difference n

∑K
k=1 ω̂(tk){Ŝ1(tk) − Ŝ0(tk)}2, where

t1, . . . , tK are prespecified time-points in [0, τ ] and ω̂(tk) is a weight specified at time tk . Use-
ful weight functions ω̂(t) can be based on the class of Ŝ0(t)ρ1{1 − Ŝ0(t)}ρ2 , where ρ1 and ρ2
are constants in [0, 1] and Ŝ0(t) can be also replaced by Ŝ1(t) or a pooled estimator of sur-
vival functions. Thus, by choosing different ρ1 and ρ2, we can emphasize comparisons at either
early stages or late stages of follow-up. In the subsequent analysis, we consider (ρ1, ρ2) = (0, 1)

or (1/2, 1/2). Under the null hypothesis for which S0(t) = S1(t), according to the asymptotic
results to be given later,

√
n{Ŝ1(t1) − Ŝ0(t1), . . . , Ŝ1(tK ) − Ŝ0(tK )}T → N (0, 
) in distribution

for some covariance matrix 
. Thus, it is easy to see that n
∑K

k=1 ω̂(tk){Ŝ1(tk) − Ŝ0(tk)}2 con-
verges in distribution to ZT
1/2diag{ω(t1), . . . , ω(tK )}
1/2Z , where Z denotes a multivariate
standard normal variate and ω(t) is the limit of ω̂(t). We reject the null hypothesis if the test
statistic is larger than the (1 − α)-percentile of ZT
̂1/2diag{ω̂(t1), . . . , ω̂(tK )}
̂1/2Z , where 
̂

is a consistent estimator for 
.

Remark 1. Because of the randomization, pr(X | R = a) = pr(X), and therefore, we can
replace p̂r(X | R = a) with the empirical distribution of X . However, we observe very little effi-
ciency gain in numerical studies.

4. ASYMPTOTIC PROPERTIES

We establish the asymptotic properties for the parameter estimators and Ŝa(t) using the gen-
eral nonparametric maximum likelihood theory framed in Zeng & Lin (2010). In addition to
Assumptions (1)–(4), we need the following assumptions:

Assumption 5. The true parameters values of the βs, γ s and αs, still denoted as θ ≡
(β0, β1, β21, β22, γ0, γ

T
1 , γ T

2 , α0, α1, α
T
2)

T, belong to a bounded set in real Euclidean space. More-
over, the true baseline functions, still denoted as (h0, h1, h2), are continuous and are bounded
away from zero in [0, τ ], where τ is the study duration.

Assumption 6. If there is some constant ν such that νT(1, R, Z) = 0 with probability one,
then ν = 0. Additionally, we assume (R, Z) to have bounded support and there exits a continuous
component of X such that its coefficient in model (1) is nonzero.

Assumption 7. With probability one, pr(C � τ | R, Z) > 0 and pr(V = 1 | R = 0, Z , TU ) ∈
(μ0, μ1) for some constant 0 < μ0 < μ1 < 1.

Under these conditions, the following theorems give the consistency and asymptotic distribu-
tion of the estimators.
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THEOREM 1. Under Assumptions (1)–(7), ‖θ̂ − θ‖ + ∑3
k=1 supt∈[0,τ ] | Ĥk(t) − Hk(t) |→ 0,

almost surely, where θ̂ ≡ (β̂0, β̂1, β̂21, β̂22, γ̂0, γ̂
T
1 , γ̂ T

2 , α̂0, α̂1, α̂
T
2)

T and Ĥk(t) is the estimator
of Hk(t).

THEOREM 2. Under Assumptions (1)–(7),
√

n(θ̂ − θ, Ĥ1 − H1, Ĥ2 − H2, Ĥ3 − H3) con-
verges in distribution to a mean zero Gaussian process in the metric space Rd × l∞[0, τ ] ×
l∞[0, τ ] × l∞[0, τ ], where d is the dimension of θ .

Using the results from Theorem 1 and Theorem 2, we can further obtain the asymptotic dis-
tribution of Ŝa(t) as given in the previous section.

THEOREM 3. In addition to Assumptions (1)–(7), we assume that Kan (x) = a−dx
n K (‖x‖/an),

where dx is the dimension of X, K (·) is a symmetric kernel density function with
∫

ys K (y)dy =
0, s = 1, . . . , (m − 1) with m > d/2, and an satisfies nad

n → ∞, na2m
n → 0. Then with probabil-

ity one, supt∈[0,τ ] | Ŝa(t) − Sa(t) |→ 0 and for each fixed t, and
√

n{Ŝa(t) − Sa(t)} converges in
distribution to a mean zero normal variate.

