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Metabolomics is a powerful new technology that allows
for the assessment of global metabolic profiles in easily
accessible biofluids and biomarker discovery in order to
distinguish between diseased and nondiseased status in-
formation. Deciphering the molecular networks that dis-
tinguish diseases may lead to the identification of critical
biomarkers for disease aggressiveness. However, current
diagnostic methods cannot predict typical Jaundice syn-
drome (JS) in patients with liver disease and little is known
about the global metabolomic alterations that character-
ize JS progression. Emerging metabolomics provides a
powerful platform for discovering novel biomarkers and
biochemical pathways to improve diagnostic, prognos-
tication, and therapy. Therefore, the aim of this study is
to find the potential biomarkers from JS disease by
using a nontarget metabolomics method, and test their
usefulness in human JS diagnosis. Multivariate data
analysis methods were utilized to identify the potential
biomarkers. Interestingly, 44 marker metabolites con-
tributing to the complete separation of JS from matched
healthy controls were identified. Metabolic pathways
(Impact-value>0.10) including alanine, aspartate, and
glutamate metabolism and synthesis and degradation of
ketone bodies were found to be disturbed in JS patients.
This study demonstrates the possibilities of metabolo-
mics as a diagnostic tool in diseases and provides new
insight into pathophysiologic mechanisms. Molecular &
Cellular Proteomics 11: 10.1074/mcp.M111.016006, 370–
380, 2012.

Metabolomics, an omic science in systems biology, is the
comprehensive profiling of metabolic changes occurring in
living systems (1). It attempts to capture global changes and
overall physiological status in biochemical networks and
pathways in order to elucidate sites of perturbations, and has

shown great promise as a means to identify biomarkers of
diseases (2, 3). One area of considerable interest in the field of
metabolomics is the detection of potential biomarkers asso-
ciated with diseases, and the metabolic profiling could pro-
vide global changes of endogenous metabolites of patients.
Metabolomics is the study of metabolic pathways and the
measurement of unique biochemical molecules generated in a
living system. It could facilitate biomarker discovery by dis-
tinguishing between diseased and nondiseased patients. Bio-
marker metabolites can also be therapeutic targets (4). De-
tecting changes in metabolite concentrations reveals the
range of biochemical effects induced by a disease condition.
Metabolic profiling of urine is particularly attractive because
urine collection is noninvasive, and urine contains metabolic
signatures of many biochemical pathways. The advantages of
urine include its noninvasive collection and wide availability,
its low protein and cellular levels, and its richness in metab-
olites. Monitoring certain metabolite levels in urine fluid has
become an important way to detect early stages in disease
(5). Urinary metabolomic approaches have been used to
screen for potentially earlier diagnostic and prognostic bio-
markers of disease (6). Metabolite changes observed in dis-
eased individuals as a primary indicator have become possi-
ble, and hence the measurement of metabolites have been an
important part of clinical practice.

Traditional markers used in conventional clinical chemistry
and histopathology methods are not region-specific and only
increase significantly after substantial disease injury. There-
fore, more sensitive markers of disease are needed. The ideal
biomarkers will identify disease early, resulting in safer drugs.
Metabolomics, is an emerging and powerful discipline, which
has become a promising player in the disease arena, and its
benefits have been demonstrated in diverse clinical areas
(7–9). Recent methodology, whose aim for complete charac-
terization of the entire metabolome regardless of molecular
size, are distinguishable from traditional tests on one or two
components. The metabolomics approach has substantial
impact on the development of diagnostics, therapeutics, and
drug development (10–12). Particularly, for the early detection
of disease, highly sensitive and specific biomarkers as pri-
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mary indicators in bio-fluids are relatively more useful be-
cause these can be used for nonbiopsy tests. By analyzing
and verifying the specificity of early biomarkers of a disease,
metabolomics enables us to better understand pathological
processes and metabolic pathways. Compared with tradi-
tional diagnostic methods, even small changes of metabolites
can help to detect early pathologic changes earlier. Meta-
bolic profiling has also been used as a diagnostic tool in the
setting of liver disease. Studies of metabolites from patient
urine that were discovered using metabolomics technology
have recently come into focus as possible biomarkers for
liver disease (13–15).

