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Abstract
Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern China,
highly pathogenic H5N1 avian influenza viruses have posed a continuous threat to both public and
animal health. The non-synonymous mutation of the H5 hemagglutinin gene has resulted in
antigenic drift, leading to difficulties in both clinical diagnosis and vaccine strain selection.
Characterizing H5N1’s antigenic profiles would help resolve these problems. In this study, a novel
sparse learning method was developed to identify antigenicity associated sites in influenza A
viruses on the basis of immunologic datasets (i.e., from hemagglutination inhibition and
microneutralization assays) and HA protein sequences. Twenty-one potential antigenicity
associated sites were identified. A total of seventeen H5N1 mutants were used to validate the
effects of eleven of these predicted sites on H5N1’s antigenicity, including seven newly identified
sites not located in reported antibody binding sites. The experimental data confirmed that
mutations of these tested sites lead to changes in viral antigenicity, validating our method.

INTRODUCTION
Since the isolation of A/goose/Guangdong/1/1996 (H5N1) in farmed geese in southern
China 1; 2, H5N1 highly pathogenic avian influenza viruses (HPAIV) have spread to more
than 30 countries throughout Asia, Europe, and Africa. This virus has caused more than 600
laboratory-documented cases in humans (with a fatality rate of approximately 60%) and
millions of deaths in birds, and these numbers are still increasing
(http://www.who.int/influenza/human_animal_interface/avian_influenza/archive/en/
index.html).
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Over the past decades, H5N1 viruses have undergone considerable evolution, including both
frequent reassortment events, leading to the emergence of novel genotypes, and mutations in
the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), resulting in
antigenic drifts. More than 40 genotypes of H5N1 viruses were identified between 1996 and
2006 3; 4; 5, and novel genotypes are still emerging 6; 7. The HA of H5N1 virus has been
classified into 10 genetic clades (namely clade 0 to clade 9) and many more subclades 8; 9

with different antigenic properties 10. The cross reactions between different clusters can be
very limited; for instance, the viruses from clades 1, 2.1, 2.2, and 2.3 can be separated into
distinct antigenic clusters 6. On the basis of hemagglutination inhibition (HI) assay results
from a panel of 17 monoclonal antibodies, H5N1 viruses were separated into 4 antigenic
groups: group A (clades 1, 2.1, 2.4, 8), group B (clades 1, 2.1, 4, 5, 7, 9), group C (clades
2.1, 2.2, 2.3), and group D (clades 2.3, 5) 11.

Understanding the mutation patterns on the antigenicity associated residues that lead to
H5N1 HPAIVs’ antigenic drifts will facilitate not only the detection of H5N1 antigenic
variants but also the selection of influenza strains for subsequent vaccine design, including
prepandemic vaccine preparation. Identifying influenza’s antigenicity associated sites is not
trivial, and the commonly used methods can be grouped into 3 categories: (1) escaped
mutant strategy 12; 13; 14; 15; 16; (2) genetic polymorphism strategy 11; 17; and (3) positive
selection strategy 18; 19. Although these strategies have led to many advances in the field,
they each have drawbacks, which ultimately led us to search for a new method.

In this study, we developed a novel sparse learning algorithm to identify antigenicity
associated sites. Our method is different from those just described because it derives the
antigenicity associated sites by correlating the changes in the antigenic distance of
immunologic data (as measured by antigenic cartography) with the genetic profiles
represented by mutations in HA’s protein sequence (FIG. 1). This method was applied to
H5N1 HPAIVs and effectively identified antigenicity associated sites in influenza viruses.

RESULTS
Relationship between antigenic clusters and genetic clades

Antigenic cartography based on the HI assay dataset showed that 23 of the 27 H5N1
HPAIVs used in this study (TABLE 1) can be loosely grouped into at least 3 antigenic
clusters (FIG. 2A). Most groupings are consistent with those of previous reports based on
monoclonal antibody studies in which 4 antigenic groups were assigned: group A (clades 1,
2.1, 2.4, 8), group B (clades 1, 2.1, 4, 5, 7, 9), group C (clades 2.1, 2.2, 2.3), and group D
(clades 2.3, 5) 11. However, many clade 1 viruses were surprisingly grouped with clade 2.2
viruses (FIG. 2A).

