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Abstract. Background: Despite the benefits of early lung cancer detection, no effective strategy for early screening and
treatment exists, partly due to a lack of effective surrogate biomarkers. Our novel sputum biomarker, the Combined Score (CS),
uses automated image cytometric analysis of ploidy and nuclear morphology to detect subtle intraepithelial changes that often
precede lung tumours.

Methods: 2249 sputum samples from 1795 high-risk patients enrolled in ongoing chemoprevention trials were subjected
to automated quantitative image cytometry after Feulgen-thionin staining. Samples from normal histopathology patients were
compared against samples from carcinoma in situ (CIS) and cancer patients to train the CS.

Results: CS correlates with several lung cancer risk factors, including histopathological grade, age, smoking status, and p53
and Ki67 immunostaining. At 50% specificity, CS detected 78% of all highest-risk subjects—those with CIS or worse plus those
with moderate or severe dysplasia and abnormal nuclear morphology.

Conclusion: CS is a powerful yet minimally invasive tool for rapid and inexpensive risk assessment for the presence of
precancerous lung lesions, enabling enrichment of chemoprevention trials with highest-risk dysplasias. CS correlates with other
biomarkers, so CS may find use as a surrogate biomarker for patient assessment and as an endpoint in chemoprevention clinical
trials.

Keywords: Intraepithelial neoplasia (IEN), lung cancer, risk assessment, intermediate or pre-neoplastic markers and risk fac-
tors, biomarkers and intervention studies, chemoprevention, biomarkers and intervention, cancer surveillance and screening,
chemoprevention clinical trials, quantitative image cytometry, ploidy analysis, malignancy associated changes

1. Introduction

Lung cancer is the leading cause of cancer death
worldwide [17]. Despite decades of work by clinicians
and research scientists, lung cancer still has a bleak,
5-year survival rate of just 16% [18]. While the 5-year
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survival rate is about 70% for resected early-stage lung
cancer [20], the majority of lung cancers are detected
at an advanced stage with metastasis already present
[18, 20]. To decrease lung cancer mortality, a strategy
is needed to identify both patients with early disease,
for treatment, and those with precancerous disease at
risk of cancer development, for chemoprevention [45].

Historical efforts to find an effective lung cancer
screening strategy using chest X-rays and standard spu-
tum cytology [20] unfortunately found no decrease in
mortality [10]. Many promising techniques are cur-
rently being studied, including low-dose spiral CT
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[15, 49], fluorescence bronchoscopy [9, 33], and spu-
tum and blood biomarkers [31, 57]. More recently, the
National Lung Screening Trial reported a 20% reduc-
tion in lung cancer mortality in high-risk individuals
after receiving low-dose CT screening [34]. While both
spiral CT and fluorescence bronchoscopy are sensitive
technologies to detect early lung cancer, both methods
suffer from limitations [7] and are costly if applied to
high-risk subjects defined by age and smoking history
alone.

Consequently, a critical part of any lung cancer
screening strategy is a means to assess a participant’s
risk of having cancer or precancerous lesions at high
risk of progressing to cancer. Risk assessment is not
only useful in directing costly or invasive screening
methods, but also allows at-risk populations to be iden-
tified for chemoprevention [45]. Furthermore, if the
risk methodology is based on molecular alterations
in the lung’s genetic material, then changes in the
assessment can be used to monitor the effectiveness of
treatment or chemoprevention. The progression of nor-
mal lung tissue to invasive cancer is a complex process,
involving multiple stages of increasing genetic and
molecular insult. In the central airway, Saccomanno et
al. showed that squamous cell carcinomas arise from
a series of distinct pathological stages [41]. Moreover,
lower grade dysplasias have a considerably lower rate
of progression than severe dysplasias and carcinomas
in situ [20]. Ascertaining the degree to which areas
of the lung have progressed down this path—and the
corresponding increased risk of cancer—is clinically
important, as it should guide screening and chemopre-
ventative therapy decisions.

The internationally accepted standard prognostic
factor for lung cancer risk is the histopathological
grade of a bronchial biopsy based on the World Health
Organization classifications [16]. Biopsy, taken either
endoscopically or surgically, is an invasive procedure
and so other attempts to quantify risk have focused
on patient factors, or biomarkers in sputum or blood
samples [31, 47, 57]. Blood screen methodologies
have included circulating DNA and RNA markers and
proteomic profiling [2, 54, 57]. A study employing
the detection of nanoarchitectural changes in buccal
cells to detect lung cancer gave promising results, but
their analysis was based on a small number of man-
ually selected cells from a small number of patients
[40]. In sputum, markers such as Ras and hnRNP B1
and the aberrant methylation of tumour suppressor
genes have all been investigated [31]. Recent studies

have also studied the presence of specific chromoso-
mal abnormalities in sputum using fluorescence in situ
hybridization [19, 53] and pulmonary function [51] as
possible risk factors for lung cancer.

Sputum biomarkers are promising because they are
relatively quick and inexpensive while being adapt-
able to large-scale population screening [51], making
them practical tools to guide both subsequent screening
and chemoprevention trials. Studies into the diagnostic
utility of conventional sputum cytology (summarized
in [44]) have reported widely varying results, likely
due to differences in methodologies between studies
and significant intra- and inter-observer variations in
identifying abnormal cells [30]. However, most stud-
ies have been directed at the detection of tumours and
a lack of research remains into the utility of sputum
cytology as a risk assessment tool for precancerous
lesions.