Understanding syndromes is a core research to develop
more efficient therapeutic strategies, classification, and diag-
nostic criteria for patients. Pharmacological studies and clin-
ical practice have shown that patients with liver disease are
commonly complicated by jaundice syndrome (JS)1 (16–21).
JS, a common and fatal disease requiring early diagnosis and
effective treatment, exhibits two subtypes of YangHuang
(YAH; acute) and YinHuang (YIH; chronic). Current diagnostic
methods, measuring levels of alanine aminotransferase and
aspartate aminotransferase etc. in blood samples, have been
the main diagnostic markers for JS and can be considered as
the current “gold standard” for initial diagnosis and surveil-
lance. However, the sensitivity of these markers is relatively low,
they are poor prognostic indicators and they are not particularly
effective in separating cases of JS from other non-JS disorders.
Fortunately, the rapid development of metabolomics technol-
ogy platforms has been used to explore the particular metabo-
lites, diagnostic and prognostic biomarkers, and pathways of
the syndrome to provide a methodological basis for a deeper
understanding of the essence of the syndrome from the aspect
of systems biology (22). Consequently, this article was designed
to investigate a comprehensive metabolome of JS by ultra-
performance liquid-chromatography/electrospray-ioniza-
tion synapt high-definition mass spectrometry (UPLC-Q-TOF-
HDMS) combined with pattern recognition methods and
pathways analysis, in order to establish a specific metabolite
phenotype and explore the diagnostic possibilities, define
new potential biomarkers, and generate a better understand-
ing of the pathophysiology.

MATERIALS AND METHODS

Ethical Statement—Written informed consents were obtained from
all subjects. The experimental protocol were reviewed and approved
by the Ethical Committee of Heilongjiang University of Chinese Med-
icine and was conducted according to the principles expressed in the
Declaration of Helsinki.

Subjects—Patients were collected from the Hospital of Heilongji-
ang University of Chinese Medicine, China for the period between
June 1, 2009 and December 30, 2010. JS (n � 20), YAH (n � 19), and

YIH (n � 14) patients and control subjects (n � 12) were recruited in
this study. The outcomes of Health Survey Questionnaire in patients
with JS, YAH, YIH and the normal controls were assessed, and the
related clinical information including gender, age, body mass index
(BMI), basic syndromes of disease, and main parameters of liver
makers were collected in supplemental Table S1. Exclusion criteria
included nonsmoker, cancer, cardiac insufficiency, hepatosis, renal
inadequacy, respiratory failure, alimentary tract hemorrhage, or other
diseases that will affect the clinical observations and biological indi-
cators. Then, a second set of JS (n � 10), YAH (n � 12), and YIH (n �
9) patients and control subjects (n � 10) were to be blindly selected
and tested using our approach.

Chemicals and Reagents—Acetonitrile, HPLC grade, was obtained
from Merck (Darmstadt, Germany); methanol (HPLC grade) was pur-
chased from Fisher Scientific Corporation (Loughborough, UK); water
was produced by a Milli-Q Ultra-pure water system (Millipore, Bil-
lerica, MA); formic acid was of HPLC grade, and obtained from
Honeywell Company (Morristown, New Jersey); leucine enkephalin
was purchased from Sigma-Aldrich (St. Louis, MO). All other reagents
were HPLC grade.

Sample Preparation—The subjects were given insulated ice packs
in which they were asked to store the urine samples immediately until
they were received by the study investigator. On arrival at the labo-
ratory, the samples were centrifuged at 10,000 rpm for 10 min at 4 °C
to remove any solid debris. Fractions (500 ml) of the urine supernatants
were then stored at –80 °C until UPLC-Q-TOF-HDMS analysis. Thawed
urine samples were collected after centrifugation at 13,000 rpm for 10
min at 4 °C, and the supernatant was transferred to a 1.5 ml polypro-
pylene tube, and then filtered through a syringe filter (0.22 �m), 5 �l of
the supernatant were injected into the UPLC-Q-TOF-HDMS.