5. SIMULATION STUDIES

5·1. Simulation study I

To examine the small sample performance of the proposed method, we conducted a simula-
tion study by generating data from models (1)–(3). Specifically, the baseline treatment R = 1
for the first half of the subjects and 0 for the other half; two baseline covariates X1 and
X2 are independently generated from the uniform distribution on [−1, 1], and a Bernoulli
with success probability 0·6, respectively. We then use models (2) and (3) to further gener-
ate time to events of interest. The susceptibility status is Bernoulli with success probability
1/{1+exp(−1·6+1·8R − X1−0·1X2)}. For the no-progression subjects with U = 0, we simu-
late their death time TD using model (2) with H0(t) = t , β0 = −1 and (γ01, γ02) =(1, 0·2). For
the progression subjects, the time to disease progression, TU , is generated from the first hazard
model in (3) with H1(t) = t/2, β1 = −0·5 and (γ11, γ12) = (1, 0). Finally, to generate the time
from disease progression to death for the progression subjects with U = 1, we first generate the
prognostic factors Z at disease progression from the uniform distribution on [0, 1]. The assign-
ment to treatment switching, V , in the untreated subjects is assumed to have a Bernoulli with
success probability 1/{1+exp(0·5−0·3TU−0·2X1−0·5Z}, yielding a switching rate of 38·7% in
the control arm. Then, the time from disease progression to death, G, follows the second haz-
ard model in (3) with H2(t) = exp(t) − 1, β21 = −0·3, β22 = −0·5, and γ21 =0·6, γ22 = −0·5,
γ23 =0·5, γ24 = −0·4. Thus, the subjects who change treatment status from untreated to treated
will have their hazard risk reduced by exp(0·5) and the longer the time disease progression is, the
longer the survival time will be. Finally, the censoring time is generated from a uniform distri-
bution on (1, 7) and the study duration is τ = 3. The latter yields average proportions for groups
1 to 4 as 23, 41, 21 and 13%.

In the simulation study, we consider sample sizes of n = 400 and n = 1000. Bootstrap samples
of size 50 are used to construct pointwise 95% confidence intervals for the estimated survival
probability. The results from 1000 replicates are given in Table 1. Additionally, we calculate the
square root of the mean square error and maximum absolute difference of the estimated survival
curve using 200 equally spaced time-points between 0 and the maximum censoring time. In par-
ticular, for the methods of intent-to-treat, Branson & Whitehead (2002), Shao et al. (2005), and
the proposed model, the square roots of the mean square errors of Ŝ0(t) are 0·062, 0·050, 0·054
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Table 1. Simulation study I

n = 400 n = 1000
Parameter True EST SD ESE CP% EST SD ESE CP%

Survival model of no-progression population
β0 −1·0 −1·08 0·26 0·26 94 −1·04 0·16 0·16 93
γ01 1·0 0·96 0·23 0·22 94 0·97 0·13 0·13 94
γ02 0·2 0·22 0·23 0·24 94 0·20 0·14 0·14 95

Disease progression model of progression population
β1 −0·5 −0·54 0·16 0·16 94 −0·52 0·10 0·10 94
γ11 1·0 1·08 0·14 0·14 91 1·04 0·09 0·08 94
γ12 0·0 −0·01 0·14 0·15 94 0·00 0·09 0·09 95

Gap time model of progression population
β21 −0·3 −0·31 0·19 0·19 95 −0·30 0·12 0·12 95
β22 −0·5 −0·50 0·20 0·20 95 −0·51 0·12 0·12 96
γ21 0·6 0·61 0·18 0·18 95 0·60 0·11 0·11 95
γ22 −0·5 −0·51 0·16 0·16 94 −0·50 0·10 0·10 95
γ23 0·5 0·51 0·17 0·17 94 0·50 0·10 0·10 95
γ24 −0·4 −0·41 0·27 0·28 95 −0·41 0·17 0·17 95

Susceptibility model
α0 1·6 1·66 0·26 0·26 95 1·63 0·16 0·16 96
α1 −1·8 −1·80 0·27 0·28 94 −1·79 0·17 0·16 96
α21 1·0 0·90 0·24 0·24 93 0·94 0·15 0·15 95
α22 0·1 0·11 0·26 0·27 94 0·11 0·16 0·15 95

Predicted survival functions in control arm
S0(τ/2) 0·51 0·49 0·04 0·04 91 0·49 0·02 0·02 92
S0(τ ) 0·17 0·18 0·03 0·03 91 0·18 0·02 0·02 91

Predicted survival functions in experimental arm
S1(τ/2) 0·63 0·61 0·03 0·03 94 0·61 0·02 0·02 92
S1(τ ) 0·32 0·33 0·03 0·03 93 0·33 0·02 0·02 94

EST, average of the parameter estimates; SD, sample standard deviation of the estimates; ESE, average of the standard
error estimates; CP%, coverage probability of the 95% confidence interval based on a normal approximation.

and 0·035, respectively; the square root of the mean square errors of Ŝ1(t) are 0·032, 0·028, 0·030
and 0·030, respectively; the maximum absolute differences of Ŝ0(t) are 0·101, 0·067, 0·083 and
0·051, respectively and those of Ŝ1(t) are 0·061, 0·036, 0·051 and 0·049, respectively.