As the percentage of bronchial epithelial cells in spu-
tum can be quite low, reported sensitivities of sputum
cytology for lung cancer detection tend to be quite low
[30]. Malignancy associated changes (MAC) are sub-
tle morphological and physiological changes that have
been observed in non-malignant cells when cancer is
present in a patient [35]. These changes may be due
to soluble factors secreted by the malignant cells. Due
to the larger number of non-malignant cells expected to
exhibit MACs, we expect techniques based on MACs
to be more sensitive than conventional cytology. Pre-
vious work in our group and others has shown that
automated image cytometry based on MACs can be
used to detect lung cancer [21, 39].

In this study, we correlate a number of published
lung cancer risk factors—histopathological grade of
biopsies from the bronchial tree, age, smoking sta-
tus, quantitative morphometry, p53 and Ki67 biopsy
status—to a novel sputum biomarker assay based on
cell population ploidy status and malignancy associ-
ated changes [37, 39].

2. Materials and methods

Cell samples and data were drawn from several
NCI-sponsored lung cancer chemoprevention trials in
high-risk smokers, as defined by age and smoking
history, [24–26] and from patients undergoing inves-
tigation for suspected lung cancer. A total of 2249
sputum samples were obtained between 2000 and 2006
from 1795 participants.
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2.1. Chemoprevention trial subject recruitment
and eligibility

For this study, a former smoker is defined as some-
one who has not smoked in the previous 12 months.
A current smoker has smoked in the previous 12
months and a non-smoker is neither a former nor a
current smoker. Former and current smokers between
40 to 74 years of age with a smoking history of ≥30
pack-years were recruited for the chemoprevention
studies through the community outreach network of
the public relations department of the British Columbia
Cancer Agency (BCCA) using television programs,
radio broadcasts, and through local newspapers. Fol-
lowing an initial interview during which study subjects
completed a questionnaire to document their smok-
ing history, we obtained a sputum sample from each
subject using simultaneous high-frequency chest wall
oscillation with an ABI Vest (Advanced Respiratory
Inc., St. Paul, MN) and inhalation of 3% hypertonic
saline from an ultrasonic nebulizer for 12 minutes [24,
25]. The subjects were instructed to cough intermit-
tently during the induction procedure and for at least
2 hours afterwards to produce sputum samples. This
procedure was found to be well tolerated by patients.
The sputum samples were fixed in 50% ethanol and
each sample was cytospun onto a glass slide and DNA
was stained with Feulgen-thionin.

Some patients who volunteered for the chemo-
prevention studies did not meet the eligibility
requirements for continuing on to participate in the
bronchoscopy examination phase of those studies after
a sputum sample was collected. A total of 1312 spu-
tum samples in the present study were from such
patients. Approval was granted by the Clinical Investi-
gations Committees of the BCCA and The University
of British Columbia. Written informed consent was
obtained from all participants.

2.2. Semi-automated quantitative sputum analysis

An automated, high-resolution image cytometer
(Cyto-Savant™ system from Oncometrics Inc., Van-
couver, Canada) was programmed to measure the
DNA content of at least 3000 objects per sample [8,
11, 39]. The image cytometer was subjected to the
daily, weekly, monthly, and yearly quality assurance
SOPs described in Chiu et al. [6] and Guillaud et al.
[13] to ensure that the system’s components (i.e.,

device and sample staining) were operating within
their expected performance parameters. Each object
detected on the slide was individually focused and
scanned. Each object was then subjected to a discrim-
inating function, in the form of a classification tree,
which separated bronchial epithelial cells from other
materials such as food particles, macrophages, lym-
phocytes, and other inflammatory cells [28, 38]. All
cells were then reviewed by a trained cytotechnolo-
gist (certified by the Canadian Society of Laboratory
Technologists). About 90% of all collected objects
were identified to be epithelial cells after this proce-
dure, which we have previously demonstrated yields
comparable results to manually selecting nuclei [39].

For each epithelial cell, 110 nuclear features were
calculated. These features can be divided into 6 cat-
egories: morphology (size and shape); densitometric
properties (absorption amount and distribution); dis-
crete texture features (euchromatin/heterochromatin);
Markovian texture features (co-occurrence based);
fractal texture features; and run-length texture features
[8, 28]. For each slide, the average, standard deviation,
skewness, and kurtosis were calculated for each feature
from all epithelial cells found on the slide.

2.3. Ploidy measures

We have previously shown that Feulgen-thionin
staining with our system is quantitative for DNA [11,
39]. Each cell’s ploidy status was assessed by measur-
ing the integrated optical density (IOD) of the nucleus
and normalizing this against the mean IOD of the sam-
ple’s diploid cell population, as determined from a
frequency histogram of the nuclear IODs [13]. Diploid
cells were assigned a DNA index of 1.0. A ploidy
score for each slide was calculated by examining the
frequency of cells falling within a series of DNA
index ranges and then finding the range which had the
most discriminating performance between normal and
abnormal cases, where abnormal cases were defined
as carcinomas in situ (CIS) and cancers. The ranges
used were: <0.95, 0.95–1.00, 1.00–1.60, 1.60–1.85,
1.85–1.95, 1.95–2.09, 2.09–2.15, >2.15.