Metabolic Profiling

Chromatographic Conditions—The UPLC/MS analysis was carried
out using a Waters ACQUITY ultra-performance liquid-chromatogra-
phy (UPLC) system (Waters Corp., Milford, MA) coupled with time-
of-flight mass spectrometry (TOF-MS) from Waters. Chromatography
was carried out with an ACQUITY BEH C18 chromatography column
(2.1 mm � 100 mm, 1.7 um). The column temperature was maintained
at 45 °C, and then gradient mobile phase conditions was composed
of phase A (water with 0.1% formic acid) and phase B (acetonitrile
containing 0.1% formic acid). A Waters Acquity UPLC BEH C18 (2.1
mm i.d. � 100 mm ACQUITY) column packed with 1.7 mm beads was
used to separate the molecules in the biofluids set. The gradient for the
urine sample was as follows: 0–5 min, 1–25% B; 5–9 min, 25–50% B;
9–9.1 min, 50–99% B; 9.1–11 min, 99% B; 11–11.1 min, 99–1% B;
11.1–13 min, 1% B. The flow rate was 0.40 ml/min and 5 �l aliquot of
each sample was injected onto the column. The eluent was introduced
to the mass spectrometry directly without a split. To ensure the stability
and repeatability of the UPLC-Q-TOF-HDMS systems, pooled quality
control (QC) samples were prepared from 10 �l of each sample and
analyzed together with the other samples. The QC samples were also
inserted and analyzed in every 10 samples.

TOF-MS Conditions—Mass spectrometry and accurate mass ac-
quisition was performed with a Waters QTOF Premier operating at
positive-ion (ESI�) and negaitive-ion (ESI�) electrospray ionization
(ESI) mode. The optimal capillary voltage was set at 3200 V, and cone
voltage at 35 V. Nitrogen was used as the dry gas, the desolvation gas
flow rate was set at 500 L/h, and cone gas flow was maintained at 50
L/h. The desolvation temperature was set at 350 °C, and source
temperature at 110 °C. The scan time and interscan delay were set to
0.4 s and 0.1 s, respectively. MS data were collected in the full scan
mode from m/z 50–1000. All the data were acquired using an inde-
pendent reference lock mass via the LockSprayTM interface to ensure
accuracy and reproducibility during the MS analysis. Leucine en-

1 The abbreviations used are: JS, Jaundice syndrome; YAH, Yan-
gHuang; YIH, YinHuang; PCA, principal components analysis; OPLS-
DA, orthogonal projection to latent structures discriminate analysis.
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kaphalin was used as the reference compound (positive ion mode
([M�H]� � 556.2771) and [M-H]� � 554.2615) at a concentration of
0.2 ng/ml under a flow rate of 100 �l�min�1. The data were collected
in the centroid mode, and the LockSpray frequency set at 10 s and
averaged over 10 scans for correction.

Data Processing—All data were processed using the MarkerLynx
application manager for MassLynx 4.1 software (Waters Corp). The
UPLC/MS data are detected and noise-reduced in both the UPLC and
MS domains such that only true analytical peaks are further pro-
cessed by the software. A list of intensities of the peaks detected is
then generated for the first chromatogram, using the Rt-m/z data
pairs as identifiers. The resulting normalized peak intensities form a
single matrix with Rt-m/z pairs for each file in the data set. All
processed data of each chromatogram were normalized and pareto
scaled, prior to multivariate statistical analysis. SPSS 13.0 for Win-
dows was used for the statistical analysis. The data were analyzed
using the Wilcoxon Mann-Whitney Test, with p � 0.05 set as the level
of statistical significance.

Multivariate Data Analysis—Centroided and integrated raw mass
spectrometric data were processed using MassLynx V4.1 and Mark-
erLynx software (Waters). The intensity of each ion was normalized
with respect to the total ion count to generate a data matrix that
consisted of the retention time, m/z value, and the normalized peak
area. The multivariate data matrix was analyzed by EZinfo software
(Waters). The unsupervised segregation was checked by principal
components analysis using pareto-scaled data. From the loading
plots of orthogonal projection to latent structures discriminate anal-
ysis (OPLS-DA), various metabolites could be identified as being
responsible for the separation between control and JS groups, and
were therefore viewed as differentiating metabolites. Potential mark-
ers of interest were extracted from the combining S- and VIP- plots
that were constructed from the OPLS analysis, and markers were
chosen based on their contribution to the variation and correlation
within the data set. With the completion of the OPLS-DA analysis, we
can try computational systems analysis with MetaboAnalyst data
annotation approach (http://www.metaboanalyst.ca/MetaboAnalyst/
faces/Home.jsp) (22) to distinguish between control and JS subjects.
The Heatmap, implemented in MetaboAnalyst tool commonly used for
unsupervised clustering, were constructed based on the potential can-
didates of importance, which were extracted with OPLS-DA analysis.

