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There is a pressing and continued need for improved
predictive power in preclinical pharmaceutical toxicology
assessment as substantial numbers of drugs are still re-
moved from the market, or from late-stage development,
because of unanticipated issues of toxicity. In recent
years a number of consortia have been formed with a view
to integrating -omics molecular profiling strategies to in-
crease the sensitivity and predictive power of preclinical
toxicology evaluation. In this study we report on the
LC-MS based proteomic analysis of the effects of the
hepatotoxic compound EMD 335823 on liver from rats
using an integrated discovery to targeted proteomics ap-
proach. This compound was one of a larger panel studied
by a variety of molecular profiling techniques as part of
the InnoMed PredTox Consortium. Label-free LC-MS
analysis of hepatotoxicant EMD 335823 treated animals
revealed only moderate correlation of individual protein
expression with changes in mRNA expression observed
by transcriptomic analysis of the same liver samples. Sig-
nificantly however, analysis of the protein and transcript
changes at the pathway level revealed they were in good
agreement. This higher level analysis was also consistent
with the previously suspected PPAR� activity of the com-
pound. Subsequently, a panel of potential biomarkers of
liver toxicity was assembled from the label-free LC-MS
proteomics discovery data, the previously acquired tran-
scriptomics data and selected candidates identified from
the literature. We developed and then deployed optimized
selected reaction monitoring assays to undertake multi-
plexed measurement of 48 putative toxicity biomarkers in
liver tissue. The development of the selected reaction
monitoring assays was facilitated by the construction of a
peptide MS/MS spectral library from pooled control and
treated rat liver lysate using peptide fractionation by
strong cation exchange and off-gel electrophoresis cou-

pled to LC-MS/MS. After iterative optimization and quality
control of the selected reaction monitoring assay panel,
quantitative measurements of 48 putative biomarkers in
the liver of EMD 335823 treated rats were carried out and
this revealed that the panel is highly enriched for proteins
modulated significantly on drug treatment/hepatotoxic in-
sult. This proof-of-principle study provides a roadmap for
future large scale pre-clinical toxicology biomarker veri-
fication studies whereby putative toxicity biomarkers
assembled from multiple disparate sources can be
evaluated at medium-high throughput by targeted
MS. Molecular & Cellular Proteomics 11: 10.1074/mcp.
M111.016493, 394–410, 2012.

The inability of current preclinical toxicology evaluation
methods to predict early, and with good accuracy, that a drug
candidate will have to be removed from development (or from
the market) because of toxicicity/safety issues is a serious
bottleneck in the drug development pipeline (1). Novel omics
profiling technologies have the potential to provide more ef-
fective preclinical predictive models for toxicity (2). By per-
forming detailed and comprehensive molecular profiling of
animal or cell-based models that have been exposed to
known toxic insults, it should be possible to catalog the
spectrum of molecular changes that cause or accompany a
particular mechanism of toxicity. It is reasonable to assume
that molecular changes underlying, or induced by, toxicologic
mechanisms will be manifested at earlier time points and at
lower dose levels than are required for classical toxicology
evaluation endpoints. Hence, the basic premise of preclinical
predictive systems toxicology is to perform molecular profiling
experiments for a range of compounds, potentially hundreds,
displaying various toxicities and deriving biomarker signa-
tures related to given toxicological mechanisms or endpoints.
This approach has recently begun to enjoy some success with
a panel of seven urinary protein biomarkers for nephrotoxicity
having been deemed acceptable in the context of nonclinical
drug development for the detection of acute drug-induced
kidney toxicity in a joint evaluation by the Food and Drug
Administration (FDA) and European Medicines Agency
(EMEA) (3). Consortia-based efforts have been established to
systematically investigate drug-induced liver, and other tox-
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icities, however, progress has been less apparent (4, 5). The
integrated EU Framework 6 Project InnoMed PredTox (6) was
such a consortium, consisting of 14 pharmaceutical compa-
nies, three universities, and two technology providers, fo-
cused on assessing the potential of combining the molecular
profiling techniques of transcriptomics, proteomics, and
metabolomics with conventional toxicology measurements,
to provide improved decision making in preclinical safety
evaluation. The general conclusion from the PredTox consor-
tium was that to some extent the “omics” technologies can
help toxicologists to make better informed decisions during
exploratory toxicological studies, however, integrating data
sets from different molecular profiling technologies proved
problematic (6). In particular, the proteomics studies per-
formed in the context of the PredTox project were restricted
to the use of SELDI (7) and two-dimensional electrophoresis
(8) approaches which, although undertaken rigorously, dis-
played limited proteome coverage and identified relatively
small numbers of modulated proteins. This limitation signifi-
cantly hampered efforts aimed at integrated analysis of pro-
tein expression changes with the transcriptomics or metabo-
lomics data sets. In order to address this issue with a view to
increasing proteome coverage and then subsequently provid-
ing methods for robust and sensitive protein quantification in
future studies of this type, we undertook a reanalysis of livers
from rats treated with one of the PredTox compounds, EMD
335823, using LC-MS-based proteomics methods. For more
specific information on the outcome of previous detailed stud-
ies, in particular with regard to gene expression profiling and
mechanistic analyses, we refer the reader to a summary of the
InnoMed PredTox Consortium activities surround EMD
335823 (9). The study described herein is a re-analysis of
archived liver samples from the same in vivo dosing experi-
ments. First, a discovery proteomics screen of liver from
hepatotoxicant treated rats by MS1 intensity-based label-free
liquid chromatography (LC)-MS (10) was performed. Second,
a panel of putative biomarkers assembled from the label-free
LC-MS study, a previous transcriptomics study (9), and liter-
ature sources (11), were measured simultaneously in a larger
cohort of hepatotoxicant treated rat livers by targeted MS
using selected reaction monitoring (12).

The goals of this study were to determine the feasibility of
using LC-MS-based proteomics to augment and facilitate
large-scale efforts in the direction of preclinical toxicology
evaluation and systems toxicology. There are essentially two
ways which advanced proteomics methodologies could con-
tribute to this field. The first concerns the elucidation of bio-
chemical and mechanistic aspects of toxicological pheno-
types. The second is in the determination of biomarkers
associated with the prediction of a given toxicological event.
Although tissue-based analysis of the target organ of toxicity
(as was carried out in this study) is directly appropriate for the
first goal, the second goal remains a more complex prospect.
In the ideal case a biomarker would be directly measureable in

an accessible body fluid to facilitate longitudinal measure-
ments, in addition to the possibility of transferring such a
biomarker from preclinical to clinical utility, however, the dif-
ficulties associated with plasma/urine biomarker discovery
and validation are well described (13). The utility of tissue-
based biomarkers is less clear as histological evaluation is
routinely applied and, as such, a clear sensitivity benefit for
novel tissue-based biomarkers over histopathology would
have to be demonstrated. A more likely route may be the
transfer of promising biomarkers candidates from tissue to
plasma-based assays in the medium-long term.