2.4. MAC measures

All MAC feature calculations considered only cells
with DNA indices between 0.7 and 1.3. A training
set was constructed by randomly sampling 100 cells
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from each of the 36 normal, 6 CIS, and 36 cancer
samples, as defined by the histopathological grading
of their matching bronchial biopsies (see Section 2.5).
The sampled cells from the CIS and cancer samples
were then pooled together and compared against the
sampled normal cells. A forward-stepping linear dis-
criminant function analysis [14, 37] was performed on
these two sets of about 4000 cells each, resulting in
seven features selected to be indicative of malignancy
associated changes.

The combined cytometric score for each slide was
calculated from a linear combination of the 7 selected
MAC features and the ploidy score. This combined
cytometric score created a sputum-based biomarker
that was used in the subsequent comparative analysis.

2.5. Biopsy collection and analysis

Atypia in a sample was defined as the presence
of at least five cells which had DNA indices greater
than 1.2 [24, 25]. All volunteers with atypical spu-
tum were recalled and invited to be examined using
autofluorescence bronchoscopy; they had an average
of 7-8 bronchial biopsies taken per visit. Each of the
7934 biopsies collected was fixed in buffered for-
malin, embedded in paraffin, and serially sectioned.
H&E-stained sections from each biopsy were system-
atically reviewed by two experienced lung pathologists
(J leRiche, A Gazdar), as previously described [24,
25]. Each biopsy was classified into one of the cat-
egories (normal, basal cell hyperplasia, metaplasia,
mild/moderate/severe dysplasia, carcinoma in situ,
cancer) in the histopathological system established
by the World Health Organization [52]. Minor (i.e.,
one grade) differences in sample classification were
resolved by telephone consultation between the two
pathologists. If the diagnosis differed by two or more
grades, both pathologists reviewed the slides again and
reached a consensus diagnosis after communication by
phone, email, or in person. The biopsies were matched
by patient and date of collection to 1233 distinct spu-
tum samples. For each of these sputum samples, the
most severe consensus biopsy diagnosis associated
with that sputum sample was recorded. In addition, all
samples taken from patients who were subsequently
diagnosed with CIS or cancer by non-bronchoscopic
means (e.g., CT scans) within 8 months after sputum
collection were also classified as CIS or cancer, as
appropriate. All subjects who received, for any biopsy,

a biopsy grade of dysplasia, or worse, then had a Mor-
phometry Index (MI) calculated for all their biopsies,
according to the procedure set out in [14]. A total of
5060 biopsies had MIs calculated for this study.

178 biopsy samples taken from sites with a biopsy
grading of at least dysplasia at baseline or follow-up
were subjected to immunohistochemical analysis using
4 markers: p53, Ki67, bcl2, and cleaved caspase 3, as
previously described [24]. They were graded visually
on a 0–4 scale (with 0 indicating no stain and 4 indicat-
ing more than 75% of the nuclei staining positive) by
experienced cytotechnologists. Of these biopsies, 159
corresponded to one of the sputum samples within the
data set for the present analysis, matching both patient
and time.

Some of the volunteers in this study either devel-
oped resectable lung cancer during the trial process
or were discovered to have cancer upon enrolment.
From 40 of these subjects who developed lung can-
cer, 73 sputum samples were collected either before
or after surgical treatment. These 40 cases included
patients with squamous cell carcinomas, adenocarci-
nomas, large cell lung cancers, and small cell lung
cancers.

Except where otherwise noted, statistical signif-
icance in the present analysis was assessed using
unpaired t-tests and ANOVA performed using STA-
TISTICA software (StatSoft Inc., Tulsa, OK). P < 0.05
was considered statistically significant.

3. Results

The average age of the 1795 volunteers when sam-
ples were taken was 59.7 years (ranging from 39 to
83), and the average pack-years smoked was 48 (rang-
ing from 8 to 221 amongst all current and former
smokers). 57% of the samples were taken from male
participants, 43% from females. 60.2% of the sam-
ples came from former smokers, 38.5% from current
smokers, and 0.3% from non-smokers. The age dis-
tributions were similar between sexes: male average
was 60 (range 39–83) and female average was 59
(range 39–81). However, there was some difference in
their smoking history, with the male average pack-year
exposure being 50, and the female average pack-year
exposure being 44.

Upon comparing the ploidy characteristics of
the normal and CIS/cancer training sets, the most
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discriminating ploidy feature was found to be the
frequency of epithelial cells with a ploidy amount
between 1.6 and 1.85. Hence, this was used as the
ploidy score. Seven features were found to be most
indicative of malignancy associated changes: 1) the
standard deviation (SD) of a nuclear morphology
feature, harmon05 fft (a measure of nuclear round-
ness) [28], across all the epithelial cells measured for
the sample, 2) the SD of 3 nuclear discrete texture
features, high DNA area, medium DNA amount
and medium average distance [8], across all the
epithelial cells measured for the sample, 3) the SD of
a Markovian texture feature, correlation [8], across
all the epithelial cells measured for the sample, 4) the
mean of a fractal texture feature, fractal dimension
[8], across all the epithelial cells measured for the
sample and 5) the SD of a run-length texture feature,
maximum run length (adapted from [8]), across all
the epithelial cells measured for the sample. These 7
MAC-based features were combined with the ploidy
score as a weighted sum to create a Raw Combined
Score (Raw CS).

A plot of the Raw Combined Scores showed a depen-
dency on the number of identifiable cells on each slide
(Supplementary Data 1A). To correct for this, we sub-
tracted from each Raw CS the value predicted by the
distance-weighted least squares fit as a function of the
number of cells measured on the slide. There were
insufficient samples with more than 6000 cells to reli-
ably estimate the trend, so the adjustment for samples
with more than 6000 cells was set to zero. Except where
otherwise specified, the adjusted Combined Score will
be denoted simply as the Combined Score or CS for
the remainder of the present analysis.