Biomarker Identification—Exact molecular mass data from redun-
dant m/z peaks corresponding to the formation of different parent and
product ions were first used to help confirm the metabolite molecular
mass. MS/MS data analysis highlights neutral losses or product ions,
which are characteristic of metabolite groups and can serve to dis-
criminate between database hits. The MassFragment™ application
manager (Waters MassLynx v4.1, Waters) was used to facilitate the
MS/MS fragment ion analysis process by way of chemically intelligent
peak-matching algorithms. The identities of the specific metabolites
were confirmed by comparison of their mass spectra and chromato-
graphic retention times with those obtained using commercially avail-
able reference standards. A full spectral library, containing MS/MS
data obtained in the positive and negative ion modes, for all metab-
olites reported in this work is available on request from the authors.
This information was then submitted for database searching, either
in-house or using the online ChemSpider database (www.chemspider.
com), MassBank (http://www.massbank.jp/), and MetFrag (http://
msbi.ipb-halle.de/MetFrag/) data source. Pathway analysis and visu-
alization using the KEGG (www.genome.jp/kegg/) pathway database
was carried out using Metaboanalyst.

RESULTS

Urine Metabonomic Study of Patients—Urine metabolic
profiling was established to explore important biomarkers and

metabolic pathways related to JS and develop a prediction
model for aided diagnosis of the disease. The representative
UPLC-HDMS base peak ion (BPI) current chromatograms
from positive and negative ion modes of human urine from the
patients with JS and controls were compared visually (Data
not shown). The stable BPI reflected the stability of UPLC-
HDMS analysis and reliability of the metabolomic data. Low
molecular mass metabolites could be well separated in the
short time of 13 min because of the small particles (less than
1.7 um) of UPLC. Using the optimized UPLC-HDMS analysis
protocol and subsequent processes, such as baseline correc-
tion, peak deconvolution, alignment, and normalization, we
obtained a three-dimensional matrix, including data file name,
retention time exact mass pair, and normalized peak areas.
Overall 9986 retention time-exact mass pairs were deter-
mined in each sample profile. Although some differences
could be visually noted among the three sets of the detail
illustrated in the BPI chromatogram, more subtle changes
could be found using a pattern recognition approach, such as
PLS, OPLS-DA. Typically, the metabolic profiles of disease
cases and controls are compared with the aim of identifying
spectral features, and ultimately metabolites, which discrimi-
nate the classes.