In addition, we study the power of the test statistics proposed in § 3·3 under the simulation
setup discussed above, and obtain the Type I error rate by letting β0 = β1 = β21 = β22 = α1 = 0.
In particular, we consider two test statistics, test I with (ρ1, ρ2) = (0, 1) and test II with (ρ1, ρ2) =
(0·5,0·5), for sample sizes of n = 400 and n = 1000. When n = 400, the powers are 87·1% for
test I, and 85·6% for test II. The power increases to 99·8% for both tests when the sample size
increases to 1000. For tests I and II, the Type I error rates are 4·5% and 4·8% when n = 400,
respectively; and 5·4% and 4·8% when n = 1000, respectively.

5·2. Simulation study II

In the second simulation study, we use the modified simulation setup as in Shao et al. (2005)
to compare the proposed model with existing methods for switching, and to also demonstrate
the robustness of the proposed model. In particular, the survival time is generated according
to the exponential distribution with hazard rate 0·0693 for the control arm and 0·0462 for the
experimental treatment arm. The total sample size of n = 600, with 300 subjects in each arm.
For both treatment arms, the random censoring time is generated according to the uniform
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Fig. 2. Average predicted survival curves from simulation study II. S(t | R = a) is the potential survival
function for subjects with treatment status a if they have no treatment switching. In each panel, the solid
curve is the true survival function in the control arm, the dashed curve is the true survival function in the
experimental treatment arm, while the dotted and the dash-dotted curves are, respectively, the estimated
survival functions in these two arms. The estimates in the plots are based on (a) intent-to-treat analysis,

(b) Branson & Whitehead (2002), (c) Shao et al. (2005) and (d) our method.

distribution on the interval of 15–20 months, resulting in an overall censoring percentage of
35·4%. The time-to-event, which is the switching time in Shao et al. (2005), is generated from
the exponential distribution with a mean of 7·22 months for the control group and 10·82 months
for the experimental treatment group. In this paper, we focus on switching only from the con-
trol to treatment arm and let the patients switch at the event time with probability 0·6, yield-
ing a switching rate of 39·0%. After switching, the observed survival time for the switching
patients is updated using equation (4) and (11) in Shao et al. (2005) with β = −0·4055, η00 =0·1,
η01 =0·009 and η10 = η11 = 0.

Figure 2 presents the averaged predicted survival curves on [0, 20] for the intent-to-treat
Kaplan–Meier, Branson & Whitehead (2002), Shao et al. (2005) and proposed methods using
1000 simulations. The discrepancy in the four different approaches focuses on the estimation
of the control group survival curve. In particular, the survival curves generated by Shao et al.
(2005) and the proposed model yield survival curves with smaller bias. The square roots of the
mean square errors and maximum absolute differences are 0·029 and 0·049, respectively, for
Shao et al. (2005), and 0·031 and 0·043, respectively, for the proposed approach. On the other
hand, bigger biases are observed for the Branson & Whitehead (2002) and the intent-to-treat
approaches. The square roots of the mean square errors and maximum absolute differences are,
respectively, 0·073 and 0·088 for the Branson & Whitehead (2002) method, and 0·034 and 0·069
for the intent-to-treat approach.

6. ANALYSIS OF THE PANITUMUMAB DATA

We carry out here a detailed analysis of the panitumumab study. It is purely an abstract con-
struct of the semicompeting risk nature of the proposed model to assume the existence of a
subpopulation that is subject to disease progression, and thus this condition is not assumed to
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apply literally to this study. The baseline covariates we consider are initial treatment, age in
years at screening, baseline electrocorticography performance status with 0 or 1 versus � 2,
primary tumour diagnosis type with rectal versus colon, gender, and region with three levels
consisting of western Europe, eastern and central Europe, and rest of the world. In the panitu-
mumab study, the median age was 62·5 years and the interquartile range of age was (55, 69)
years. There were 388 patients with electrocorticography score 0 or 1, 287 were male, 151 had
rectal cancer, 352 were from Western Europe, 39 were from Eastern and Central Europe, and 63
were from the rest of the world. The median follow-up time was 189·5 days and the interquartile
range of the follow-up time was (93, 334) days. Among those 387 patients who developed dis-
ease progression, the median disease progression time is 53 days and the interquartile range is
(45, 84) days.