As with any cytological test, we must set a sam-
ple adequacy threshold that minimizes the scatter from
measuring too few cells without excluding so many
samples that it causes undue stress on patients and
reduces the test’s overall utility in a clinical setting.
We chose 500 cells per slide as a threshold because
below this level, the somewhat consistent patterns that
the various histological categories exhibit break down
(Supplementary Data 1B). Meanwhile, approximately
10% of the sample slides are excluded at this level,
which was felt to be an acceptable rate. Hence, only
sputum samples with at least 500 identifiable cells were
used in the subsequent analysis.

A comparison of the sputum-derived Combined
Score (CS) with the maximum histopathological grade
of all the bronchial biopsies of the test subject at the

Fig. 1. Box plots of Combined Score for sputum samples containing
more than 500 identifiable cells, grouped according to histopatho-
logical grade. There is a general increase in the median Combined
Score when progressing to more pathologically severe cases.

corresponding time point is shown in Fig. 1. There is
a clear trend that as pathological severity increases,
so does the CS (F-test, P < 10−5). Post hoc analysis
using the Tukey Unequal N Honestly Significant Dif-
ference (HSD) test showed that the CS of the normal
and hyperplasia groups were statistically significant
from those of the cancers (P = 0.003 and 0.009, respec-
tively). As similar histopathological groups can often
be difficult to distinguish, we created four new groups:
normal/hyperplasia, metaplasia/mild dysplasia, mod-
erate dysplasia to CIS, invasive cancer. When these
groups are used, the trend between CS and patholog-
ical severity becomes even more evident, as shown
in Fig. 2A. Post hoc analysis shows that the nor-
mal/hyperplasia group is significantly different from
all other groups and the cancers are significantly dif-
ferent from the metaplasia/mild group (summarized in
Fig. 2B).

To determine the degree to which the Combined
Score can be used to ascertain lung cancer risk, we
compared the CS to other known risk factors and
biomarkers of lung cancer. Using the Morphometry
Index in conjunction with histopathological grad-
ing, we created high- and low-risk subject groups,
which we will denote m-risk. A given patient was
considered low-m-risk if he or she had a histopatho-
logical grading of hyperplasia, or less, and a maximum
MI < 1.36, as described in [25]. High-m-risk subjects
had a maximum MI > 1.36 and a histopathological
grading of moderate dysplasia, or worse. Additionally,
all CIS and cancer patients were denoted high-m-risk,
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Fig. 2. Analysis of Combined Scores for samples from patients
in each of the four histopathological groups created by combining
similar grades: normal/hyperplasia, metaplasia/mild dysplasia, mod-
erate dysplasia to CIS, invasive cancer. A: Plot of mean CS. Error
bars denote 95% confidence intervals. B: Summary P-value matrix
of Tukey Unequal N HSD Post Hoc analysis. Significant P-values
(p < 0.05) are highlighted in red and the italicized row shows mean
Combined Scores in each group.

regardless of MI. Given the strong correlation between
the Morphological Index and cancer risk [14], we feel
that this combined assessment represents a more accu-
rate approximation of lung cancer risk than does a
system that relies on histopathology alone. If all the
subjects that fit into the high- or low-m-risk categories
are grouped together, there is a significant correlation
between the Combined Score and the m-risk groups
(P = 0.00004) (plot shown as Supplementary Data 2).
Removing the sample used for training from this anal-
ysis, this correlation between CS and m-risk groups
still holds (P = 0.008).

Using the m-risk groups, we can construct a receiver
operating characteristic (ROC) curve representing the
ability of the Combined Score to distinguish high-m-
risk patients from low-m-risk patients (Fig. 3). Patients
with metaplasia and mild dysplasia are considered neu-
tral m-risk. As we are unsure whether to consider them

Fig. 3. ROC curves showing the ability of the Combined Score to
distinguish between high- and low-m-risk patients. Patient m-risk
groups were defined as described in the text. Patient m-risk can be
defined using the maximum MI of the biopsies from the subject or
the average MI from the biopsies taken from the subject, both cases
for which are shown. For comparison, the ROC curve for LungSign
is shown as well (adapted from Fig. 2 in [21]). Areas under the
curve are 0.711, 0.766, and 0.692 for maximum MI, average MI,
and LungSign, respectively.

high- or low-m-risk, we excluded them from this anal-
ysis. Since many patients received multiple biopsies
over the course of the study, MI can be used to deter-
mine m-risk either by using the maximum MI at a given
time point or the average MI at that time point. In either
case, the worst histopathological diagnosis was used
to determine the m-risk group. CS performed well by
both definitions of m-risk, although using the average
MI resulted in a noticeably better area under the curve
than using the maximum MI (AUC by trapezoidal rule,
0.766 and 0.711, respectively). If all samples used in
training the CS are removed from this analysis, the
areas under the curve become 0.752 and 0.677, respec-
tively.

Age and pack-years smoked are the most widely
studied epidemiological lung cancer risk factors. Both
have been shown to be key predictors of lung can-
cer risk [5]. Plotting each sample’s Combined Score
against age and pack-years smoked shows a pos-
itive correlation in each case (data not shown).
A linear regression with a statistically significant pos-
itive slope can be calculated in each case, which
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confirms that CS increases with age and smoking his-
tory. Furthermore, these trends remain even if the
subject population is broken down into male/female
and current smoker/former smoker groups. The sub-
ject population was divided into these groups because
these subpopulations may exhibit differences in cancer
risk or progression [23, 31].