MS1 intensity-based label-free LC-MS (10) (as opposed to
spectral counting-based label-free LC-MS (14)) has emerged
as an attractive alternative to isotope labeling-based strate-
gies for preclinical or clinical studies where relatively large
numbers of samples need to be analyzed and integrating
metabolic or chemical labeling into the sample preparation
may be problematic. Although the achievable proteome cov-
erage is not as high with label-free approaches as can be
realized with isotope labeling which routinely incorporate ex-
tensive fractionation, substantial numbers of proteins can be
quantified and identified by additionally employing a directed
MS/MS approach incorporating re-injection of samples with
inclusion lists to supplement the peptide identifications ac-
quired in data dependent analyses (15, 16). The data analysis
associated with the MS1 label-free approach, in particular the
alignment of MS1 feature maps, remains a challenge. In ad-
dition, the success of this approach rests on maintaining
stability and reproducibility in the chromatography, as well as
mass accuracy and intensity measurements. Although recent
advances in software and instrument robustness have made
the label-free LC-MS approach feasible for small-medium
scale discovery proteomics study with preclinical or clinical
samples, the use of this approach in very large-scale studies
is likely to be complex and currently difficult to achieve. Ver-
ification of biomarker panels for preclinical toxicology evalu-
ation will most likely require the analysis of large numbers of
compounds with well characterized toxicological properties
and, as such, a technology platform that can reproducibly and
sensitively measure proteins in a targeted fashion is required.

The use of selected reaction monitoring (SRM)1 for pro-
teomics studies has emerged in recent years as a powerful
method for sensitive, robust, and increasingly routine targeted
quantification of proteins in complex biological samples (12,
17). These characteristics have led to wide adoption and
development of the technique for the targeted quantification
of discrete sets of proteins for studies in both model systems

1 The abbreviations used are: SRM, selected reaction monitoring;
ACN, acetonitrile; EST, expressed sequence tag; FDR, false dis-
covery rate; IAA,iodoacetamide; nLC-MS/MS, nanoflow liquid chro-
matography – tandem mass spectrometry; PTM, post translational
modification; QqTOF, quadrupole time-of-flight mass spectro-
meter; QqQ, triple quadrupole mass spectrometer; TCEP,
tris(2-carboxyethyl)phosphine.
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(18–20) and clinical samples (21–23), as well as studies spe-
cifically focused on drug toxicology (24). Initially the develop-
ment of reliable SRM assays was very time consuming and
manual, however, in recent years methods and software have
been developed that have substantially decreased the time
required for the development of robust and sensitive SRM
assays (25–28). This means that SRM assays targeting tens to
hundreds of proteins can be developed in a matter of weeks
and deployed indefinitely in large-scale targeted proteomics
studies. The SRM method is also inherently flexible and can
be easily refined to integrate additional new proteins into an
assay panel that arise, for example, from ongoing discovery
studies, or to remove proteins with low discriminatory power
that are no longer required.

In this study SRM was utilized as a means to undertake the
measurement of a panel of putative biomarker candidates as-
sembled from disparate sources, namely a discovery proteom-
ics screen by label-free LC-MS, a previous transcriptomics
study where the same liver samples were analyzed (9), and
hepatotoxicity biomarker candidates taken from literature (11),
into a single assay panel of 48 rat liver proteins. The primary set
of proteins included in the SRM panel was derived from an MS1
intensity-based label-free LC-MS discovery proteomics study
of a subset of the hepatotoxicant treated rat livers also con-
ducted in the context of this study. These studies provide a
significant proof-of-principle demonstration for future preclinical
toxicology studies whereby (1) label-free LC-MS can provide
putative biomarkers and mechanistic information on the toxico-
logical insult, and, (2) putative biomarkers from multiple sources
can be integrated into an SRM assay panel that can be de-
ployed at medium-high throughput for large scale verification
studies involving substantial numbers of well-characterized tox-
icants, and later for more sensitive toxicology evaluation for
drugs under early development.

EXPERIMENTAL PROCEDURES

In Vivo Drug Treatment Study Design—Details of the compounds,
animal studies, and classical toxicology evaluation procedures as well
as further details of the InnoMed PredTox Consortium methods have
been published previously (7, 29–31). The experiments described
here focused on a single compound study in the InnoMed PredTox
Consortium designated FP005ME. In this study Wistar rats were
treated daily for 3 or 14 days with vehicle, a nontoxic dose (15 mg/kg),
or a high dose (350 mg/kg) of the known hepatotoxic compound
(EMD 335823, see supplemental Fig. S1 for chemical structure) the
latter dose chosen to induce significant hepatotoxicity (liver necrosis,
fibrosis, and bile duct necrosis/hyperplasia). Each drug treatment
group contained five rats with a total of 30 rats across the six treat-
ment groups analyzed. Animal experimentation plans underwent an
ethical review within the project and were carried out according to the
local regulations and permissions of each participant company and in
accordance with the guidelines of the European Council on Experi-
mental Animal Care. Additional details on the in vivo study design are
given the supplementary information and supplemental Tables S1,
S2, S3, and S4.

Protein Extraction From Liver and Digestion With Trypsin—Protein
extraction from liver samples was as previously described (7). Briefly,

the frozen left lateral lobe of the liver (100 � 50 mg) was ground with
a mortar and pestle under liquid nitrogen. Powdered tissue was
transferred into a tube containing 125 �l lysis buffer I (10 mM Tris/pH
7.0.5, 1 mM EDTA, 0.2 M sucrose, Benzonase 25 U/�l (Calbiochem,
San Diego, CA), protease inhibitor mixture (Set III - 100 mM AEBSF
hydrochloride, 80 �M aprotinin (bovine lung), 5 mM bestatin, 1.5 mM

E-64, 2 mM leupeptin hemisulfate, 1 mM pepstatin A, Calbiochem) and
completely suspended. Afterward, 875 �l lysis buffer II (7 M urea, 2 M

thiourea, 4% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]propane-
sulfonate, 40 mM dithiothreitol, 20 mM spermine) was added and
pipeted 30 times to aid suspension. The protein extracts were mixed
at room temperature on a rotary shaker at 500 rpm for 1 h to ensure
complete cell lysis and solubilization of protein. To separate mem-
branous components and other insoluble debris, samples were ultra-
centrifuged for 30 min at 10 °C and 74,000 � g. The supernatant was
aliquoted and stored at �80 °C.