Analysis of Metabolic Pattern—Using our metabolomics
platform, the statistically important metabolites were studied.
PCA was used first to investigate general interrelation be-
tween groups, including clustering and outliers among the
samples. And then, PLS-DA was used to maximize the differ-
ence of metabolic profiles between control and JS groups and
facilitate the detection of metabolites consistently present in
the biological samples. Data were standardized using Pareto-
scaling technique. The supervised OPLS-DA can improve
biomarker discovery efforts and separate samples into two
blocks was applied to obtain better discrimination between
the control and JS groups. Score plots from the supervised
OPLS-DA showed obvious separation between the JS, YAH,
YIH groups and healthy group in both positive (Figs. 1A, 2A,
and 3A) and negative ion modes (supplemental Figs. S1, S2,
and S3), which suggests that urinary biochemical perturbation
significantly occurs in JS and its subtype groups. Trajectory
analysis of score plots (3-D) for the control and JS groups
showed clear segregation (Fig. 1B). Additionally, the similar
analysis based on subtype groups and control group did
reveal clearer separation (Figs. 2B and 3B). From the corre-
sponding the loading plots, the ions furthest away from the
origin contribute significantly to be responsible for the sepa-
ration between control and JS groups and may be therefore
regarded as the differentiating metabolites for JS, YAH, YIH
groups (Figs. 1C, 2C, and 3C). Combining the results of S-
and VIP- plots from the OPLS analysis (Figs. 1D, 2D, and 3D),
the UPLC-HDMS analysis platform provided the retention
time, precise molecular mass, and MS/MS data for the struc-
tural identification of biomarkers. Finally, according to the
variable importance in the projection (VIP �2), the variables
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(ions) were identified based on the metabolite identification
strategy (listed in supplemental Tables S2–S4). The parallel
analysis of the samples with MetaboAnalyst allows for the
ability to verify that ions, which are identified through both
ways (i.e. Heatmaps, OPLS-DA), are highly significant, as
depicted through two completely different algorithms. Analy-
sis of the control and JS samples utilizing MetaboAnalyst’s
data annotation tools revealed differences between the two
groups. Figs. 4A and 5D showed top 15 significant features of
the metabolite markers based the VIP projection. The heat-
maps, commonly used for unsupervised clustering, were con-
structed based on the potential candidates of importance,
which were extracted with OPLS-DA analysis. The parallel

heatmap visualization (Figs. 4B and 5C) using Ward’s method
in computational systems analysis for the JS, YAH, YIH, and
controls showed distinct segregation. To test the usefulness
of the marker metabolites for diagnosis, a second set of JS
(n � 10), YAH (n � 12), and YIH (n � 9) patients and control
subjects (n � 10) were blindly selected and analyzed. Using
our metabolomics platform, interestingly, the heatmap visu-
alization (Fig. 6) using in computational systems analysis
could be achieved for discrimination of all the patients.

Biomarker Identification—The robust UPLC-HDMS analysis
platform provides the retention time, precise molecular mass,
and MS/MS data for the structural identification of biomark-
ers. Structure identification was performed according to their

FIG. 1. Metabolomic profiling of JS. A, OPLS-DA model results for JS group in positive mode. B, 3-D of OPLS-DA model for JS group. C,
Loading plot of OPLS-DA of JS in positive mode. D, shows the combination of S- and VIP-score plots constructed from the supervised OPLS
analysis of urine (ESI� mode). Ions with the highest abundance and correlation in the JS group with respect to the controls are present on the
upper far right hand quadrant, whereas ions with the lowest abundance and correlation in the JS group with respect to the control group are
residing in the lower far left hand quadrant.
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FIG. 2. Analysis of the control and JS samples utilizing MetaboAnalyst’s data annotation tools revealed differences between the two
groups. A, Significance changes of the metabolite markers illustrated in the Biplot from PLS-plot. It can be readily observed that the concentrations
of differential metabolites. B, Top 15 significant features of the metabolite markers based the VIP projection. C, Heat map visualization for the urine
of JS. The heatmaps were constructed based on the potential candidates of importance, which were extracted with OPLS-DA analysis. Variable
differences are revealed between the control and JS groups, with verified and known ions marked on the bottom corresponding to supplemental
Table S2. Rows: samples; Columns: metabolites; Color key indicates metabolite expression value, blue: Lowest, red: highest.
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molecular ion masses and MS/MS product ion analysis com-
pared with authentic standards or database resources. Some
parameters, such as deviation from calculated mass (mDa or
ppm), double bond equivalent (DBE), and i-fit value (the iso-
topic pattern of the selected ion) were used to evaluate the
accuracy of possible formulas. Based on the relative intensi-
ties of the metabolites from the normalized spectrum, the
combination of S- and VIP-score plots constructed from the
supervised OPLS analysis of urine was used to reveal the sig-
nificant differences of identified metabolites between the JS
group and control group, as well as between the subtype
groups and control group. The presumed molecular formula
was searched in Chemspider, Human Metabolome Database,
and other databases to identify the possible chemical consti-
tutions, and MS/MS data were screened to determine the
potential structures of the ions.