There has been considerable work to find
immunohistochemical markers—in blood, sputum, or
biopsies—that correlate with lung cancer risk [12, 16].
Two of the more successful lung cancer immunohis-
tochemical markers are p53 and Ki67. p53, which is
the most studied marker for all cancers including lung
cancer [16], has been shown to be overexpressed in
many premalignant bronchial lesions [1]. Furthermore,
overexpression of p53 in a lesion correlates with an
increased risk of a lesion progressing to invasive can-
cer [1]. Immunostaining with the proliferation marker
Ki67, which is expressed in the G1, S, G2, and M phases
of the cell cycle [43], has been shown to be of prognos-
tic value in a number of cancers, including lung cancer
[4, 58]. Ki67 expression has further been demonstrated
to increase as preneoplastic lung lesions progress from
mild dysplasia to CIS [32].

Figure 4A and B plot the immunohistochemical
staining score of p53 and Ki67 respectively, for each
of the 159 biopsies selected (see Methods) against its
histopathological grading. Overall, there was a posi-
tive correlation between p53 staining and histological
grade. There was also a statistically significant differ-
ence between hyperplasia and all of the more severe
grades (Fig. 4A). The proliferation marker Ki67 shows
an even more pronounced progression of increasing
staining with increasing severity of pathological grad-
ing (Fig. 4B).

To compare p53 and Ki67 immunohistochemical
staining to the sputum-based Combined Score, the
sample populations were separated into current and
former smoker subgroups. To more clearly illustrate
the trends in the data, the five immunohistochemi-
cal staining scores were combined into two groups:
no/weak staining (scores 0–1) and stronger staining
(scores 2–4). The CS correlates with the p53 immuno-
histochemical staining for both former smokers and
current smokers (Fig. 5A and B, respectively). Ki67
staining correlated with increasing Combined Score
values for the former smoker subgroup (Fig. 5C).
However, there was no discernable pattern in the plot
comparing Ki67 immunostaining to the Combined
Score values for current smokers (Fig. 5D). This is

Fig. 4. Box plots comparing p53 (A) and Ki67 (B) staining score to
histopathological grade for the 159 biopsy samples from sites that
had a biopsy grading of dysplasia or worse at baseline or follow-up.

mainly because the CS for the current smoker cases
with weaker Ki67 staining is as high as the scores
for all cases with stronger Ki67 staining regardless of
smoking status. For the comparisons shown in each
of the four panels (Fig. 5A–D), P = 0.08, 0.008, 0.1,
0.6, respectively, although we can likely attribute the
findings of insignificance in the former smoker com-
parisons to an insufficient number of cases.

Given the impact of smoking status on the interac-
tion between the Ki67 measurements and Combined
Score, we turned our attention to other risk factors that
might have a confounding effect on our analysis of CS.
We found that there were small but not significant dif-
ferences between the high- and low-m-risk groups in
terms of age, smoking history, and sex (t-tests, sex by
Pearson χ2, P = 0.1, 0.2, 0.3, respectively), but high-
m-risk patients were significantly more likely to be
current smokers (Pearson χ2, P = 0.00009). Analyzing



194 G. Li et al. / Automated sputum cytometry for IEN detection

Fig. 5. Box plots comparing Combined Score to the maximum p53
(A, B) and Ki67 (C, D) staining score in that patient at that point
in time. Immunostaining scores were grouped into two categories:
no/weak staining (scores 0–1) and stronger staining (scores 2–4).
Cases were further subdivided into former smoker (A, C) and current
smoker (B, D) groups. For the comparisons shown in each of the four
panels (A–D), P = 0.08, 0.008, 0.1, 0.6, respectively.

current and former smokers separately, we found that
in both cases, high-m-risk patients had significantly
higher CS than low-m-risk patients (P = 0.01, 0.002,
respectively). Furthermore, Fig. 1 replotted with cur-
rent and former smokers separately shows the same
general trends in each subgroup as the original fig-
ure, demonstrating that smoking status does not have
a confounding effect on our analysis of CS overall.

The most important feature of any surrogate
biomarker is its correlation with cancer risk or progres-
sion. While our participant criteria were not designed
to find lung cancer patients, a number of study
participants developed lung cancer over the course
of the study. Additionally, some patients recruited
on account of receiving a bronchoscopy for other

clinical indications were found to have lung cancer
upon enrolment. We compared sputum samples taken
within eight months before surgery with sputum sam-
ples collected at least six months after the surgical
resection treatment protocol. There was a statistically
significant difference (P = 0.003) between the CS for
the samples taken before and after surgery. The t-test
was unpaired because not enough patients had data
both before and after surgery for a pair-wise test to be
statistically meaningful.

Among the sputum samples linked to a positive
cancer diagnosis, there was no significant difference
in CS between distal and proximal tumours (P = 0.9).
When broken down by cancer subtype, there was no
significant difference between adenocarcinomas and
squamous carcinomas (P = 0.1). There were insuffi-
cient samples of small cell and other non-small cell
lung cancers to make any other statistically meaningful
comparisons.

