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Abstract
Background—Huntington’s disease is an inherited neurodegenerative disorder caused by a
triplet repeat, CAG expansion mutation. Although CAG repeat length is thought to correlate with
pathologic burden and disease severity, considerable variability in clinical phenotype remains.
This study examined whether neuropathologic burden at autopsy corresponded with severity of
clinical phenotype in Huntington’s disease.

Methods—The brains of 24 patients with a clinical and genetic diagnosis of Huntington’s disease
were analyzed at autopsy. Subjects were stratified on the basis of Vonsattel staging as mild/
moderate (Stage 1–2, n=7) or severe (Stage 3–4, n=17). Clinical severity was assessed on the basis
of the Mini Mental State Exam (0–30) and two Unified Huntington's Disease Rating Scale
functional components, the Independence Scale (10–100) and the Total Functional Capacity (0–
13).

Results—The mild/moderate subjects were significantly older, had lower CAG repeat lengths,
and greater fixed brain weights than those classified as severe. Patients who were pathologically
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classified as severe at autopsy were, on average, younger at age of onset and death, and less well
educated. Despite obvious clinical and pathological differences between mild-moderate and severe
Huntington’s disease subjects at autopsy, mean Mini Mental State Exam scores of the two groups
prior to death were surprisingly similar. Correlations between Vonsattel stage and functional
assessment scores prior to death were low and not statistically significant.

Conclusions—Our results suggest that the extent of striatal changes in Huntington’s disease
may not always correlate with clinical disease severity measured by Unified Huntington's Disease
Rating Scale functional scales.

Keywords
Autopsy study; Huntington’s disease; Independence scale; Total Functional Capacity; Unified
Huntington's Disease Rating Scale; Vonsattel staging

Introduction
Huntington’s disease (HD) is an autosomal-dominant disorder characterized clinically by
changes in movement, cognition, and behavior. There is an unstable expansion of CAG
(trinucleotide) repeats that underlies the disease with the gene, located on chromosome 4
(4p16.3), encoding the 350 kDa protein huntingtin (1, 2). Neuropathological changes,
presumably secondary to mutated huntingtin protein, are most prominently noted in the
striatum of HD patients. The distinct topographic changes noted in HD have lead to a
grading system of striatal degeneration that was described by Vonsattel and colleagues and
is widely used as a research tool (3,4). The aim of the present study was to assess whether
degree of pathological burden in HD, as assessed by Vonsattel staging at autopsy,
corresponds to severity of clinical phenotype in HD close to death.

Methods
This is an autopsy series of 24 well-characterized HD patients (10 males, 14 females; ages
35 to 83 years at death) from one academic medical center. Most subjects had been
diagnosed by a senior neurologist with expertise in movement disorders and had received
extensive neurologic evaluations, including cognitive and functional testing, as part of their
ongoing care in our HD Center. For the purposes of the current analyses, clinical assessment
included the Mini Mental State Examination (MMSE) and two Unified Huntington Disease
Rating Scale (UHDRS) functional components, the Independence Scale (IS scores, 10–100,
lower scores suggestive of increased disability) and the Total Functional Capacity (TFC
scores, 0–13, lower scores suggestive of increased disability) and UHDRS total motor score
(5). DNA from the HD patients was isolated from peripheral blood white cells and the
number of CAG repeats associated with the IT15 gene was determined by PCR by a
standard protocol at some point during clinical follow up.

Autopsy, including brain weight, was performed within 24 hours of death.
Neuropathological assessment was performed in all cases by one observer (L.A.H.) blinded
to clinical diagnosis. The right hemisphere was frozen and the left hemisphere fixed in 10%
formalin for histological examination. Sampling for histological studies included neocortical
areas (midfrontal cortex—Brodmann area (BA) (BA8/46), superior temporal gyrus (BA38),
inferior parietal lobule (BA39/40), motor cortex in the watershed area (BA4/1,2,3), anterior
cingulate gyrus (BA24) and calcarine cortex (BA17/18)), hippocampus, entorhinal cortex,
the basal forebrain with amygdala and lentiform nucleus, basal ganglia with nucleus
accumbens, thalamus with subthalamic nucleus, midbrain at the level of the third nerve,
rostral pons, mid-medulla with hypoglossal nucleus and inferior olivary nucleus, cerebellar
vermis and cerebellar cortex with dentate nucleus. Additional sections were taken of
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macroscopic lesions (e.g., infarcts, hemorrhages, or mass lesions) for histologic
characterization. Depending upon the histologic findings, immunohistochemical studies
were performed to characterize the pathology using antibodies to ubiquitin, glial fibrillary
acidic protein, and isotype-specific forms of tau and β-amyloid. In cases with white matter
pathology, the nature of this pathology was confirmed with additional histochemical
methods, Luxol fast blue and Bielschowsky silver stains. The neuropathological burden in
HD brains was stratified on the basis of Vonsattel staging as mild/moderate (Stage 1–2) or
severe (Stage 3–4) (3,4). Statistical analysis was performed using SPSS to calculate Mann
Whitney nonparametric test and Spearman’s rank correlation coefficient. The significance
level used was p<0.05.