Two hundred micrograms of the liver protein extracts were reduced
(5 mM TCEP, 20 min, room temperature) and alkylated (10 mM iodo-
acetamide, 30 min room temperature in the dark) before precipitation
with six volumes of acetone for 2 h at �20 °C. The samples were
centrifuged for 10 min at 5000 � g and 4 °C, and the pellets were
resolubilized in Rapigest 1.3% (w/v), 50 mM NH3HCO3 or 5% (w/v)
trifluoroethanol, 50 mM NH3HCO3 and incubated with 2 �g sequenc-
ing grade modified porcine trypsin, (overnight, 37 °C). Rapigest con-
taining samples were acidified with 2% (v/v) formic acid (4 h, RT) and
centrifuged (13,000 � g, 10 min) to remove the Rapigest hydrolysis
products. The samples were transferred to clean tubes, evaporated to
dryness in a centrifugal evaporator (60 °C, 150 � g), and resuspended
in 100 �l of 0.1% (v/v) formic acid, 3% (v/v) acetonitrile prior to
injection.

Label-Free LC-MS—Samples were analyzed using a 6520 quadru-
pole-time of flight (Q-TOF) mass spectrometer connected online to a
1200 Series nanoflow high performance liquid chromatograph (HPLC)
via an orthogonal spray HPLC-Chip/MS interface (Agilent Technolo-
gies). Digested protein (3 �g) was chromatographed with a 90 min
gradient from 3% (v/v) acetonitrile, 0.1% (v/v) formic acid to 40% (v/v)
acetonitrile, 0.1% formic acid using a HPLC-Chip equipped with a 75
�m � 150 mm, 5 �m C-18 300SB-Zorbax analytical column and a
160 nl Zorbax 300SB-C18 5 �m enrichment column. The mass spec-
trometer was operated using two duty cycles. Each of the biological
replicates (designated A31-A35 in the vehicle control group and A41-
A45 in the treatment group), as well as six replicates of a pool of these
samples to measure technical variance, were injected using a duty
cycle intended to maximize the information content of the MS1 scans.
This duty cycle included 1 MS scan for 333 milliseconds, and two
MS/MS scans for 333 milliseconds each. Setting the MS1 scan to 333
milliseconds allowed for summing of 3212 TOF transients. Reducing
the number of MS/MS spectra acquired to two resulted in a duty cycle
lasting only �1 s ensuring a large number of data points across the
chromatographic elution of each peptide. The pooled sample was
injected a further two times using a duty cycle intended to maximize
the number of peptide MS/MS spectra acquired, and hence the
number of peptide/protein identifications. This standard “shotgun”
duty cycle included 1 MS scan for 333 milliseconds, and 8 MS/MS
scans for 333 milliseconds each. All spectra were collected in profile
mode. After the initial round of data analysis, the pooled sample was
injected a further 3 times using targeted inclusion lists in an attempt
to identify the most statistically discriminating peptides that were not
identified in the initial injections (32).

Analysis of Label-Free LC-MS Data Set—Data files from the label-
free LC-MS analysis were converted from the Agilent proprietary .d
format to .mzXML using the Trapper converter distributed as part of
the Trans Proteomic Pipeline (40). The mzXML files were imported
into Progenesis LC-MS (v2.6 - Nonlinear Dynamics, UK) at which
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point features were automatically detected. A representative refer-
ence run was selected from the pooled sample injections and all other
runs were aligned to the reference run in a pair wise fashion. Align-
ment was achieved by the manual placement of 15–30 alignment
vectors followed by use of the automated alignment algorithm within
Progenesis LC-MS. The alignment was inspected for accuracy and
additional manual vectors were added if required. Features were
filtered for charge state (charge state 2–7 accepted), and retention
time in the peptide elution part of the gradient (mobile phase com-
position �8–35% acetonitrile). Univariate (ANOVA) and multivariate
(principal components analysis) statistical analyses were performed
using Progenesis LC-MS. To integrate MS features with protein iden-
tities, MS/MS spectra from all runs in the analysis were centroided
and exported as a single .mgf file and searched against the Interna-
tional Protein Index (IPI) Rat database (version 3.53 concatenated
with common laboratory contaminant proteins and reverse entries for
false identification rate estimation) using Mascot (v2.2 - Matrix Sci-
ences) (33). The results in Mascot .xml format were imported back
into Progenesis LC-MS where the peptide identifications were
mapped back onto the quantitative peptide data. Peptide level data
were rolled up to protein level using the Protein View in Progenesis
LC-MS and summary statistics (fold change, ANOVA p value, q-value,
and power) were calculated. Proteins with a fold change �1.5 and
ANOVA p value � 0.05 were considered significant. False identifica-
tion rates at the peptide and protein levels were calculated with
respect to decoy database hits (58). Pathway analyses for label-free
LC-MS as well as the previously acquired gene expression microarray
data (9) were performed using Ingenuity Pathway Analysis (Ingenuity
Systems, Redwood City, CA).

Acquisition and Construction of MS/MS Spectral Libraries to Aid
SRM Development—Multidimensional separations in the form of
OFFGEL electrophoresis or strong cation exchange chromatography
prior to reversed phase LC-MS/MS analysis were performed using a
pooled rat liver lysate sample for the purpose of constructing an
MS/MS spectral library to aid SRM development. For OFFGEL elec-
trophoresis rat liver extract was trypsin-digested and peptides (from
200 �g protein digest) were resuspended in 3.6 ml of 2% (v/v) carrier
ampholytes, pH 3–10 (GE HealthCare) and loaded onto a prehydrated
immobilized pH gradient (IPG) gel strip using a 24-well partition frame
on an Agilent 3100 OFFGEL fractionator. The peptide sample was
electrophoresed according to manufacturer’s instructions for 50 kVh
at a maximum of 50 �A or 4500 V. For strong cation exchange
chromatography a Pepsil strong cation exchange (SCX) column (Col-
umn Technology Inc., CA), 0.32 mm � 10 cm, 5 �m particle size, 300
Å pore size, was fitted between the autosampler and the injection
valve of a 1200 Series nanoflow HPLC allowing the SCX column to be
in line for peptide loading and elution steps, and out of line for the
reversed phase gradient. Peptide fractions were eluted from the SCX
column with increasing steps of sodium acetate in 0.1% (v/v) formic
acid, 3% (v/v) ACN (10 steps of sodium acetate at the following
concentrations: 0, 12.5, 25, 37.5, 50, 75, 100, 150, 250, and 500 mM).
Each OFFGEL fraction (analyzed offline) or SCX fraction (analyzed
online) was loaded on the reversed phase enrichment column and
subjected to reversed phase LC-MS/MS essentially as described
above using the shotgun duty cycle.