4. Discussion

It has been suggested that the traditional view that
cancer begins when invasive disease is first detected
should be replaced by one in which carcinogenesis
itself is the disease, with invasive or symptomatic can-
cer being merely the final outcome [48]. Consequently,
treatments should aim to “reverse, suppress, or prevent
the process of carcinogenesis” [12]. This is the goal
of chemoprevention, with past work in our group and
others showing promise [24–26, 42].

However, many early chemoprevention studies for
lung cancer have actually shown neutral or even
negative effect from chemopreventative agents. Dis-
appointing results from these early studies may be
due to the fact that many of these studies used smok-
ing status as the primary selection criterion, resulting
in a study population with an insufficiently high risk
to benefit from chemoprevention [55]. Many precan-
cerous lesions never progress even without treatment
[36] and so chemoprevention will offer these patients
no additional benefit. If we can remove these patients
from a study population and only study those who are
likely to progress to invasive disease without treatment,
any effect from chemoprevention should become more
evident.

End points for chemoprevention studies are typ-
ically the incidence of invasive cancer or mortality
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[55]. Since many pre-cancers never develop into inva-
sive disease, regardless of whether chemopreventative
agents are used, this makes such trials long and costly.
Governments and pharmaceutical companies may be
reluctant to invest in the development of cancer chemo-
prevention drugs and strategies due to the immense
research cost, especially while lung cancer chemopre-
vention is still not a universally accepted approach to
the management of the disease. In order to accelerate
the development and verification of new chemopre-
ventative agents, intermediate end points need to be
identified and validated.

Computer analysis of sputum samples has previ-
ously been used to detect lung cancer, using criteria
based on ploidy [56], MACs [37], or both [21]. The
LungSign test, for example, combined ploidy and
MAC analysis, and was effective in detecting 40%
of all lung cancers with 91% specificity consistently
across all subtypes and stages, far better than the
results from conventional cytology [21]. MAC analysis
is appealing because it can be measured on non-
malignant cells, which typically greatly outnumber
malignant ones in sputum samples. The features we
used describe various aspects of the nuclear archi-
tecture. Changes in the chromatin distribution and
organization may be indicative of changes in activation
and expression of genes. Genetic and epigenetic alter-
ations, which may be related to cell cycle, metabolic,
or differentiation status of the cell, are reflected in
these MAC features [8]. Using a similar approach to
LungSign, we have devised a novel biomarker combin-
ing ploidy and MAC analysis. Unlike LungSign, which
was optimized for the detection of invasive cancers
with high specificity, the Combined Score presented in
this paper is designed to detect dysplasias. By detect-
ing pre-cancerous lesions before they become invasive
cancers, the CS could allow the highest-risk patients
to be enrolled in chemopreventative therapy trials in
an effort to reduce their risk of progression to cancer.
Since the Combined Score correlates with dysplasia
grade, the effectiveness of any such intervention can
also be safely and easily monitored over time.

As a biomarker for lung cancer risk, our analy-
sis shows that the Combined Score correlates with
a number of other known lung cancer risk factors.
When compared to histopathological grade as shown in
Fig. 1, there is a clear trend towards higher Combined
Scores with increasing disease severity. This trend is
apparent even if we were to remove all the normal,
CIS, and cancer cases, the sample sets from which the

training set was derived. Since Morphometry Indices
for biopsies from patients who progressed to cancer
were significantly higher than non-progressing lesions
of the same histopathological grade [14], MI can sup-
plement histopathology. By combining histopathology
and MI, we can get a better assessment of cancer risk
(which we denoted m-risk). In the context of chemo-
prevention trials, then, we would enrol patients with
high m-risk as we feel that they would benefit most
from treatment. Adding the MI to our analysis, we
found that CS correlates even better with m-risk (sup-
plementary Data 2) than with histopathology alone.

The fact that the correlation between CS and
histopathological grading is not as strong as that
between MI and pathological grades in previous stud-
ies [14] reflects the difference between the subtle
malignancy associated changes that occur lung-wide
and the more pronounced changes found in the diag-
nostic cells of biopsies. However, collecting biopsies
(upon which both histopathological grading and MI are
based) is still an invasive technique. The correlation
between CS and the combination of histopathology
and MI suggest that CS could be used as a rapid, non-
invasive, and relatively inexpensive alternative to these
techniques for both risk assessment and the conduction
of chemoprevention studies.

We used MI and histopathology as a gold standard
to assess the performance of CS in identifying those
patients at highest risk to progress to invasive cancer.
Figure 3 shows ROC curves using either maximum or
average MI to define m-risk. Both these methods of
determining m-risk generate noticeably different ROC
curves. Clinically, a physician may be interested in
determining the risk of progression of the most severe
lesion and so a risk assessment using the maximum
MI is most appropriate. However, a sputum biomarker
is based on a sampling of cells from throughout the
lungs. As expected, then, when the average MI is used
as the criterion for determining m-risk, the ROC curve
for CS looks improved over the maximum MI case.
Nonetheless, even when using the maximum MI as the
m-risk criterion, the ROC curve for CS compares very
well with that for LungSign. This is despite the fact
that LungSign seeks to distinguish between cancerous
(CIS or worse) and non-cancerous samples, whereas
the Combined Score is able to separate high-grade
dysplasias from normals, an arguably much more chal-
lenging task. While our samples were not routinely
screened with conventional cytology, a subset of our
samples overlaps with those used in the LungSign
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study, where they reported a sensitivity of 16% and
a specificity of 99.1% for cytology. The CS showed a
similar level of sensitivity at that level of specificity.