Here, the biomarker with Rt-m/z of 6.76–591.3339 in pos-
itive ion mode was detailed as an example to illustrate the
identification process. Using a mass tolerance of 5mDa,
C33H42N4O6 was located as the candidate because of its high
mass accuracy and low i-fit value among the possible chem-
ical formulas. And then, C33H42N4O6 was input in the KEGG
ligand for possible compounds, and D-urobilinogen finally
emerged, which was further confirmed by comparing it to its
authentic standards. In this study, we performed UPLC/MS
based metabolomic profiling in urine to detect potential bio-
markers associated with JS patients. Finally, forty-four marker
metabolites contributing to the complete separation of JS
from matched healthy controls were identified, with epineph-
rine, deoxycytidine, methylglutarylcarnitine, etc. exhibiting the
best combined classification performance (see supplemental
Table S2). Forty endogenous metabolites contributing to a

FIG. 3. Metabolomic profiling of YAH. A, OPLS-DA model results for YAH group in positive mode. B, 3-D of OPLS-DA model for YAH group.
C, Loading plot of OPLS-DA of YAH in positive mode. Combination of S- and VIP-score plots constructed from the supervised OPLS analysis
of urine (ESI� mode).
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good separation between YAH and matched healthy controls
were identified, with Kinetin, porphobilinogen, indoleacrylic
acid, etc. showing the maximum combined classification per-
formance (supplemental Table S3). Forty-nine metabolites
contributing to the complete separation between YIH and
matched healthy controls were identified, with 2-octenedioic
acid, pyroglutamic acid, alpha-N-phenylacetyl-L-glutamine,
etc. showing the best combined classification performance
(supplemental Table S4).

Metabolic Pathway and Function Analysis—With pattern
recognition analysis of metabolites, a clear separation of JS
groups and healthy group was achieved. Metabolite profiling
focuses on the analysis of a group of metabolites related to a
specific metabolic pathway in biological states. More detailed
analysis of the most relevant pathways and networks of JS

were performed by Metaboanalyst that is a free, web-based
tool that combines result from powerful pathway enrichment
analysis involved in the conditions under study. Metaboana-
lyst, directed graph, uses the high-quality KEGG (www.
genome.jp/kegg/) pathway database as the backend knowl-
edgebase. Consequently, potential targets of metabolic
pathway analysis (Impact-value �0.10) with Metaboanalyst
revealed that the metabolites that were identified together
are important for the host response to JS, and are respon-
sible for D-glutamine and D-glutamate metabolism, synthe-
sis and degradation of ketone bodies, alanine, aspartate,
and glutamatemetabolism (supplemental Fig. S4A). The top
three metabolic pathway of importance including vitamin B6
metabolism, tryptophan metabolism, arginine and proline me-
tabolism were found to be disturbed in YAH patients (supple-

FIG. 4. Metabolomic profiling of YIH. A, OPLS-DA model results for YIH group in positive mode. B, 3-D of OPLS-DA model for YIH group.
C, Loading plot of OPLS-DA of YIH in positive mode. D, shows the combination of S- and VIP-score plots constructed from the supervised
OPLS analysis of urine (ESI� mode).
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mental Fig. S4B). Distinct metabolic pathway analysis (Impact-
value�0.10), which were all related to YIH, are responsible for
steroid hormone biosynthesis, primary bile acid biosynthesis,
cysteine and methionine metabolism (supplemental Fig. S4C).
The detailed construction of the D-glutamine and D-glutamate
metabolism (supplemental Fig. S5A), vitamin B6 metabolism
(supplemental Fig. S5B), primary bile acid biosynthesis (sup-
plemental Fig. S5C) pathways with a higher score in humans

were generated using the reference map by searching
KEGG.