The data files from the LC-MS/MS analysis of rat liver extract SCX
and OFFGEL fractions were converted from the Agilent proprietary .d
format to .mzXML using Trapper (v4.3.1), and peak lists in the .mgf
format were extracted using mzXML2Search (v4.3.1). The peak lists
were searched against the IPI Rat database (version 3.53 concate-
nated with common laboratory contaminant proteins and reverse
entries for false identification rate estimation —80,062 entries includ-
ing decoys) using Mascot v2.1 (33) and X!Tandem (k-score) v2 (34, 35)
with the following parameters: semitryptic cleavage allowed, two

missed cleavages permitted, methionine oxidation variable modifica-
tion, carbamidomethylated cysteine fixed modification, precursor
mass tolerance 20 ppm, fragment mass tolerance 50 ppm. These
search engines have previously been shown to provide complimen-
tary results (36). Results files from the search engines were converted
to the .pepXML format and analyzed using PeptideProphet (37) to
estimate the false discovery rate using the decoy hits to establish the
negative distribution in the model (38). InterProphet was then used to
combine the results from the two search engine used, and rollup to a
minimal protein list was achieved with ProteinProphet (39). Trapper,
mzXML2Search, PeptideProphet, InterProphet, and ProteinProphet
are all components of the Trans Proteomic Pipeline (40, 41). A spec-
tral library was constructed from the InterProphet pepXML results
files and centroided peak list mzXML files via Skyline v0.6 (25), which
utilizes Bibliospec (42) for spectral library construction.

Target Selection, Design, and Performance of SRM Assays—The
selection of proteins to include in SRM assay development was based
on (1) differential regulation in the label-free LC-MS study, (2) differ-
ential regulation in the gene expression microarray study previously
conducted (9), (3) literature sources including a recent literature re-
view of hepatotoxicity biomarker candidates (11) in addition to previ-
ously published results from the InnoMed PredTox Consortium (7,
30), and, (4) a selection of housekeeping genes/proteins that were not
differentially regulated in the label-free LC-MS or gene expression
microarray studies. A complete list of the genes/proteins selected for
the panel is given in Table I. Mapping to UniProt accessions, where
required (e.g. from Affymetrix accessions), was performed with
BioMart v0.7 (43). UniProt accessions were imported into a Skyline
document (25) and only proteins for which at least one high quality
library peptide MS/MS spectrum was available were retained. Pep-
tides were filtered based on a unique mapping to the protein of
interest (“proteotypic”) against the UniProt Complete Proteome for
Rattus novegicus (release 2010_07) using the Skyline Unique Pep-
tides tool. As the UniProt Complete Proteome database for Rattus
norvegicus is currently only partially curated (�7500 SwissProt en-
tries and 23,500 TrEmbl entries), proteins for which SwissProt and
TrEmbl entries were present that had greater than 90% identity as
determined by BLAST (44) were considered redundant for the pur-
pose of choosing proteotypic peptides. The remaining peptides were
additionally filtered according to the following criteria: length between
7 and 25 amino acid residues; methionine containing peptides ex-
cluded; ragged ends excluded (i.e. adjacent cleavage sites such as
KK, KR, RK, or RR). Carbamidomethylation was set as a fixed mod-
ification on cysteine residues. The 10 most abundant singly or doubly
charged b or y product ions excluding b1-b3 and y1-y3 per peptide
were automatically selected for the transition list which was then
manually inspected and edited with reference to the library MS/MS
spectra. The transition list was split into methods containing no more
than 130 transitions with the following parameters: dwell time set to
20 ms; collision energy calculated based on the equation ((m/z �
0.32) – 4.8) V; MS1 resolution set to “wide” and MS2 resolution set to
“unit”; fragmentor voltage set to 130 V. A representative sample
consisting of a pool of 30 rat liver digests, including drug treated and
vehicle controls, was introduced into a 6460 triple quadrupole (QqQ)
mass spectrometer connected online to a 1200 Series nanoflow
HPLC via an orthogonal spray HPLC-Chip/MS interface (Agilent
Technologies). Trypsin-digested protein (4 �g) was chromatographed
with a 25 min peptide elution gradient from 3% (v/v) acetonitrile, 0.1%
(v/v) formic acid to 40% (v/v) acetonitrile, 0.1% formic acid using a
HPLC-Chip equipped with a 75 �m � 150 mm, 5 �m C-18 300SB-
Zorbax analytical column and a 160 nl Zorbax 300SB-C18 5 �m
enrichment column. The resulting data files were imported into Sky-
line and manually inspected for quality, and agreement between the
relative intensity of product ions from the QqQ SRM data and the
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QqTOF MS/MS library data was assessed using the Skyline dot
product calculation (45). Peptides with high quality measureable sig-
nals were retained and a single dynamic SRM instrument method (or
scheduled method) was constructed. The collision energy for each
transition was optimized by testing five steps of 3 V either side of the
estimated collision energy voltage and the collision energy with
the highest response that was automatically selected by Skyline. The
analytical reproducibility of the optimized SRM assay was determined
by 10 serial injections of the pooled liver digest with alternating blank
injections. Subsequently, each of the 30 digested liver protein ex-
tracts from drug treated or control animals was analyzed using the
optimized SRM method in randomized order with alternating blank
injections. Raw data files were imported into Skyline and the SRM
chromatography was manually inspected for co-elution of transitions
for the same peptide and appropriate peak integration. Peak area
values were exported and summary statistics were calculated. Pro-
tein level statistics across drug treatment groups (fold change and t
test p value) were calculated by summing peptide abundances where
multiple peptides per protein were measured. In a secondary step, in
order to determine concordance between quantitative values for mul-
tiple peptides mapping to a protein, protein level statistics were also
considered by calculating the median and standard deviation of pep-
tide level fold change ratios (included in supplemental material).

RESULTS

Classical Toxicology Evaluation—No toxicological findings
were apparent in animals receiving the vehicle (0 mg/kg/day)
or low (15 mg/kg/day) doses at either time point. Minimal
hypertrophy of the hepatocytes was recorded in most animals
receiving the high dose (350 mg/kg/day) at day 3. Hypertro-
phy is generally not considered as a toxic effect but rather as
an adaptive response to the xenobiotic insult, which can be
because of (1) an increase in smooth endoplasmic reticulum
(mainly related to the increased production of drug metabo-
lizing enzymes), (2) peroxisomal proliferation, or, (3) mitochon-
drial swelling (46). Clear drug-induced histopathological find-
ings, in addition to hypertrophy of hepatocytes, were
observed in animals receiving the high dose at day 14. The
five animals of this group were affected to a somewhat vary-
ing degree with lesions including marked bile duct inflamma-

tion or hyperplasia and bile duct and liver cell necrosis. Fur-
ther details of the classical toxicology findings and evaluation
methods are given in supplemental Table S1, as well as
additional publications from the InnoMed PredTox Consor-
tium (7, 29, 30).