The model for the time of disease progression includes all the baseline covariates. Among the
387 patients who developed disease progression, the median age at the time of disease progres-
sion was 62·1 years with interquartile range (55·0, 69·1), the numbers of patients who had partial
response, stable disease and progressive disease were 19, 86 and 282, respectively. There were
348 patients with baseline electrocorticography score 0 or 1, 286 patients had a last electrocor-
ticography score 0 or 1, and 180 patients had grade 2 or above adverse events.

The covariates at the time from disease progression to death include additional progonostic
factors for the switching decision. They are progression time, partial response age, best tumour
response with partial response or stable disease versus progressive disease according to inves-
tigator assessment, last electrocorticography performance status and grade 2 or above adverse
events. We include those prognostic factors based on our best knowledge with assistance from
trial clinicians so that Assumption 2 could be valid. Because of the dependency on the unobserved
outcome, Assumption 2 is not testable, and the results could be biased if it is violated.

The results from the proposed model are given in Table 2. The survival probability estimates
using the intent-to-treat Kaplan–Meier, no switching subgroup analysis using Kaplan–Meier,
Branson & Whitehead (2002), Shao et al. (2005), and the proposed methods at the 25, 50, 75 and
100% quartiles of time to death are given in Table 3. The no-switching approach excludes the
patients who switched from best supportive care alone to panitumumab plus supportive care. The
p-values to test the treatment effect using the above five approaches are 0·577, <0·001, 0·520,
0·002 and <0·001, respectively. For the Branson & Whitehead (2002) method, 1000 bootstrap
samples are used to construct the standard error and p-value because the standard errors cal-
culated from the covariance matrix at convergence are too small to construct valid confidence
limits (Branson & Whitehead, 2002). Figure 3 provides the predicted survival curves for the two
treatment groups of panitumumab plus best supportive care and best supportive care alone using
the five approaches. We notice that the intent-to-treat Kaplan–Meier and Branson & Whitehead
(2002) approaches yield small survival differences between the panitumumab plus best support-
ive care and best supportive care alone groups before 200 days and there is little difference after
200 days since enrolment. On the other hand, the subgroup analysis based on no patients switch-
ing shows big differences between the two arms for the whole follow-up period. We then inves-
tigated the reason for the survival curve discrepancy for best supportive care alone group and
found two key contributing factors: a high switching rate for the best supportive care alone group,
167/223=75%; and selection bias, that is, the patients with longer time-to-event were more likely
to be switched from best supportive care alone to panitumumab plus best supportive care with
a median time-to-event of 40·5 days for the no switching patients and 49 days for the switching
patients. The Shao et al. (2005) and the proposed approach both yield big differences in the esti-
mated survival curves compared with the control arm with the bigger treatment difference being
obtained by the proposed approach.
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Table 2. Model estimates for the panitumumab data

Parameter EST SE P Parameter EST SE P

TD Model TU Model
Treatment −0·464 3·47 0·182 Treatment −1·144 1·18 <0·001
Age 0·023 0·15 0·124 Age −0·015 0·05 0·004
bECOG −0·589 2·99 0·048 bECOG −0·805 1·74 <0·001
Rectal −0·028 3·20 0·929 Rectal −0·018 1·10 0·871
Male −0·288 3·05 0·345 Male −0·054 1·09 0·622
CenEastEU −0·188 6·27 0·764 CenEastEU 0·194 2·50 0·439
WesternEU 0·181 3·99 0·650 WesternEU −0·068 1·60 0·672

TG Model U Model
Treatment −0·784 2·14 <0·001 Intercept 1·366 9·72 0·160
V*(1-Treatment) −1·383 2·09 <0·001 Treatment −1·070 3·19 <0·001
Prog Time −0·003 0·01 0·039 Age −0·008 0·14 0·546
PR Age −0·004 0·05 0·450 bECOG 1·905 3·34 <0·001
BTR PR −0·226 3·45 0·512 Rectal 0·314 3·31 0·342
BTR SD −0·180 1·74 0·302 Male −0·303 3·21 0·346
bECOG −0·268 1·96 0·173 CenEastEU 0·078 6·23 0·901
LECOG −1·035 1·48 <0·001 WesternEU 0·346 4·12 0·400
AE 0·295 1·16 0·011

EST, parameter estimates; SD(×10), standard error of the estimates; P , p-values; bECOG,
baseline electrocorticography; CenEastEU, central Europe; WesternEU, western Europe;
Prog Time, progression time; PR, partial response; BTR, best tumour response; SD, stable
disease; LECOG, last electrocorticography; AE, adverse event.