DISCUSSION

Systems biology is a general trend of contemporary scien-
tific development (23). Identification of molecular markers and
metabolic pathways has the potential to improve diagnostic,
prognostication, and therapy of interest (24–27). The deter-

FIG. 5. Systems analysis of Metabolomic alterations of the YAH, YIH and control samples with MetaboAnalyst’s data annotation
tools. A, Top 15 significant features of the metabolite markers based the VIP scores of OPLS-DA. B, Heat map visualization constructed based
on the differential metabolites of importance for the urine of YAH. Heatmap represents unsupervised hierarchical clustering of groups (rows).
Variable differences marked on the bottom corresponding to supplemental Table S3 are revealed between the control and YAH groups. Rows:
samples; Columns: differential metabolites; Color key indicates metabolite expression value, red: Lowest, yellow: highest. C, Heat map
visualization constructed based on the differential metabolites of importance for the urine of YIH. Variable differences marked on the bottom
corresponding to supplemental Table S4 are revealed between the control and YIH groups. Rows: samples; Columns: differential metabolites;
Color key indicates metabolite expression value, green: Lowest, red: highest. D, Top 15 significant features of the metabolite markers based
the VIP scores.
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mination of metabolic profiles may probably provide a bio-
marker for the discrimination of diseases as well as differen-
tiation of healthy volunteers from patients. Current diagnostic
methods, measuring levels of alanine aminotransferase, and
aspartate aminotransferase etc. in blood samples, have been
the main diagnostic markers for JS and can be considered as
the current “gold standard” for initial diagnosis and surveillance.
However, the sensitivity of these markers is relatively low and it
is difficult to get an outcome immediately. Hence, novel ap-
proaches for the detection of JS are urgently needed. The
nontarget metabolomics provides a global view of the organism
and can be used to monitor the dynamic metabolic alterations
that occur in different pathological processes (28, 29).

Efficient diagnostic methods in clinical practice are needed
for the metabolite biomarkers. Metabolomics is a powerful
new technology that allows for the assessment of global
metabolic profiles in easily accessible biofluids and biomarker
discovery in order to distinguish between diseased and non-
diseased status information (30). Offering a physiologically
holistic, noninvasive platform, the emergent field of metabo-
lomics has the potential to provide new diagnostic tools.
Recent technological breakthroughs have provided research-
ers with the capacity to measure hundreds or even thousands
of small-molecule metabolites in as little as a few minutes per
sample, paving the way for studies ideally suited to complex
diseases such as JS (31, 32). Early or subclinical diagnosis of
JS would be helpful for prevention and treatment. Metabolo-
mics is particularly suited to liver injury assessment, where urine
is the most common sample made available for laboratory tests.
Although gene and protein expression have been extensively
profiled in human disease, little is known about the global
metabolomic alterations that characterize disease. Multiple,
complex molecular events characterize disease development
and progression. Deciphering the molecular networks that dis-
tinguish disease from liver disease may lead to the identification
of critical biomarkers for disease aggressiveness.

We utilized the metabolomics approach in a pilot study in
urine samples of JS patients from control subjects. It was
demonstrated that based on UPLC-MS measurements of
urine samples with statistically significant multivariate models
could be constructed to distinguish between diseased and
nondiseased subjects. The global metabolic profiling and
subsequent multivariate analysis clearly distinguished JS pa-
tients from matched controls. As shown in Figs. 1A and 1B,
OPLS-DA revealed an evident and statistically significant sep-
aration between the JS and control samples. Results indicate
that JS related metabolites play an essential role in glutamate
metabolism, synthesis, and degradation of ketone bodies,
alanine, and aspartate metabolism, which are tightly corre-
lated with the genes of neurotransmitters, hormones, and
cytokines in the metabolites interaction network. By using our
metabolomics platform, 44 statistically important variables
with VIP �2 were defined (supplemental Table S2). Interest-
ingly, of the 44 distinct metabolites identified from these path-
ways, many are found in the various stages of progression of
JS. Further study of these metabolites may facilitate the de-
velopment of noninvasive biomarkers and more efficient ther-
apeutic strategies for JS. Furthermore, vitamin B6 metabo-
lism, tryptophan metabolism, arginine and proline metabolism
was also the top function listed by Metaboanalyst for YAH
patient. Significant changes associated with YAH disease,
defined as metabolite changes in YAH versus controls were
identified for 40 metabolites that are potential candidates for
biomarkers. Additionally, steroid hormone biosynthesis, pri-
mary bile acid biosynthesis, cysteine and methionine metab-
olism were all related with YIH. It is noteworthy that 49 me-
tabolites together are important for the host response to JS
through target metabolism pathways.