Label-Free LC-MS Analysis—To determine the differential
modulation of liver proteins in hepatotoxicant EMD 335823
treated rats a label-free LC-MS study was undertaken using
nLC-MS/MS analysis. The MS data set, consisting of 23
LC-MS runs, was imported into Progenesis LC-MS v2.6 and
subjected to alignment with additional user inspection and
manual placement of additional alignment vectors until a vi-
sually adequate alignment was obtained (for an example of
alignment see supplemental Fig. S2). The initial round of MS
feature detection returned 144,415 features and this was then
filtered by (1) retention time in the peptide elution portion of
the gradient, (2) 2 � charge state � 7, and (3) number of
isotopologs in the peptide isotopic envelope � 3 (see supple-
mental Figs. S3 and S4 for details of feature detection and
filtering). This resulted in a feature set containing 40,444 fea-
tures which was assumed to consist predominantly of pep-
tides (note: this feature set is not deconvoluted at the level of
charge state or PTMs and so does not necessarily contain
40,444 unique peptide features by sequence).

In order to determine the technical variance of the label-free
method six consecutive injections of the same sample (a
sample pool consisting of all five vehicle and five drug treated
liver samples) were undertaken and the data analyzed as
detailed in the Experimental Procedures. Fig. 1 shows a plot
of the % coefficient of variation (% CV) versus peptide feature
abundance for the six measured technical replicates. The plot
shows a clear trend whereby, as may be expected, peptide
features with higher abundance show greater reproducibility
compared with features at the lower end of the abundance.
The mean % CV for the 40,444 features detected was 19.5%.
Although quantitative information for all detected peptide fea-

FIG. 1. Technical variance of peptide
feature abundance by label-free LC-
MS. The technical variance, as meas-
ured by % CV � standard deviation
across six technical replicates of a rep-
resentative sample, is plotted against
their average abundance on the log 10
scale for all 40,444 detected features.
The peptide threshold indicates the low-
est abundance at which a peptide iden-
tity was confidently assigned to an as-
sociated MS/MS spectrum.
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tures can be obtained from the MS1 level mass spectra, only
a small subset of these features have associated informative
MS2 spectra from which peptide/protein identifications can
be assigned. The set of peptide features that can be assigned
identifications is also strongly biased toward higher abun-
dance. In Fig. 1 the lowest abundance at which a peptide
identification was confidently assigned is indicated by a line
designated “Peptide ID threshold.” The set above this thresh-
old consists of 22,186 features for which the mean % CV is
13.6%. It is worth noting, however, that even above this
threshold the fraction of peptide features confidently identi-
fied remains small at �20%, with a strong bias toward iden-
tification of higher abundance features within this subset.

The 96,193 MS/MS spectra acquired from all of the sam-
ples were exported from Progenesis LC-MS as a single .mgf
file and searched using Mascot. A total of 2,797 peptides
(FDR � 2.5%) mapping to 809 proteins (FDR � 3.1%) were
identified, with 717 of these proteins being identified by
more than one peptide. Each protein was identified by an
average of 4.7 peptides. The peptide/protein identifications
were mapped back onto the peptide quantification data and
rolled up to the protein level using the Progenesis LC-MS
protein view. Fig. 2 shows a volcano plot relating the fold
change and ANOVA p value calculated for each identified
protein. One hundred twenty-two proteins were determined to
be modulated more than 1.5-fold with ANOVA p value less
than 0.05 (corresponding M/A plots are shown in supplemen-
tal Fig. S5). The identities and summary statistics for all of the
proteins quantified and identified in this label-free LC-MS
study are shown in supplemental Table S2. In general terms,
a permissive approach was adopted for the statistical cutoff’s
as the purpose of the label-free LC-MS study was as a dis-
covery screen to identify candidates for the targeted SRM
study and, as such, it was deemed that some false positives

could be tolerated for subsequent potential exclusion by tar-
geted protein verification.

Comparison of Discovery Proteomics Data With Gene Ex-
pression Data—The list of differentially modulated proteins
determined by the label-free LC-MS analysis was compared
with the results of a previously acquired gene expression data
set (using the Affymetrix Whole Genome Array platform) aris-
ing from separate liver sections from the same drug treated
animals analyzed in this study (9). Fig. 3 shows the correlation
between corresponding protein and transcript changes for
which accessions could be unambiguously mapped (530 pro-
tein to transcript accession mappings). There was only a very
modest correlation between protein and transcript modulation
(R2 � 0.265). Significantly, there were a substantial number of
proteins determined to be differentially modulated (0.67 �

fold change ratio � 1.5) that did not show a change in abun-
dance at the transcript level (0.9 � fold change ratio � 1.1)
(see supplemental Table S3). Proteins in this category include
multiple toxicologically relevant phase I and phase II drug
metabolising enzymes (i.e. cytochrome P450s, UDP glycosyl-
transferases, glutathione S-transferases).

A pathway over-representation analysis demonstrated that
despite the modest correlation in expression changes at the
individual protein/transcript level, there was a higher degree
of agreement between protein and transcript changes at the
pathway level with an overlap of 12 pathways between the top
20 over-represented pathways determined from the proteo-
mics analysis with the top 20 from the transcriptomics anal-
ysis (see supplemental Fig. S6). The overlapping pathways
include xenobiotic metabolism, fatty acid metabolism, LPS/
IL-1 mediated inhibition of RXR function, CAR/RXR function,
PXR/RXR function, aryl hydrocarbon receptor signaling, cyto-
chrome P450 panel - substrate is a fatty acid (rat), cy-
tochrome P450 panel - substrate is a xenobiotic (human),

FIG. 2. Protein modulation in liver on
hepatotoxicant treatment as deter-
mined by label-free LC-MS. The vol-
cano plot summarizes the protein mod-
ulation on drug treatment showing the t
test p value plotted against protein fold
change. Data points in lower center area
of the plot have a fold change close to 1
and a p value approaching 1 and indi-
cate no significant change, whereas
points in the upper left and upper right
quadrants indicate significant negative
and positive changes in protein abun-
dance respectively. Corresponding M/A
plots are given in supplemental Fig. S5.
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cytochrome P450 panel - substrate is a fatty acid (mouse),
cytochrome P450 panel - substrate is a fatty acid (human),
FXR/RXR activation, and cholesterol biosynthesis. A de-
tailed discussion of the pathway analysis with respect to
possible toxicological mechanisms is included in a publica-
tion summarizing studies on EMD 335823 in the context of
the InnoMed PredTox Consortium (9). As the pathway anal-
ysis from the previous transcriptomics studies and the pro-
teomics data described in this article have very similar
regulations, we refer the reader to the discussion of toxico-
logical mechanisms therein.