Results
The demographic and clinical characteristics of the entire autopsy cohort are presented in
Table 1. There were seven subjects identified as Vonsattel stage 1–2 and pathologically
classified as mild/moderate. There were 17 subjects identified as Vonsattel stage 3–4 and
pathologically classified as severe. One patient with Vonsattel stage 1 HD was noted to have
concomitant cerebrovascular disease and one patient with Vonsattel Stage 3 HD was noted
to have concomitant mild Alzheimer’s disease changes. The clinical, pathologic
characteristics of each patient by Vonsattel stage are noted in Table 1. The mild/moderate
(Vonsattel stages 1–2) and severe (Vonsattel Stages 3–4) groups did not differ significantly
with regard to gender, education, or mean duration from last clinical evaluation to death.
The patients with mild/moderate pathology at autopsy had significantly lower mean CAG
repeat lengths (p=0.03), higher ages at onset (p=0.03), older ages at death (p=0.04), and
larger brain weights (p=0.01) as compared to those classified as severe (Table 2). The mild/
moderate group had lower mean IS (p=0.02) and TFC (p=0.03) scores from the severe
group. The correlation of each Vonsattel stage (1 to 4) to clinical and pathological variables
of interest was next evaluated. There was no correlation between Vonsattel stage and time
from last MMSE to death, or time from last functional assessment to death (Table 3). CAG
repeat length positively correlated with Vonsattel stage, whereas age at onset of motor
symptoms, age at death, and brain weight negatively correlated with Vonsattel stage. There
was no correlation between Vonsattel stage and last MMSE, last IS score or last TFC score
prior to death. Unfortunately, only 12 of our subjects had UHDRS motor scores documented
within two years of death. However, among this subgroup Vonsattel stage correlated highly
with last documented UHDRS total motor score (Spearman’s rho=0.70, p=0.01, individual
data not presented). No statistically significant correlations were noted (individual data not
presented) between number and nature (psychiatric, medical and surgical) of comorbidities
of each subject and their Vonsattel stage, or age at death.

Discussion
This study examined whether the burden of neuropathology, as assessed by Vonsattel
staging, corresponded with severity of clinical phenotype in HD. We found that, despite
obvious pathological differences between mild-moderate and severe HD subjects at autopsy,
cognitive and functional scores just prior to death did not correlate with pathologic severity.

The relationship between pathologic burden at autopsy and CAG repeat length, in addition
to younger age at onset and at death, has been described in the literature (6, for a review)
and is consistent with the results from our series. On the other hand, only a limited number
of autopsy studies have attempted to examine a patient’s functional capabilities close to
death and their neuropathological severity as assessed by Vonsattel stage (7,8). A
retrospective study by Myers et al (7) noted that the mean functional disability rating among
HD subjects within each Vonsattel stage one year prior to death negatively correlated with
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the severity of the pathology stage. They also noted a wide range of overlapping physical
disability scores across different Vonsattel stages consistent with the findings from our
study. A large well-described prospective study by Rosenblatt et al (8) found that patients
with severe motor impairment and lower MMSE scores generally had higher Vonsattel stage
but also noted a poor correlation between the subject’s HD Activities of Daily Living (ADL)
score and pathology stage. In both of the above series (7,8) the primary aim of the
investigation was to identify predictors of neuropathological severity; thus, the relationship
between Vonsattel stage and patients’ functional abilities were not examined carefully. Both
series also used less well-known scales of functional disability for their analyses; thus, no
study to date has closely examined the relationship between commonly used UHDRS
functional components, the IS and the TFC, with degree of neuropathology. In both
observational and treatment trials in HD, TFC has a strong correlation with HD disease
progression (9) and is a key functional primary outcome measure. It is therefore important to
know whether functional disability as measured by these commonly used UHDRS
functional subscales, has a strong correlate with Vonsattel stage, the most commonly used
measure of neuropathological disease burden.

Our results show that the pathological grading of the extent of striatal degeneration as put
forward by Vonsattel may not always correlate with functional disability as noted by IS and
TFC. Significant functional decline was sometimes noted in our HD patient series even
when the burden of neuropathology appeared mild; conversely, a severe burden of
neuropathology as per Vonsattel stage did not always signify poor functional capability. Of
note, cortical changes were not factored into the assessment in the original Vonsattel grading
system (6, Vonsattel, Personal communication, 2011) and most autopsy studies, with a few
exceptions (eg: 10, 11), have generally emphasized striatal changes in HD. It is therefore
possible that the pattern of neurodegeneration beyond the distinctive striatal changes could
play a significant role in determining functional status in HD subjects prior to death. It is
well known, for example, that not all brain regions are equally affected in all HD subjects.
The medial temporal lobe, including the hippocampus, is generally well preserved (10, 11);
in addition, other structures, such as the thalamus, are not incorporated in Vonsattel staging
(6, 10). Preservation of some of these areas could help maintain higher levels of functional
capabilities than expected from the degree of striatal degeneration alone. Furthermore,
individual case reports of HD subjects with limited striatal atrophy, but notable cortical
atrophy, and significant clinical disability, have been documented at autopsy (12,13) and are
consistent with our finding of a poor correlation between Vonsattel stage and functional
capacity.