The ideal analysis for any novel biomarker would
be to see which patients ultimately develop cancer.
This requires extensive follow-up and even then, only
a small number ever progress. In the absence of data on
actual cancer progression, the next best alternative is to
ensure that the novel biomarker correlates with known
biomarkers. We found that Combined Score correlated
with age, smoking history, and immunohistochemical
staining of p53 and Ki67, all of which have been pre-
viously found to correlate with lung cancer risk [1, 5,
12, 32]. Except for Ki67 staining in current smokers,
these trends were further found to be applicable to both
current and former smokers.

In former smokers, the Combined Score shows a par-
ticularly strong correlation with p53 staining. This may
be due in part to “field cancerization”, a concept first
proposed by Slaughter et al. [46] to explain the propen-
sity of individuals with one malignancy to develop
second primary tumours. Mutations and changes in
expression level of the p53 gene across wide areas of
the lung have previously been reported in subjects with
dysplasia or preinvasive lesions [1]. Since CS is based
on a sampling of cells from throughout the lungs, we
might expect a better correlation with an immunohisto-
chemical marker whose expression has likewise been
altered over a large region of the pulmonary mucosa.

Ongoing exposure to cigarette smoke causes inflam-
mation in the lungs and has been shown to be associated
with an increased expression of not only Ki67 [27]
but also PCNA [22], another important proliferation
marker. This confounds our analysis and may help
explain why we do not observe a trend between CS
and Ki67 staining in current smokers, as any corre-
lation between CS and Ki67 may be dwarfed by the
impact of smoking on proliferation across the lung.
Further, smoking is known to alter the expression not
only of a large number of genes [48] but the chromatin
structure as well [50] and these changes are different in
current and former smokers. Our Ki67 staining results,
when compared to the Combined Score, illustrate one
more example of the difference between the lungs of
current and former smokers, underscoring the neces-
sity of taking smoking status into consideration for any
proliferation-based diagnosis or treatment.

To address the issue of potential confounding effects
in our analyses of CS, we compared the age, smoking
history, sex, and smoking status of patients in our two

m-risk groups. As these are all documented to affect
lung cancer risk, we expected to see some differences
between the groups. Except in the case of smoking
status, the differences we observed were too small
to be considered potential confounders. A follow-up
analysis showed that among both current and former
smokers, the general trends we observed in Fig. 1
still hold and high-m-risk patients have higher CS, so
smoking status does not impart any additional con-
founding effect on our analyses. However, as current
smokers generally had higher CS than former smokers
(P = 0.00001), different thresholds may need to be set
if CS were to be used in a clinical setting.

Since the Combined Score is presented on a contin-
uous numeric scale, it allows smaller changes in lung
health to be detected. The use of automated image anal-
ysis also means that it should be more objective than
standard histopathology. We’ve shown that the Com-
bined Score, like the Morphometry Index, reflects a
patient’s cancer risk, with high-m-risk patients having
a significantly higher CS than low-m-risk patients. We
believe that CS can be used to monitor chemopreven-
tion trials as an alternative end point. Unlike the MI,
however, the CS is a sputum-based biomarker, which is
less invasive and more likely to be tolerated by patients.
This further allows CS to be measured repeatedly over
the course of the trial.

In chemoprevention trials, these advantages mean
that trials can be designed to use a reduction in CS by
a certain threshold amount as an alternative end point,
instead of waiting for invasive disease to develop. We
can consider our analysis of surgically resected lung
cancer cases to be an example of this, as we can think
of surgery and chemoprevention as two different inter-
ventions and CS as a common scale by which to assess
their effectiveness. In cases where lung cancer has been
treated by surgery, the Combined Scores before and
after surgery are significantly different. We are further
encouraged by the observation that our sample contains
a mix of squamous cell carcinomas and adenocarcino-
mas. With the small sample size, however, it is difficult
to properly assess the ability of CS to detect successful
surgery. There is also insufficient data to assess whether
CS performs better with squamous cell carcinomas or
adenocarcinomas. The present study was not designed
to test CS in this setting, but the initial results suggest
this is another potential application of CS that merits
further study. Similar to how CS can be tuned for opti-
mal detection of precancerous lesions, the continuous
scale of the Combined Score allows us in the future to
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select a good threshold for detecting successful surgery
once data from a larger and more comprehensive study
is available.

The observation that post-surgery Combined Scores
are lower than scores from before surgery suggests that
CS is sensitive to MACs, which was the intention in
training the CS. While the correlative evidence is weak,
an advantage of using MACs as a pre-screening test is
the extra sensitivity inherent in being able to detect
malignancy even when a sputum sample consists pri-
marily of non-malignant cells, as is often the case.
In addition to being able to detect MACs, the Com-
bined Score appears to be able to detect the effects
of field cancerization. The correlation of CS with p53
staining is suggestive of this, as is the observation
that CS is better able to assess m-risk when m-risk
is calculated on the basis of average MI as opposed to
maximum MI (Fig. 3). The magnitude of a MAC effect
might be expected to correlate with the most severe
lesion present releasing soluble factors to which the
surrounding cells respond, but the CS appears to corre-
late more with the severity of the overall “cancer field”
as reflected in the average MI. This is of benefit to the
design of future chemoprevention studies as it would
be informative to be able to monitor the overall level of
field cancerization in response to a candidate chemo-
preventive therapy. Our data weakly suggests that the
CS can act as a surrogate biomarker in this regard.