Construction of a Rat Liver MS/MS Spectral Library to Aid
SRM Development—One of the most substantial benefits of
the SRM approach over other targeted protein measurement
strategies (such as Western blot or ELISA) is the ability to
multiplex the assay to include potentially tens to hundreds of
proteins in a single analytical assay. The development of
robust and reliable SRM assays is greatly facilitated by the
availability of appropriate MS/MS data for the peptides for
which SRM measurements are being developed. Although
comprehensive peptide MS/MS data sets exist for proteins of
a number of organisms we quickly realized that a similar
resource for rat peptides was not readily (publicly) available. In
order to facilitate the rapid development of SRM assays of rat
for use in, for example, future preclinical toxicology studies,
we reasoned that a reasonably comprehensive tandem MS
database for the peptides/proteins of interest was required
(12, 27, 47). To this end, a tandem MS data set was obtained
from peptides resulting from the tryptic digestion of a sample
pool of all drug treated and vehicle control rats from which
liver protein extracts were prepared. The complex whole ly-
sate peptide sample was fractionated by OFFGEL electropho-
resis or strong cation exchange chromatography before re-
versed phase separation and analysis by QqTOF tandem MS.

The processing and database searching of the 53 LC-MS/MS
raw data files containing 652,868 MS/MS spectra resulted in
the assignment of 43,150 MS/MS spectra to 7515 unique
peptide sequences (0.7% FDR estimated by PeptideProphet).
The identified peptide sequences mapped to 1687 unique
proteins in the IPI Rat database (v3.53) (1.4% FDR estimated
by ProteinProphet). There was a significant increase in pep-
tide identifications (25–37%) because of the combination of
results via InterProphet from two search engines, namely
Mascot (33) and X!Tandem (k-score) (34, 35), over either
search engine alone (see supplemental Fig. S7). The raw data
files associated with this spectral library have been deposited
at the PeptideAtlas repository (28) and are available for down-
load under the sample accession “PAe001466”. Additionally,
this spectral library is provided in the form of a Bibliospec
library (42) with the Skyline share archive file in the supple-
mental Material such that the entire spectral library can be
manually inspected using the spectral library viewer in the
open source and freely available software Skyline (25).

In order to provide further confidence in this data set the
tissue expression of the identified proteins as determined by
previous knowledge from the UniGene EST database (48) was
examined. This analysis shows a corresponding annotation
for liver expression in 496 of the proteins identified which is
substantially more than matching to any other tissue (see
supplemental Fig. S8). In addition, an analysis of the overrep-
resented pathways as determined from the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database (49) are con-
sistent with known liver function (see supplemental Fig. S9).

Development and Optimization of a Hepatotoxicity SRM
Assay Panel From Multiple Disparate Discovery Sources—We
sought to combine the proteins shown to change in liver in
response to the hepatotoxicant EMD 335823 with other po-
tential markers of hepatoxicity to generate a panel of proteins

FIG. 3. Correlation between hepato-
toxicant induced changes in protein
and corresponding transcript levels.
Transcript fold change (log 2) as deter-
mined by microarray analysis is shown
plotted against the protein fold change
(log 2) as determined by label-free
LC-MS where accessions could be un-
ambiguously mapped (530 proteins).
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for measurement by SRM with a view to generating a “hepa-
totoxicity marker protein panel.” The development of the SRM
assay panel consisted of, (1) assembly a list of putative bio-
marker protein candidates from multiple sources, (2) con-
struction of SRM transition lists for proteotypic peptides de-
termined with respect to the rat liver MS/MS library, (3)
establishing peptide suitabililty and detectability with SRM via
multiple unscheduled injections of a representative (pooled)
sample, (4) quality control of peptide SRM signals with refer-
ence to the rat liver library MS/MS spectra, and (5) optimiza-
tion of the SRM assay panel including choice of transitions,
retention time scheduling and collision energy optimization.
supplemental Fig. S10 outlines in detail the steps taken to
assemble the initial biomarker candidate list. Briefly, the list of
putative biomarker candidates was drawn from significantly
modulated proteins in the label-free LC-MS dataset (53 pro-
teins with 0.5 � fold change � 2.0 and ANOVA p value �

0.01), significantly modulated transcripts from the gene ex-
pression data set (200 transcripts with 0.55 � fold change �

1.9 and ANOVA p value � 0.01), and a recent literature review
of potential hepatotoxicity biomarkers both in liver tissue and
plasma (27 proteins). In addition to the putative hepatotoxicity
biomarkers, a selection of housekeeping proteins, shown to
be invariant on drug treatment in both the label-free LC-MS
and transcriptomics studies, were chosen to act as controls.
After mapping to Uniprot accessions, the list was reduced to
245 proteins, which were then cross-referenced with the set
of proteins that had been confidently identified in the rat liver
MS/MS data set. This reduced the list to 108 biomarker can-
didates, which had been previously detected by QqTOF MS.
The bulk of this reduction is accounted for by candidates
arising from the transcriptomics study, with only 51 of the 168
candidate proteins having been previously detected by MS,
which is in contrast to the proteins arising from the label-free
LC-MS study for which, by definition, all proteins had avail-
able MS/MS spectra (see supplemental Fig. S10). This list of
108 proteins was further filtered to 57 proteins because of the
availability of suitable tryptic peptides on which to base the
SRM assay (i.e. unique peptide to protein mapping, no
methionine, peptide size 7–25 amino acid residues, no directly
adjacent tryptic cleavage sites, manual quality inspection of
the library MS/MS spectrum). The detectability, or not, of
peptides mapping to this set of proteins in a representative
sample derived from a pool of all samples by SRM was then
established (see supplemental Fig. S11 for details). A list of
transitions consisting of 1681 entries derived from 8to 10
SRM transitions for each of the 174 peptides (1–5 peptides
per protein) for all 57 proteins was assembled. This transition
list was subdivided across 15 instrument methods each with
not more than 130 SRM transitions per sample run. The
instrument was set with a dwell time of 20 milliseconds facil-
itating a duty cycle of �2.5–3.0 s which resulted in the acqui-
sition of at least 8 to 10 measured data points across the
chromatographic peptide elution. The SRM signals for each of