Table 3. Predicted survival functions for the panitumumab data

Time ITT No Crossover IPE Shao Cox TM
(Days) BSC P+BSC BSC P+BSC BSC P+BSC BSC P+BSC BSC P+BSC

93 0·750 0·793 0·303 0·793 0·722 0·783 0·678 0·798 0·548 0·801
190 0·511 0·533 0·081 0·533 0·454 0·551 0·341 0·536 0·171 0·555
334 0·266 0·260 0·020 0·260 0·201 0·298 0·097 0·258 0·025 0·282
1024 0·013 0·038 0·020 0·038 0·001 0·007 0·001 0·023 0·001 0·026

p-value 0·577 <0·001 0·520 0·002 <0·001

ITT, intent-to-treat; IPE, Branson & Whitehead (2002); Shao Cox, Shao et al. (2005); TM, proposed method;
BSC, best supportive care alone; P+BSC, panitumumab plus best supportive care.

7. EXTENSIONS

We have conducted simulation studies when data are generated from the proposed model or
from the models in Shao et al. (2005). Additional simulation studies may be carried out to fur-
ther examine the robustness of the proposed method to misspecification of models (1)–(3) or to
perform sensitivity analysis on the ignorability assumption of switching selection.

Although the proposed model is developed under partial treatment switching, i.e., not all
patients switch treatment, it can be easily extended to the case with complete treatment switch-
ing in which all patients on the control arm switch to the experimental arm. Specifically, under
complete treatment switching, the components of the proposed model for U , TD and TU remain
the same and only the model in (3) for G needs to be modified as follows

hG(t | R, Z , V, U = 1, TU ) = h2(t) exp{β21 R + γ2(Z , TU )},
as in this case β22 is no longer identifiable. However, under complete treatment switching,
the estimator of the predictive survival function needs to be rederived, which is much more
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Fig. 3. Predicted survival curves for the panitumumab data. In each panel, the solid curve is the intent-
to-treat survival function in the control arm, the dashed curve is the intent-to-treat survival function
in the experimental treatment arm, while the dotted and the dash-dotted curves are, respectively, the
estimated survival functions in these two arms. The estimates in the survival curves are based on (a) no
switching subgroup analysis using the Kaplan–Meier estimates, (b) the Branson & Whitehead (2002)

method, (c) the Shao et al. (2005) method and (d) our method.

challenging than under partial treatment switching. In addition, in the proposed model, we build
dependence between TU and G via the transition model. An alternative to the transition model
is the frailty model. Under the latter, we have hU (t | R, X, U = 1) = h1(t) exp(β1 R + γ1 X)ω,
and hG(t | R, Z , V, U = 1, TU ) = h2(t) exp{β21 R + β22V (1 − R) + γ2 Z}ω, where ω is a latent
gamma-frailty with mean one and variance θ . Compared with the frailty model, the transition
model is much more numerically stable in the implementation of the expectation-maximization
algorithm. Finally, the proposed method can also be extended to the case where patients may
switch from either treatment arm as discussed in Shao et al. (2005). These extensions, along with
comparison between the transition model and the frailty model, are currently under investigation.
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APPENDIX

Proof of Theorem 1. Let ln(θ, H1, H2, H3) denote the observed loglikelihood function for (θ, H), and
H{t} = {H(t) − H(t−)}. First, it is easy to see if Ĥk{t} = ∞, then ln(θ̂ , Ĥ1, Ĥ2, Ĥ3) = −∞. Moreover,
this also holds if the jump size of Ĥk at the corresponding events is zero. Thus, the jump sizes of Ĥk at the
corresponding events are positive and finite so the derivatives of ln(θ, H1, H2, H3) with respect to each
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jump size of Ĥk should be zero at (θ̂ , Ĥ1, Ĥ2, Ĥ3). This gives

Ĥ0{Yi } = Ii (G1)/

⎧⎨
⎩

∑
j∈G1

eβ̂0 R j +γ̂ T
0 X j +

∑
j∈G4

(1 − p̂u j )ŜD(Yi )

(1 − p̂u j )ŜD(Yi ) + p̂u j ŜU (Yi )

⎫⎬
⎭ , (A1)

Ĥ1{Wi } = Ii (G2, G3)/

⎧⎨
⎩

∑
j∈G2,G3

eβ̂1 R j +γ̂ T
1 X j +

∑
j∈G4

p̂u j ŜU (Yi )

(1 − p̂u j )ŜD(Yi ) + p̂u j ŜU (Yi )

⎫⎬
⎭ , (A2)

Ĥ2{Wi } = Ii (G2)/

⎧⎨
⎩

∑
j∈G2,G3

eη̂G j

⎫⎬
⎭ , (A3)

where Gi denotes group i , Ii (A) = I (i ∈ A), η̂D = β̂0 R + γ̂ T
0 X , η̂U = β̂1 R + γ̂ T