The antigenic cartography of the H5 HA showed that the interclade antigenic relationships
gleaned from our HI and MN assay results were similar. In our study, 02-CHN (clade 2.1) is
grouped with 04-VNM (clade 1) and 06-CHN (clade 4); 05-SAU (clade 2.2) is grouped with
04-CHN (clade 2.3.1) and 06-HKG (clade 2.3.4); and 97-HKG (clade 0) is grouped with
most clade 2.2, clade 1, and clade 2.3.4 viruses (FIG. 2B). These results were consistent to
those previously described 20.

To correlate the genetic data with the antigenic data, we made phylogenetic trees of the
selected 27 viruses (FIG. 2C). Our results demonstrated that the antigenic properties of
viruses in the same genetic cluster are not necessarily the same. For example, in both HI
assay–based and MN assay–based cartographies, 03-HKG (clade 1) and 05-MNG (clade
2.2) are outliers in the antigenic cartography, while both viruses are genetically closer to
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being associated with other clade 1 or 2.2 viruses in the phylogenetic tree, respectively (FIG.
2C).

Antigenicity associated sites identified by using the sparse learning method
By applying our novel sparse learning method, we identified 21 antigenicity associated sites
having bootstrap values greater than 60% in both HI and MN datasets (TABLE 2), including
eight sites not located in reported H3 antibody binding sites A-E (at amino acid positions 94,
120, 124, 162, 227, 252, 263, and 282, H5 numbering). The reported antibody binding sites
were annotated based on previous studies 21; 22, and the position correlations between H1,
H3, and H5 were based on the alignments of their protein structures 23; 24; 25. The genetic
polymorphisms of these positions are shown in TABLE 3. The receptor-binding site 124 is
predicted to be an antigenicity associated site as are thirteen positions that correspond to
reported antibody binding sites (FIG. 3). The remaining seven predicted sites do not
correspond to reported antibody binding sites.

Experimental validation of the identified antigenicity associated sites
To validate the effects of the predicted antigenicity associated sites on influenza
antigenicity, we used 3 rg H5N1 viruses (04-VNM, 05-MNG, and 07-HKG), 13 mutants
generated by using site-directed mutagenesis and reverse genetics, and four in-house
available single mutants previously generated by mixing murine monoclonal antibodies with
04-VNM. The mutated sites in these mutants include 5 of 13 residues (at amino acid
positions 45, 83, 129, 140, and 141, H5 numbering, TABLE 4) corresponding to the
reported antibody binding site A to E in H3N2 influenza A virus, and seven newly identified
residues (at amino acid positions 94, 124, 162, 227, 252, 263, and 282, H5 numbering,
TABLE 4) not corresponding to known antibody binding sites in H3N2 influenza A virus.
Besides the 11 predicted sites from sparse learning, these 12 mutated sites included residue
129 (H5 numbering) not shown in the results from sparse learning. The site 129 had a
bootstrap value of 95 in HI assay data and 55 in MN assay data (data not shown).

Our results in HI assay showed that the antigenic changes of all 17 mutants but 07-HKG-
N45D, 04-VNM-D94N, 04-VNM-S124D, and 07-HKG-K162R had at least 1 unit change,
which corresponds to a 2-fold change of the HI titer from the corresponding parent strain in
the antigenic cartography (FIG. 4).

The results from MN experiments are consistent with those from HI experiments: all 10
mutants tested in MN experiments, except for 07-HKG-N45D, had at least 1 unit antigenic
distance from the associated parent strain in the antigenic cartography (FIG. S1 and TABLE
S1–3).

