Skip to main content
. 2012 Aug 6;7(8):e42772. doi: 10.1371/journal.pone.0042772

Figure 2. Network Activation - memristive behavior.

Figure 2

(a) Representative example of initial bias sweeps (0–5 V sweep at 1 V/s) applied to a pristine device which steadily activate higher percentages of atomic switches, resulting in increased current. After 11 sweeps, the device resistance decreases from ∼10 MΩ to ∼500 Ω. Subsequent ±1.5 V bipolar sweeps result in repeatable pinched hysteresis behavior (inset: ROFF = 25 kΩ, RON = 800 Ω), and bistable switching. (b–d) Schematic representation of the mechanism producing the I–V characteristics shown in (a). The network initially consists of weakly memristive junctions and ohmic contacts (b). Continued application of unipolar bias voltage (c) drives the dissolution of silver into silver sulfide, increasing the number of memristive elements, while cation migration across extant memristive junctions leads to filament formation and the onset of hard switching behavior. (d) After the proportion of strong memristors exceeds the percolation threshold (ρ>0.5), the network functions reliably in the hard switching regime.