1 X , η̂G = β̂21 R +
β̂22V (1 − R) + γ̂ T

2 (Z , W ), and the additional subindex j denotes the expression for the j th sub-
ject. In addition, we let ŜD(t) = exp{−Ĥ0(t)eη̂Dj }, ŜU (t) = exp{−Ĥ1(Yi )eη̂U j } and p̂u j = p̂r(U = 1 |
R j , X j ). Equation (A3) implies Ĥ0{Yi } � Ii (G1)/

∑
j∈G1

c0, where c0 is a positive lower bound of

eη̂Dj . Since n−1
∑

j∈G1
1 → pr(U = 0, Y � C) > 0, we obtain lim supn Ĥ0(τ ) � lim supn n−1

∑n
i=1 I (Yi �

τ, i ∈ G1)/c0n−1
∑

j∈G1
1 < ∞. Similarly, equations (A2) and (A3) yield that lim supn Ĥ1(τ ) and

lim supn Ĥ2(τ ) are both finite.
By Helly’s selection theorem, for any subsequence, we can choose a further subsequence such that Ĥk

weakly converges to an increasing function H∗
k for k = 1, 2, 3. Moreover, we can assume θ̂ → θ∗. We then

show H∗
k = Hk and θ∗ = θ . To this end, we construct H̃k such that H̃k has jumps at the same events as Ĥk ;

moreover, the jumps of H̃k are given by the right-hand side of (A1) to (A3) except that the parameters on
the right-hand side are set to be the true values. It is straightforward to verify that H̃k converges uniformly
to the true function Hk . Furthermore, we can show that d Ĥk/d H̃k converges uniformly to d H∗

k /d Hk .
Therefore, since ln(θ̂ , Ĥ1, Ĥ2, Ĥ3) − ln(θ, H̃1, H̃2, H̃3) � 0, we take limits on both sides and conclude

that the Kullback–Leilber information between (θ∗, H∗
1 , H∗

2 , H∗
3 ) and (θ, H1, H2, H3) is nonpositive. This

immediately implies that the loglikelihood function at (θ∗, H∗
1 , H∗

2 , H∗
3 ) is equal to the loglikelihood func-

tion at (θ, H1, H2, H3) with probability one. Thus, this equality holds for all subjects in Groups 1 to 4 as
defined in § 3. Comparing the differences of the loglikelihood functions from subjects in Group 2 and
Group 3, we have

(H∗
2 )′(G)eβ∗

21 R+β∗
22V (1−R)γ ∗

2
T(Z ,W ) = H ′

2(G)eβ2 R+β22V (1−R)γ2
T(Z ,W ),

so by Assumption 6, H∗
2 = H2, β

∗
21 = β21, β

∗
22 = β22 and γ ∗

2 = γ2. Let W = 0, we have

{h∗
1(0)eα∗

0 +α∗
1 R+α∗

2
T X }/(1 + eα∗

0 +α∗
1 R+α∗

2
T X ) = {h1(0)eα0+α1 R+α2

T X }/(1 + eα0+α1+α2
T X ).

Now in the loglikelihood for subjects in Group 1, we let Y = 0 and obtain

h∗
0(0)/(1 + eα∗

0 +α∗
1 R+α∗

2
T X ) = h0(0)/(1 + eα0+α1+α2

T X ).

Compare the above equations, so α∗
1 = α1, α

∗
2 = α2. Since one component of X is continuous and has a

nonzero coefficient in α2, the above equation gives h∗
0(0) = h0(0) and α∗

0 = α0. Finally, after integrating
the likelihood equality function for Group 2 for W from 0 to Y , we have

[1 − exp{−H∗
1 (Y )eβ∗

1 R+γ ∗
1

T X }]eα∗
0+α∗

1 R+α∗
2

T X

1 + eα∗
0+α∗

1 R+α∗
2

T X
= [1 − exp{−H1(Y )eβ0 R+γ1

T X }]eα∗
0+α∗

1 R+α∗
2

T X

1 + eα0+α1+α2
T X

.
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Thus, H∗
1 = H1 and β∗

1 = β1, γ
∗
1 = γ1. On the other hand, integrating the likehood equality function for

subjects in Group 1 for Y from 0 to Y gives

1 − exp{−H∗
0 (Y )eβ∗

0 R+γ ∗
0

T X }
1 + eα∗

0 +α∗
1 R+α∗

2
T X

= 1 − exp{−H0(Y )eβ0 R+γ0
T X }

1 + eα0+α1+α2
T X

,

so β∗
0 = β0, γ

∗
0 = γ0 and H∗

0 = H0.
We have proved that θ̂ → θ and Ĥk converges weakly to Hk . The latter can be further strengthened to

uniform convergence in [0, τ ] since Hk is continuous. Therefore, Theorem 1 holds. �

Proof of Theorem 2. The proof of Theorem 2 follows from the same argument in proving Theorem 2
in Zeng & Lin (2010). In particular, their conditions (C.1)–(C.4) and (C.6) hold for our specific models.
Their first identifiability condition (C.5) has been verified in the proof of Theorem 1. To complete the
proof, it remains to verify the second identifiability of their condition (C.7). Consider the score function
along a sub model Hk + ε

∫
fkd Hk and θ + εν where ν = (β0, γ0, β1, γ1, β21, β22, γ2, α0, α1, α2). If this

score function is zero with probability one, then we need to show that fk = 0 and ν = 0. For subjects in
Group 2, the score equation is

0 = f1(W ) + ηU −
∫ W

0
f1(t)d H1(t)e

ηU − H1(Y )eηU ηU + f2(G) + ηG

−
∫ G

0
f2(t)d H2(t)e

ηG − H2(Y )eηG ηG + eα0+α1 R+αT
2 X (1 + eα0+α1 R+αT

2 X )−2

× (ξ0 + ξ1 R + ξ T
2 X). (A4)

For subjects in Group 3, we obtain the score equation to be

0 = f1(W ) + ηU −
∫ W

0
f1(t)d H1(t)e

ηU − H1(Y )eηU ηU −
∫ G

0
f2(t)d H2(t)e

ηG

− H2(Y )eηG ηG + eα0+α1 R+αT
2 X (1 + eα0+α1 R+αT

2 X )−2(α0 + α1 R + αT
2 X). (A5)

The difference between (A4) and (A5) gives f2(G) + ηG = 0, so by Assumption 6, f2 = 0, β21 = 0, β22 = 0
and γ2 = 0.

Using this result and equation (A5), the score equation for subjects in Group 4 becomes

0 = −
∫ Y

0
f0(t)d H0(t)e

ηD − H0(Y )eηDηD − eα0+α1 R+αT
2 X (α0 + α1 R + αT

2 X)

(1 + eα0+α1 R+αT
2 X )2

. (A6)

On the other hand, for subjects in Group 1,

0 = f0(Y ) + ηD −
∫ Y

0
f0(t)d H0(t)e

ηD − H0(Y )eηDηD − eα0+α1 R+αT
2 X (α0 + α1 R + αT

2 X)

(1 + eα0+α1 R+αT
2 X )2

. (A7)

Then the difference between (A6) and (A7) gives f0(Y ) + ηD = 0 which further gives f0 = 0, β0 = 0 and
γ0 = 0. As a result, (A7) becomes α0 + α1 R + αT

2 X = 0 so α0 = 0, α1 = 0 and α2 = 0. This further com-
bined with equation (A5) gives f1 = 0, β1 = 0 and γ1 = 0. We have verified condition (C.7) in Zeng & Lin
(2010). According to their results, our Theorem 2 holds.

Moreover, from Theorem 3 in Zeng & Lin (2010), we also conclude that the inverse of the observed
information is a consistent estimator for the asymptotic covariance. �

Proof of Theorem 3. The consistency of Ŝa(t) follows from the consistency of the following
terms, p̂r(TD > t | R = a, X, U = 0) p̂r(U = 0 | R = a, X), p̂r(G + TU > t | R = a, X, Z , U = 1), from
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Theorem 1. Moreover, we have the fact that, by the kernel approximation,∑
j∈G2,G3

p̂r(G + TU > t | R = a, X j , Z j , U = 1)Kan (X j − x)I (R j = a)∑
j∈G2,G3

Kan (X j − x)I (R j = a)

→ E{pr(G + TU > t | R = a, X, Z , U = 1) | X = x, R = a, U = 1, TU � C}

uniformly in x in the support of X and with probability one. Since Z and (TU , C) are independent given
(R, X), the limit on the right-hand side is also equal to pr(G + TU > t | X = x, R = a, U = 1). Thus,
Ŝa(t) → Sa(t). Note Ŝa(t) − Sa(t) can be written as

1

na

n∑
i=1

p̂r(TD > t | R = a, X = Xi , U = 0)p̂r(U = 0 | R = a, Xi )I (Ri = a)

+ 1

na

n∑
i=1

E
{

p̂r(G + TU > t | R = a, X, Z , U = 1)

∣∣∣X = Xi , R = a, U = 1, TU < C
}

× p̂r(U = 1 | Xi , R = a)I (Ri = a) − Sa(t)

+ 1

na

n∑
i=1

[∑
j∈G2,G3

p̂r(G + TU > t | R = a, X j , Z j , U = 1)Kan (X j − Xi )I (R j = a)∑
j∈G2,G3

Kan (X j − Xi )I (R j = a)