We view MACs and field cancerization as separate
but possibly related phenomena. While the prevail-
ing field cancerization hypothesis suggests that cancers
arise from a field of altered cells, previous work with
pre- and post-surgery patients suggests that cancer
cells themselves influence histologically normal cells
[29]. As these effects can be reversed by removing the
tumour, it has been hypothesized that such effects may
be a response in histologically normal cells to autocrine
signals released by malignant cells [29]. Although
our data cannot provide insight into the mechanisms
underlying the morphological changes detected by the
Combined Score, our results weakly suggest that CS
may correlate with both MACs and field cancerization.

Despite decades of work, there remains no widely
accepted screening test for early lung cancer detection.
Studies using spiral CT, for example, showed high sen-
sitivity for detecting non-calcified pulmonary nodules,
but had a low specificity, which, coupled with a low
overall prevalence of lung cancer even amongst heavy
smokers, led to a low positive predictive value [31]
and consequently increased costs due to follow-up test-

ing and unnecessary surgical interventions. To address
these shortcomings, it has been suggested that auto-
mated sputum cytometry could be used as an initial
screening test, thereby increasing the disease preva-
lence amongst those subsequently screened by CT and
autofluorescence bronchoscopy [41]. While our intent
was not to design a novel pre-screening tool, our anal-
ysis of the Combined Score as a pre-screen for patients
most likely to benefit from chemoprevention suggests
that CS could be potentially be used to pre-screen for
patients most likely to benefit from secondary lung
cancer screening with CT and autofluorescence bron-
choscopy. Our study population was at high risk of
developing lung cancer on the basis of demographic
risk factors (i.e., age and smoking history). We envision
any potential use of CS in a pre-screening setting would
also focus on such a subset of patients, as these are
patients most likely to benefit from additional screen-
ing. Moreover, patients at high risk due to age and
smoking history are readily identified by the use of a
patient questionnaire.

Like the LungSign test, the Combined Score is a
sputum biomarker that has an adjustable classification
threshold. This allows the performance to be optimized
to best complement other early lung cancer detection
methods [21]. In such a pre-screening scenario, we
would like a test with a high sensitivity, while tol-
erating a lower specificity. The performance of the
Combined Score matches that of the LungSign test
very well. At a specificity of 50%, for example, we can
achieve 78% sensitivity, which is slightly better than
LungSign at that level of specificity. This means we
could reduce the number of CTs by half and still catch
roughly three-quarters of all high-m-risk pre-cancers.
This would have significant cost savings and mean less
risk of increased cancer incidence caused by radiation
exposure due to unnecessary CT scans [3]. However,
one must keep in mind that our analysis of the ability of
CS in identifying high-m-risk lesions excludes meta-
plasias and mild dysplasias, which may result in better
perceived performance. More study will be needed to
validate the use of CS as a pre-screener in conjunc-
tion with more invasive screening tools in a clinical
setting.

Attempts to develop effective screening tools for
lung cancer have faced many challenges. Just as
importantly, where patients have been found to har-
bour precancerous lesions, there remain no widely
accepted interventions as research into chemopreven-
tion is currently hampered by a lack of effective
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surrogate biomarkers to serve as end points for trials.
We have presented evidence that the Combined Score,
a novel automated sputum image cytometry biomarker
based on ploidy and MAC analysis, correlates with
other known lung cancer risk factors like histopathol-
ogy, age, smoking status, and immunohistochemistry
of p53 and Ki67. Compared to LungSign, a similar
sputum biomarker, Combined Score achieves a similar

Supplementary Data 1. Dependence of the Combined Score on the
number of identifiable cells. Trend lines are distance-weighted least
squares fits. A: As the number of identifiable cells increases, the
scatter decreases and the Raw Combined Score becomes a more con-
sistent measurement. The distribution of histopathological grades,
meanwhile, is quite consistent across the range of identifiable cell
counts. However, a distinct trend towards higher Raw Combined
Scores at lower cell counts necessitated a cell count normalization
procedure. B: Adjusted Combined Scores, with data categorized
according to the highest grade of abnormality found in that patient’s
biopsies. Data points have been removed to highlight the trends.
Below a count of 500 cells per slide, the consistent patterns that the
various histological categories exhibit break down, as seen in the
rapid changes and convergence of the four running average curve
lines.

performance separating high- and low-m-risk pre-
cancers to that of LungSign separating cancers and
non-cancers. Patients with high Combined Scores are
prime candidates for enrolment in chemoprevention
studies, where the Combined Score may be most use-
ful as a method of monitoring response and screening
for a higher risk study population more likely to benefit
from treatment. This will hopefully spur more interest
in investigating chemopreventative therapies that will
treat the carcinogenic process before invasive disease
appears, saving money and patient lives in the long run.
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Supplementary Data 2. Box plots of Combined Score for sputum
samples, sorted according to m-risk. Normal and hyperplasia groups
are low-m-risk and only data for which the low-m-risk MI criterion is
also met (max MI < 1.36) is shown here. Moderate and severe dyspla-
sia are considered high-m-risk and the data shown here only includes
cases where the high-m-risk MI criterion is also met (max MI > 1.36).
Additionally, all CIS and cancer cases were counted as high-m-risk,
regardless of MI. Metaplasia and mild dysplasia are neutral m-risk
and all data in these groups is shown. The numbers at the bottom
indicate the number of sputum samples in each group. The Com-
bined Scores for the low- and high-m-risk groups are significantly
different (P = 0.00004).
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