the peptides were evaluated manually for quality including
signal to noise ratio, co-elution of the SRM chromatograms
the Skyline dot product (which measures the correlation be-
tween SRM transition peak areas and ion intensity in the
corresponding library MS/MS spectrum) (45), and the pre-
dicted retention time. Retention times were calibrated using
peptides derived from a set of six standard proteins chro-
matographed with the same solvent gradient. After manual
quality evaluation the SRM method for each peptide was
reduced to the five most intense transitions without interfer-
ence and a single method using retention time scheduling and
hence combining all peptide transitions was developed. Sup-
plemental Fig. S12 shows a histogram of the dot product
calculation for the measurement of 109 peptides (from 48
proteins) with the majority of peptides demonstrating a dot
product � 0.975 and all peptides � 0.925. This data provides
a very high level of confidence that the SRM assays are
indeed measuring the peptides of interest and not interfering
peptide or other analytes. Finally, each of the 545 transitions
(five per peptide) in the refined and time-scheduled method
were optimized for collision energy using five steps of 3 V
either side of the formula predicted optimization energy with
the optimal collision energy value was being automatically
selected by Skyline and incorporated into the finalized SRM
method. Overlaid representative SRM chromatography for the
optimized SRM assay containing all 545 transitions is shown
in supplemental Fig. S13. Finally, the technical reproducibility
of the optimized method was determined by 10 serial injec-
tions of a representative sample which resulted in a mean CV
of 5.7% (see Fig. 4). Furthermore, the data revealed that
peptides were quantified across more than three orders of
SRM signal abundance and, in general, although the repro-
ducibility decreased marginally with decreasing SRM signal
intensity but no individual peptides displayed a CV of greater
than 20%.

Targeted Measurement of a Putative Hepatotoxicity Bio-
marker Panel in Drug Treated Rat Liver—The optimized SRM
method to simultaneously measure 48 proteins using 109
proteotypic peptides, and 545 transitions that constitutes a
putative hepatotoxicity biomarker panel was applied to 30
individual liver samples from rats treated daily with EMD
335823 at vehicle, low, or high dose for 3 or 14 days (5 rats
per treatment group). Table I shows the proteins targeted in
the SRM assay and the associated fold change ratios versus
time matched vehicle control, calculated by summing the
peptide abundances for a given protein, taking the median
value across the five animals in the treatment group, and
ratioing the values between treatment groups. supplemental
Table S4 is analogous to Table I except the protein fold
change ratio is given as the median of the peptide fold change
ratios � standard deviation and is intended to provide a
measure of the concordance of multiple peptides mapping to
the same protein, which is in general high for this dataset. A
representative example of peptide to protein concordance is
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given in supplemental Figs. S14 and S15, which show the
SRM peptide abundances for all 30 animals plotted for the
three measured peptides mapping to Cytochrome P450 2C6
and representative chromatography for the same three pep-
tides from three animals respectively. The bulk of significantly
regulated proteins in the SRM analysis originate from the
label-free LC-MS proteomics and transcriptomics data sets,
and appear in the high dose groups (day 4 and day 15). The
fold change ratio between the vehicle treatment groups at day
4 and day 15 are also shown as a control and, in general,
these ratios are close to 1. Fig. 5 shows the fold change ratio
versus time matched vehicle control for each treatment group,
separated by the source of the putative biomarker (house-
keeping, proteomics - label-free MS, literature, or transcrip-
tomics). This plot emphasizes the enrichment of differentially
modulated proteins in high dose treatment rats for proteins in
the proteomics and transcriptomics groups (Figs. 5B and 5D),
while also highlighting essentially no change in the proteins
selected as housekeeping controls (Fig. 5A; see also supple-
mental Table S7 for raw peak areas of housekeeping con-
trols). Interestingly, only a few proteins in the “literature”
group (Fig. 5C) which were selected largely from putative
biomarkers in a recent review (albeit with some suggested as
plasma, and not tissue biomarkers) (11), displayed differential
modulation, however, fold changes in this case were in the
range 1.5–2.0 and, as such, relatively modest.

To determine the agreement on drug treatment in changes
at the individual protein/transcript level, the results from the
SRM-based protein measurements and microarray-based
mRNA measurements, and the SRM-based protein measure-
ments and the label-free LC-MS-based protein measure-
ments were directly compared. Fig. 6 shows a comparison of
the median log2 fold change ratios from the SRM data plotted
against the median log2 fold changes ratios determined in

either the transcriptomics (Figs. 6A–6D), or label-free LC-MS
proteomics (Fig. 6E) from which the putative biomarker pro-
teins were selected. In the low dose groups (Figs. 6A and 6B),
where there are essentially no significant changes and no
correlation is observed. This in contrast to the high dose
groups at days 4 and 15 (Figs. 6C and 6D) where there are a
large number of differentially modulated transcripts and these
show a substantial correlation with the corresponding SRM-
based protein measurements (R2 � 0.65 for high dose, day 4
and R2 � 0.65 for high dose, day 15). Similarly, the label-free
LC-MS based protein measurements (panel e), which were
only carried out for the high dose, day 15 treatment group, are
well correlated with the SRM-based protein measurements
(R2 � 0.62). Interestingly, the correlation between the label-
free LC-MS and SRM measurements are skewed by a single
data point which displays a very high fold change in the SRM
measurement. The inflated fold change ratio for this protein is
due to the absence of signal in the corresponding SRM meas-
urement for the vehicle control group (i.e. the value for the
high dose treatment group is ratioed to a baseline value from
the vehicle control creating an artificially high fold change
ratio). If this single data point is removed from the plot, the R2

value increases to 0.78 indicating a high level of correlation.
There was variation in the toxicological phenotype of indi-

vidual animals in response to EMD 335823 as determined by
classical toxicological evaluation (see supplemental Table
S1). It was of interest therefore to interpret changes in the
abundance of putative biomarker proteins at the level of the
individual animal, as opposed to drug treatment groups.
When this analysis was undertaken some interesting correla-
tions between protein biomarkers and toxicological pheno-
type emerged. For example, supplemental Figs. S16–S19
show the SRM abundance and representative SRM chroma-
tography for each animal for peptides mapping to T-Kinino-

FIG. 4. Technical reproducibility for
peptide measurement by SRM. The
technical variance, as measured by %
CV � standard deviation across 10 tech-
nical replicate injections of a represent-
ative sample, is plotted against mean
peak area on the log 10 scale for all 109
peptides monitored by SRM.
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gen and Fibrinogen beta chain. These proteins show substan-
tial elevation in animals 42 and 45 following high dose after 15
days of treatment. These were the same two animals that
showed the severest lesions in the histopathology evaluation,

including marked bile duct inflammation with bile duct and
liver cell necrosis and were determined to be outliers from
their treatment group in the original transcriptomics data
set (9).