DISCUSSION
In this study we developed a novel computational method using a sparse learning algorithm,
LASSO, to identify antigenicity associated sites in influenza viruses. Moreover, we
experimentally confirmed the effectiveness of our new method: 13 of the 17 mutants we
tested had at least one antigenicity unit change, which corresponds to a 2-fold change of the
HI titer from their parent strain in the antigenic cartography.

The sparse learning algorithm proposed in the present study identified 21 antigenicity
associated sites using HI and MN data, and some of these predicted sites are consistent with
those reported from other studies (TABLE 2): for instance, residues 86 and 124 were
reported in 11; residues 140, 141, 156, and 162 in 26; residues 124 and 263 in 27; residues 86
and 154 in 28.
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Current knowledge about antibody binding sites in influenza HAs mainly concerns H1 (site
Sa, Sb, Ca1, Ca2, Cb)22 and H3 (site A–E)21; 24 subtypes. Although the structure of H5N1
HA has been resolved25, the correlation between antigenic binding sites of H5N1, H1N1,
and H3N2 HAs remains unclear. Nine of the 21 antigenicity associated sites derived from
our studies are located in the antibody binding sites A, B or D characterized for H3N2
influenza A virus, and four in antibody binding sites C and E. Our results suggested that,
similar to H3N2 seasonal influenza A virus, antigenic drift events in H5N1 favor more the
residues in sites A, B or D than those in C and E 29.

Although both HI assay data and MN assay data were used to predict the antigenicity
associated sites, four of the predicted positions appear in only one type of assay’s dataset
(data not shown). Such a discrepancy is very likely to be generated from the location shift of
some strains between the antigenic cartographies based on the HI assay data and those based
on the MN assay data. For instance, the clade 2.1 virus 02-CHN is grouped with the clade 1
virus 04-VNM and the clade 4 virus 06-CHN in the MN assay dataset but not in the HI
assay dataset. Upon examining the virus’ sequences, 02-CHN has an S residue in position
129, yet both 04-VNM and 06-CHN have an L in this position. Because these three viruses
have a very close antigenic distance according to MN assay data, this position will not be
recognized strongly as an antigenicity associated site (i.e., one with a low bootstrap value)
when using this dataset; however, because the viruses have a greater antigenic distance
according to HI assay data, the position will have a high enough bootstrap value to be
recognized as an antigenicity associated site (TABLE 2). Such a discrepancy could
potentially be solved if more viruses from clade 2.1 were used in HI and MN assays.
Nevertheless, our study suggests that antigenicity associated site predictions based on both
HI and MN datasets are more robust than those based on a single type of dataset.

Our proposed sparse learning method identifies antigenicity associated sites directly from
immunologic datasets. This differs from the 3 most commonly used methods: (1) escape
mutant strategy; (2) polymorphism strategy; and (3) positive selection strategy. Among
these methods, the escape mutant strategy may be the most straightforward but is very labor
intensive and limited by the availability of monoclonal antibody. Although less reliant on
monoclonal antibodies than the escaped mutant strategy, the information derived from using
the genetic polymorphism method is very likely to be incomplete because the antibody
binding information may vary among HA subtypes. Additionally, this strategy is greatly
affected by the clustering results from the phylogenetic analysis or antigenic clustering that
must be performed as its first step; thus, it will be a guessing process after identifying
genetic polymorphisms among these sequences. Finally, the positive selection strategy
makes predictions derived directly from the sequence and could result in false-positive
predictions, especially if the positively selected mutations are generated by selective
pressure other than herd immunity, as they likely are in avian influenza viruses including
H5N1 HPAIV 30.

To reduce the false-positive rate, most studies using the polymorphism strategy and positive
selection strategy limit the sites examined to the ones corresponding to the reported antibody
binding sites in H3 11; 17. The method proposed in this study can avoid the limitations of the
3 common strategies just mentioned, making it be useful for identifying antigenicity
associated sites when the immunologic data and the sequences for the antigens are available.
One potential pitfall of this method is that it requires a relatively large training dataset.
However, this issue does not create a major bottleneck for influenza virus because HI and
MN assay datasets are easily generated. To reduce false-positive results, the antigen and
antisera should be carefully selected to avoid sampling biases; in general, multiple antigens
from the same genetic or antigenic groups should be chosen. Using multiple types of
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immunologic datasets (e.g., HI- and MN-assay datasets) can minimize the errors from these
sampling biases.