Finally, there is support from multiple neuroimaging studies that the neuropathological
changes occurring in HD are significantly more widespread (14, 15, 16) beyond the well-
described striatal changes (17, 18, 19, 20). Frontal lobe volumes have been noted to
correlate with cognitive measures, such as memory and planning performance (15, 16, 21),
and regions, including the thalamus (22), insula (23), white matter (24, 25), and widespread
cortices (26, 27), have been associated with cognitive performance in both presymptomatic
and early clinically manifest HD. One study by Rosas and colleagues (27) demonstrated a
significant association between regional cortical thinning and total functional capacity.
Taken together, these studies suggest that variations in cortical and regional brain atrophy
can influence the duration and severity of clinical and functional symptoms in HD. A
neuropathological grading of disease pathology focused primarily on striatal changes, such
as the Vonsattel staging system, is therefore less likely to correlate with functional disability
influenced by pathological changes throughout the brain.

It should be pointed out that although the MMSE is widely used by investigators, its heavy
emphasis on language and memory may not best capture cognitive domains most affected in
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HD, e.g. executive functioning. Increasingly, cognitive instruments such as the Mattis
Dementia Rating Scale and the Montreal Cognitive Assessment (MoCA) are being used to
track cognitive decline in HD (28). There is an analogous concern about the TFC which,
while often easy to administer and follow, was designed to capture early disability and
therefore has limited dynamic range, especially in the later stages of HD (9). Additional
limitations of our study include lack of MMSE scores just prior to onset of HD symptoms
and missing UHDRS motor scores and CAG repeat numbers for some subjects.

Nevertheless, our results support the notion that motor, cognitive and functional disability in
HD reflects not only subcortical pathology, but also substantial variability in neuronal
dysfunction among both cortical and striatal areas. Interventions to ameliorate and
ultimately prevent the development of the HD phenotype should therefore occur early to
target neuronal dysfunction in both cortex and striatum (29). Some of the preserved
functional capability in the face of severe striatal pathology found in our study could also
suggest a degree of cognitive reserve (30) or variability in regional HD gene expression
within specific brain areas (21). The advent of better functional and structural imaging in
these neurodegenerative conditions holds promise for integrating clinical information on
functional and cognitive status with the progress of neurodegenerative pathology.
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Table 2

Differences between combined pathologic groups, mean [Range]

Mild/Moderate (Stage 1 & 2) Severe (Stage 3 & 4) P value*

Brain Weight (gms) (n=24) 1165.7 [914–1390] 963.3 [744–1152] P=0.01

Education (yrs) (n=24) 15 [12–19] 12.3 [6–18] n.s.

CAG repeat length (n=19) 41.8 [40–45] 46.8 [42–61] P=0.03

Age at onset (yrs) (n=22) 53 [41–63] 41 [24–65] P=0.03

Age at death (yrs) (n=24) 66.1 [42–83] 53.9 [35–76] P=0.04

Time from last MMSE assessment to death (yrs) (n=19) 2.1 [0–5] 2.7 [0–5] n.s.

Last MMSE prior to death (n=19) 23.7 [15–28] 24 [20–30] n.s.

Independence Scale score at time of last MMSE (n=19) 72 [55–100] 50.5 [10–90] p=0.02

Functional Capacity Scale score at time of last MMSE (n=19) 6.0 [2–12] 4.0 [2–11] n.s

Time from last functional assessment to death (yrs) (n=22) 1.5 [0–3] 1.4 [0–3] n.s.

Last Independence Scale score (n=22) 60 [20–90] 34.2 [10–60] P=0.02

Last Total Functional Capacity score (n=22) 4.4 [0–9] 1.4 [0–5] P=0.03

*
Mann Whitney non-parametric test

n.s. not significant
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Table 3

Correlations between Vonsattel stages (1 to 4) and clinical/pathological variables

Spearman’s rho P value

CAG repeat length 0.05 P=0.02

Gender − 0.01 n.s.

Age at onset (yrs) −0.50 P=0.02

Age at death (yrs) −0.50 P=0.01

Brain weight (gms) −0.51 P=0.01

Time from last MMSE to death (yrs) 0.40 n.s.

Last MMSE prior to death −0.30 n.s.

Time from last functional assessment to death (yrs) −0.29 n.s.

Last Independence scale score −0.38 n.s.

Last Total Functional Capacity score −0.30 n.s.

n.s. not significant
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