We specifically introduced a new way to examining
metabolome expression information of typical patients versus
controls. A significant separation using Heatmap analysis was
obtained for the difference between JS versus controls as well

FIG. 6. Hierarchical clustering and diagnostic potential of JS metabolite composition. A, Unsupervised hierarchical clustering of JS
metabolite profiles. B, Profiles of the signatures that distinguish YAH from control samples. C, Dendrogam obtained from unsupervised
hierarchical clustering of metabolite profiles for YIH and control samples.
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as between subtype patients versus controls. Computational
systems analysis with MetaboAnalyst tool (Heatmap) provides
a powerful approach to metabolic profiling of urine to differ-
entiate patients from control subjects. The patients with JS
were easily distinguished from control subjects by the Heat-
map approach when using autoscaling methods. To deter-
mine whether these metabolic markers which were identified
using our metabolomics platform, we performed a preliminary
validation using a second set of patients and control subjects,
which were blindly selected. Our results indicated that the
model had a high sensitivity and specificity for the clinical JS
diagnosis, as shown in Fig. 6. Targeted metabolite analysis
studies have already shown that alterations of critical JS
metabolic pathways, such as glutamate metabolism, synthe-
sis and degradation of ketone bodies, alanine and aspartate
metabolism, are strongly associated with JS development.
Such changes are expected to be reflected in wider coverage
metabolic profiles, which may in turn be explored for potential
biomarkers for JS assessment and treatment. Recently, met-
abolic pathways incorporate complex networks of protein-
based interactions and modifications, are usually considered
to provide information on mechanisms of disease and have
become a common and probably the most popular form of
representing biochemical information for hypothesis genera-
tion and validation. These maps store a wide knowledge of
complex molecular interactions and regulations occurring in
the living organism in a simple and obvious way, often using
intuitive graphical notation. Based on the KEGG, a detailed
construction of the the D-glutamine and D-glutamate metab-
olism, vitamin B6 metabolism, primary bile acid biosynthesis
pathways map with higher score is shown in supplemental
Fig. S5. Our results indicate that these target pathways show
the marked perturbations over the entire time-course of JS
and could contribute to the development of JS. Furthermore,
the more patients included and the detected metabolomic
biomarkers make evaluation in further studies necessary be-
fore the significance of our results could be assured. Further
investigations are also underway to clarify the precise patho-
genesis why JS induced these results. Therefore, metabolo-
mics suggests that there is a great potential for candidate
metabolite biomarker discovery, metabolite signatures may
also have the potential to be used as diagnostic biomarkers.
Future research will focus on the discovery of additional bio-
markers using metabolomics platforms and the validation of
the explorative biomarkers. In addition, more effort will be
directed to the biological interpretation: it will be investigated
which pathways were involved in the biochemical changes
associated with the onset, development, and progression of
JS, and whether these changes are the same during onset
and progression, or if different changes of biochemistry occur
at the different stages of JS.

In summary, metabolomics provides a powerful approach
to discover diagnostic and therapeutic biomarkers by analyz-
ing global changes in an individual’s metabolic profile. We

here, for the first time, report a comprehensive analysis of
metabolic patterns of JS and sub-types. We have identified
some significantly changed metabolites associated with JS
and specifically noted 44 metabolomic signatures in JS. Glu-
tamate metabolism, synthesis, and degradation of ketone
bodies, alanine and aspartate metabolism was found that the
most altered functional pathway associated with JS accord-
ing to ingenuity pathway analysis. The results not only indi-
cated that metabolomic methods had sufficient sensitivity and
specificity to distinguish JS from healthy controls, but also
have the potential to be developed into a clinically useful
diagnostic tool, and could also contribute to a further under-
standing of disease mechanisms. In conclusion, our findings
suggested that metabonomics method would be helpful to
establishing a suitable model for reasonably evaluating dis-
ease syndrome, exploring pathological mechanism of the syn-
drome, clarifying the relationships between the syndrome and
related diseases.
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B., Altmaier, E., CARDIoGRAM, Deloukas, P., Erdmann, J., Grundberg,
E., Hammond, C. J., de Angelis, M. H., Kastenmüller, G., Köttgen, A.,
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