To overcome the potential pitfall of machine learning on the H5N1 study, we carefully
selected 23 antigens covering the majorly circulating strains. Four predicted ancestral strains
were also included. If multiple strains were selected from the same genetic clusters,
genetically diverse strains were attempted to be included in the training data. In addition,
both HI and MN data were included in this study. Experimental validation on novel binding
sites demonstrated the sparse learning method is effective. To further evaluate our method,
we applied this sparse learning method on another independent HI dataset by Wu et al.
(2008)11, which includes 41 antigens and 17 monoclonal antibodies. All of these 8 newly
identified sites, and eight of 13 sites in reported antibody binding sites (except five
conserved sites 45, 133, 154, 175, and 210, H5 numbering, in Wu data), were also identified
(data not shown). In conclusion, our new method can be used to successfully identify
antigenicity associated sites in influenza virus HAs and it should contribute to solve some of
the difficulties caused by the virus antigenic drift in both clinical diagnosis and vaccine
strain selection.

MATERIALS AND METHODS
H5N1 viruses and sera

We used 27 H5N1 strains for the present study (TABLE 1). Virus names were abbreviated
as follows: year of first isolation–code of country where the virus was first isolated. The
mutants were generated by using reverse genetics of HA, NA, and 6 internal genes from A/
Puerto Rico/8/1934 as described previously 31. The HA connecting peptide (site for the
proteolytic cleavage of the HA enabling the fusion of the protein to the endosome and the
virus entry into the host cell cytoplasm32) was modified to match that of low-pathogenicity
viruses so that the modified strains could be used in biosafety level (BSL) 2+ laboratories;
the H5N1 HPAIVs were manipulated in BSL3+ laboratories. The ancestral strains A, B, C,
and D have been described 20. The reverse genetics (rg) 6+2 BSL2 strain 07-HKG was used
to generate 07-HKG-N45D and 07-HKG-K162R; rg 6+2 BSL2 strain 05-MNG to generate
05-MNG-I83A, 05-MNG-N94D, 05-MNG-E227D, 05-MNG-N252Y, 05-MNG-T263A, and
05-MNG-I282M; and rg 6+2 BSL2 strain 04-VNM to generate the remaining 11 mutants.
The ferret antisera against each of these parent wild-type or 6+2 reassortant viruses were
generated as described previously 33.

Sparse learning algorithm
Sparse learning is a machine learning technique that can be used to find a small number of
important genetic positions in HA's protein sequence such that genetic changes at these
positions lead to significant changes of antigenic properties of the virus. In our approach, the
genetic change between two viruses is encoded as a vector x; where each element i of vector
x corresponds to a position in the HA1 protein sequence (322 amino acids), and its value xi
indicates the mutation strength at position i measured by a scoring function (e.g. the number
of amino acid differences among the compared sequences). The importance of the positions
can be measured by a vector w, which we refer to as "weight vector" using standard
terminology in machine learning. Each element wi of w is a numerical value that indicates
the importance of position i. For every pair of viruses, we denote by y the change of the
antigenic profile, which is the distance between the two viruses measured by antigenic
cartography 34; 35; 36 based on a serological dataset such as HI or microneutralisation (MN)
data.
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Mathematically, we can correlate the antigenic profile change and genetic profile change by
modeling the distance y between two viruses (antigenic profile change) as w (position
importance) and x (genetic profile change):

(1)

Here

(2)