− E
{

p̂r(G + TU > t | R = a, X, Z , U = 1)

∣∣∣X = Xi , R = a, U = 1, TU < C
}]

× p̂r(U = 1 | Xi , R = a)I (Ri = a). (A8)

The first two terms are Hadamard differentiable with respect to θ̂ , Ĥk and the empirical distribution of
X given R. Therefore, by the functional delta method, these terms can be approximated as 
(θ̂ − θ) +∑3

k=1

∫
fk(t)d{Ĥk(t) − Hk(t)} + ∫

g(x)d{F̂(X | R) − F(X | R)} + op(n−1/2) for some bounded func-
tions fk(t) and g(x), where F̂(X | R) is the empirical distribution function of X given R. To complete
the proof of Theorem 3, we only need to show that the last term in equation (A8) is asymptotically normal.

Denote Q as subjects in Group 2 and Group 3 and use Pn to denote the empirical measure. The last
term of (A8) can be reorganized as

(Pn − P)

[
p̂r(G + TU > t | R = a, X, Z , U = 1)I (R = a)

× Qn−1
a

{
n∑

i=1

Kan (X − Xi )

n−1
∑n

k=1 Qk Kan (Xk − Xi )I (Rk = a)

}]

− (Pn − P)

[
n−1

a

n∑
i=1

E
{

p̂r(G + TU > t | R = a, X, Z , U = 1)I (R = a)QK (X − Xi )
}

E{QKan (X − Xi )I (R = a)}2

× p̂r(U = 1 | Xi , R = a)I (Ri = a)

]

+ n−1
a

n∑
i=1

[
E

{
p̂r(G + TU > t | R = a, X, Z , U = 1)I (R = a)QK (X − Xi )

}
E{QKan (X − Xi )I (R = a)}

− U
{

p̂r(G + TU > t | R = a, X, Z , U = 1)

∣∣∣X = Xi , R = a, U = 1, TU < C
} ]

× p̂r(U = 1 | Xi , R = a)I (Ri = a). (A9)
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In (A9), we can apply the functional central limit result in Theorem 2.11.23 of van der Vaart & Wellner
(1996) to show that the first two terms of (A9) converge in distribution to a Gaussian process with a factor
n1/2. From the kernel approximation, the last term is O(am

n ), and therefore, is op(n−1/2). Combining the
above results, we conclude that Theorem 3 holds. �
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HERNÁN, M. Á., BRUMBACK, B. & ROBINS, J. M. (2000). Marginal structural models to estimate the causal effect of
zidovudine on the survival of HIV-positive men. Epidemiology 11, 561–70.

JIANG, Q., SNAPINN, S. M. & IGLEWICZ, B. (2004). Calculation of sample size in endpoint trials: the impact of
informative noncompliance. Biometrics 60, 800–6.

LACHIN, J. M.& FOULKES, M. A. (1986). Evaluation of sample size and power for analyses of survival with allowance
for nonuniform patient entry, losses to follow-up, noncompliance, and stratification. Biometrics 42, 507–19.

LAKATOS, E. (1988). Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics 44, 229–41.
LARSON, G. & DINSE, G. (1985). A mixture model for the regression analysis of competing risks data. Appl. Statist.

34, 201–11.
LAW, M. G. & KALDOR, J. M. (1996). Survival analyses of randomized trials adjusting for patients who switch treat-

ments. Statist. Med. 15, 2069–76.
LONDON, W. B., FRANTZ, C. N., CAMPBELL, L. A., SEEGER, R. C., BRUMBACK, B. A., COHN, S. L., MATTHAY, K. K.,

CASTLEBERRY, R. P. & DILLER, L. (2010). Phase II randomized comparison of topotecan plus cyclophosphamide
versus topotecan alone in children with recurrent or refractory neuroblastoma: a children’s oncology group study.
J. Clin. Oncol. 28, 3808–15.

LOUIS, T. A. (1982). Finding the observed information matrix when using the EM algorithm. J. R. Statist. Soc. B 13,
2233–47.

LU, J. & PAJAK, T. F. (2000). Statistical power for a long-term survival trial with a time-dependent treatment effect.
Contr. Clin. Trials 21, 561–73.

LUNCEFORD, J. K., DAVIDIAN, M. & TSIATIS, A. A. (2002). Estimation of survival distributions of treatment policies
in two-stage randomization designs in clinical trials. Biometrics 58, 48–57.

MARCUS, S. M.& GIBBONS, R. D. (2001). Estimating the efficacy of receiving treatment in randomized clinical trials
with noncompliance. Health Serv. Outcomes Res. Methodol. 2, 247–58.
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