Our goal in sparse learning is to find a vector w with a small number of nonzero coefficients
(which is also referred to as features) wi that indicate the important genetic positions highly
correlated to the antigenic property. This paper employs the LASSO (Least Absolute
Shrinkage and Selection Operator) method for sparse learning, which is effective for
selecting a small to moderate number of features 37. The LASSO method finds w by solving
the following optimization problem:

(3)

where m is the number of virus pairs; j denotes the j-th pair; d is the number of sequence
positions; and

(4)

Here L is related to the number of predicted antigenicity associated sites. The size of L is
tuned by cross-validation and bootstrapping. The higher the absolute value of wi is, the more
impact the residue at position i will have on the antigenicity. It is known that the LASSO
formulation leads to a sparse solution vector w corresponding to the most important genetic
positions in the HA1 sequence.

Bootstrapping methods
To minimize the likelihood of overfitting and false-positive rates, we used the entire dataset
to measure the antigenic distance matrix and then randomly selected 70% of the data entries
from this distance matrix. A total of 100 runs were performed, and the detection rates on
each site being one of the top 25 sites from each run were used as the confidence level for
this site being the antigenicity associated site. All the newly identified antigenicity
associated sites not located at reported antibody binding sites will be further validated
through experiments.

Antigenic cartography construction
The HI or MN assay data were normalized by using a reference value between that of a
reference antigen and reference antiserum as described elsewhere 20. The antigenic
cartography was constructed by using matrix completion-multidimensional scaling
described earlier in 34; 35; 36. A low-rank matrix completion procedure helped to remove
noise that is present in HI and MN experiments. Multi-dimensional scaling projected the
antigens into a two-dimensional space for visualization.
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HI and MN assays
Ferret sera were treated with receptor-destroying enzyme (Denka Seiken Co., Japan)
overnight at 37°C, heat-inactivated at 56°C for 30 min, diluted 1:10 with phosphate-buffered
saline (PBS), and tested by performing an HI assay with 0.5% packed chicken red blood
cells (cRBC) as described in the WHO Manual on Animal Influenza Diagnosis and
Surveillance
(http://www.who.int/vaccine_research/diseases/influenza/WHO_manual_on_animal-
diagnosis_and_surveillance_2002_5.pdf). HI titers were expressed as the reciprocal of the
highest dilution at which virus binding to red blood cells is blocked.

Filtered sera were tested by performing an MN assay in MDCK cells. Neutralizing titers
were expressed as the reciprocal of the serum dilution that inhibited 50% of viral growth of
100 tissue culture infectious dose 50 (TCID50) of virus. The HI and MN data are available in
TABLE S1 and S2, respectively.

Because both HI and MN titers may be affected by the respective types of cells used, both
assay types were used to ensure the robustness of the prediction from our sparse learning
method. Only the residues appearing in the results from both HI and MN assay datasets and
having bootstrap values more than 60% are considered to be antigenicity associated sites.

Molecular cloning and site-directed mutagenesis
Full-length HA and NA genes were amplified by reverse transcriptase PCR. The PCR
fragments were cloned into the vector pHW2000. The site-directed mutagenesis was
performed by using QuikChange Site-Directed Mutagenesis kit (Agilent). The identities of
all clones were confirmed by full-length sequencing.

Influenza virus mutant generation
The H5N1 parent wild-type viruses were grown in embryonated chickens eggs or cultured
cells. Each mutant was generated to contain 6 gene segments (PB2, PB1, PA, NP, M, NS) of
A/Puerto Rico/8/34 and the NA gene and mutated HA gene of the target virus (so-called 6+2
viruses) by using pHW2000 plasmid–based reverse genetics (rg) 38. The virus was rescued
in 293T and MDCK cell lines as described elsewhere 33. The mutagenesis targeted seven
newly identified sites not located in reported antibody binding sites (except 120, H5
numbering) and amino acid position 45 (H5 numbering), which corresponds to site C (54,
H3 numbering). The mutants at amino acid positions 129, 140 and 141 (H5 numbering)
were available from other studies at the Webby Laboratory, and they were generated by
mixing murine monoclonal antibodies with 04-VNM.

Phylogenetic tree construction and sequence analysis
The multiple-sequence alignments were conducted by using the MUSCLE software
package 39, and the protein sequence alignments were examined manually to ensure that
they were correct. The phylogenetic analyses and bootstrap resampling analyses were
performed using PAUP* 4.0 Beta 40 to apply a maximum parsimony method, as described
earlier 41.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A novel method for influenza antigenic site identification was developed

• This method integrates protein sequences and immunological datasets

• 21 antigenic sites were identified in HA gene of H5N1 virus

• Wet lab experiments validated predicting results
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FIG. 1.
The workflow for the different steps involved in the integrative sparse learning method.
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FIG. 2.
The antigenic cartography of H5N1 highly pathogenic avian influenza virus (HPAIV) made
by using AntigenMap (http://sysbio.cvm.msstate.edu/AntigenMap)34; 35; 36. Cartography
based on the results from hemagglutination inhibition assays in chicken red blood cells (A)
or microneutralization assays in MDCK cells (B). One unit (grid) represents a 2-fold change
in HI assay results. The cartography includes 27 influenza viruses (listed in TABLE 1),
which includes viruses from 9 clades or subclades (C) 8; 9. The antigenic clusters are marked
with a large circle for visualization purpose.
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FIG. 3.
Ribbon diagram of the trimeric hemagglutinin (HA) molecule with the 21 identified
antigenicity associated sites (all sites listed in TABLE 2) shown in red spheres. The mutant
positions were numbered based on the corresponding residue number in HA of H5N1
HPAIVs, and the corresponding numbers in H3 HA are listed in parentheses. The antibody
binding sites A–E are shown in red, and the receptor-binding site is shown in blue.
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FIG. 4.
The antigenic cartography of H5N1 HPAIVs and their mutants (listed in TABLE 4) made by
using AntigenMap (http://sysbio.cvm.msstate.edu/AntigenMap)34; 35; 36. The mutant
positions were numbered based on the corresponding residue number in HA of H5N1
HPAIVs. The parental viruses are labeled with heavily colored circles, and the mutants with
lightly colored circles. The parental viruses are also encircled (circle = 2-unit diameter). A
symbol (p) is appended after the name of each parent strain. One unit (grid) corresponds to a
2-fold change in HI titer.
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TABLE 1

The H5N1 viruses used in this study.

Clade Virus Abbreviation

A A

B B

C C

D D

0 A/Hong Kong/156/97 97-HKG

1 A/Hong Kong/213/03 03-HKG

1 A/Vietnam/1203/04 04-VNM

1 A/Vietnam/1194/04 04-VNM2

1 A/chicken/Cambodia/13LC1/05 05-KHM

1 A/muscovy duck/Vietnam/33/07 07-VNM

1 A/Cambodia/R0405050/07 07-KHM

2.1 A/duck/Hunan/795/02 02-CHN

2.2 A/whooper swan/Mongolia/244/05 05-MNG

2.2 A/falcon/Saudi Arabia/D1795/05 05-SAU

2.2 A/chicken/Nigeria/42/06 06-NGA

2.2 A/falcon/Saudi Arabia/D1936/07 07-SAU

2.2 A/turkey/Egypt/7/07 07-EGY

2.2 A/chicken/Egypt/1/08 08-EGY

2.3.1 A/duck/Hunan/101/04 04-CHN

2.3.2 A/common magpie/Hong Kong/5052/07 07-HKG

2.3.2 A/grey heron/Hong Kong/1046/08 08-HKG

2.3.3 A/chicken/Guiyang/3570/05 05-CHN

2.3.4 A/duck/Laos/3295/06 06-LAO

2.3.4 A/Japanese white-eye/Hong Kong/1038/06 06-HKG

2.3.4 A/duck/Laos/A0301/07 07-LAO

2.3.4 A/chicken/Hong Kong/AP156/08 08-HKG

4 A/goose/Guiyang/337/06 06-CHN
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