TABLE I
SRM determined protein fold change versus time matched vehicle control after drug treatment. Protein fold change is reported as the ratio
among drug treatment groups of median summed peptide abundances; HK, housekeeping protein (control); PX, proteomics label-free LC-MS;
GX, gene expression (transcriptomics); LIT, literature source; Veh/Veh indicates the fold change of the day 15 vehicle over the day 4 vehicle
animals where no (drug induced) effect is expected; bold font indicates 0.5 � fold change � 2.0; T-test p values are indicated by *�0.05,

**�0.01, ***�0.001

Uniprot
acc. Protein Source Peptides

Low
dose

High
dose Veh/Veh

Day 4 Day 15 Day 4 Day 15

O35077 Glycerol-3-phosphate dehydrogenase
�NAD	
, cytoplasmic

HK 1 1.15 1.05 1.17 1.26 0.98

P04642 L-lactate dehydrogenase A chain HK 3 0.92 0.9 1.18 1.01 0.92
P10719 ATP synthase subunit beta, mitochondrial HK 5 1.02 1.08 1.01 1.02 0.89
P15999 ATP synthase subunit alpha, mitochondrial HK 5 1.08 1.08 1 0.82 0.76
P85108 Tubulin beta-2A chain HK 1 1.15 0.97 0.88 0.9 0.86
P05178 Cytochrome P450 2C6 PX 3 1.06 1.59** 3.43*** 6.28*** 0.65*
P23965 3,2-trans-enoyl-CoA isomerase, mitochondrial PX 1 1.18 1.45 6.37*** 10.46*** 1
Q4V8F9 Hydroxysteroid dehydrogenase-like protein 2 PX 1 0.85 1.02 4.11*** 2.93*** 1.44
Q64591 2,4-dienoyl-CoA reductase, mitochondrial PX 2 1.07 1.33* 2.95*** 6.21** 1.01
O88267 Acyl-coenzyme A thioesterase 1 PX 	 GX 1 0.71 0.31 1188.27*** 690.64** 1.18
P04903 Glutathione S-transferase alpha-2 PX 	 GX 1 0.99 1.18 2.81*** 5.96*** 0.89
P07687 Epoxide hydrolase 1 PX 	 GX 3 0.98 1.16 2.86*** 6.07*** 0.72
P07896 Peroxisomal bifunctional enzyme PX 	 GX 4 1.19 1.36 17.23*** 10.13*** 0.72
P08516 Cytochrome P450 4A10 PX 	 GX 2 1.01 1.3 19.49*** 13.89*** 0.85
P09875 UDP-glucuronyltransferase 2B1 PX 	 GX 1 1.08 0.82 1.23* 1.64** 1.19
P14141 Carbonic anhydrase 3 PX 	 GX 5 1.01 1.09 0.66* 0.5*** 0.73
P21775 3-ketoacyl-CoA thiolase A, peroxisomal PX 	 GX 4 1.03 1.07 7.88*** 7.22*** 0.85
P38918 Aflatoxin B1 aldehyde reductase member 3 PX 	 GX 1 1.24 0.86 3.64*** 6.77** 0.79
P51647 Retinal dehydrogenase 1 PX 	 GX 2 1.66 2.06 13.19*** 34.41*** 0.7
Q6I7R1 Dehydrogenase/reductase (SDR family)

member 7
PX 	 GX 2 1.08 0.82 0.81 0.36** 0.98

O55171 Acyl-coenzyme A thioesterase 2, mitochondrial GX 1 1.1 1.02 4.87*** 4.91** 0.94
P00176 Cytochrome P450 2B1 GX 1 1.35 1.22* 54.5*** 26.37** 0.95
P04182 Ornithine aminotransferase, mitochondrial GX 2 0.91 1.29 0.21*** 0.42** 0.87
P04906 Glutathione S-transferase P GX 1 1.01 1.11 0.93 1.81 0.98
P05369 Farnesyl pyrophphate synthase GX 1 0.84 1.18 0.63 1.97* 0.93
P06757 Alcohol dehydrogenase 1 GX 3 1.21 1.21 1.21 1.94** 0.71
P13697 NADP-dependent malic enzyme GX 2 1.38 0.88 1.92** 6.62** 1.15
P36365 Dimethylaniline monooxygenase

�N-oxide-forming
 1
GX 1 0.96 0.94 0.63 0.47 0.53

Q5XI60 Receptor expression-enhancing protein 6 GX 1 0.87 0.9 1.72*** 2.7*** 0.86
Q64654 Lanterol 14-alpha demethylase GX 1 0.87 0.94 0.84 1.53* 0.78
Q6TEK3 Vitamin K epoxide reductase complex subunit

1-like protein 1
GX 1 1.06 1.14 1.28 1.43* 0.93

Q9EQ76 Dimethylaniline monooxygenase
�N-oxide-forming
 3

GX 5 1.06 1.12 0.81 0.39*** 1.15

B4F7D0 Prodh protein (Fragment) GX 1 0.75 1.13 0.59 0.76 0.89
Q5XFW5 FK506 binding protein 11 GX 1 0.99 0.97 1.29* 1.93* 0.8*
P01048 T-kininogen 1 LIT �30
 1 1.14 0.93 1.33 1.21 1.08
P55159 Serum paraoxonase/arylesterase 1 LIT �30
 2 1.13 1.11 1.55** 1.38 1.09
O89049 Thioredoxin reductase 1, cytoplasmic LIT �11
 2 1.02 1.04 1.61** 1.96*** 0.94
P04041 Glutathione peroxidase 1 LIT �11
 4 1.2 0.94 1.14 0.66* 1.02
P04762 Catalase LIT �11
 5 1.08 1.17 1.12 1.25 0.81*
P04785 Protein disulfide-isomerase LIT �11
 3 0.98 1.01 0.92 1.42** 0.89
P06761 78 kDa glucose-regulated protein LIT �11
 3 0.98 0.93* 1.08 1.54*** 0.85
P07632 Superoxide dismutase �Cu-Zn
 LIT �11
 3 0.98 1.01 0.96 1.03 0.88
P07895 Superoxide dismutase �Mn
, mitochondrial LIT �11
 2 0.97 1 0.9 1.12 0.97
P14480 Fibrinogen beta chain LIT �11
 3 1.03 0.78 0.89 1.19 1.16
P18418 Calreticulin LIT �11
 1 1.01 0.99 0.99 1.36** 0.88
P35565 Calnexin LIT �11
 2 0.99 1.04 0.98 1.13 0.94*
P48199 C-reactive protein LIT �11
 2 0.81 0.68 1.21 1.03 1.05
P31044 Phphatidylethanolamine-binding protein 1 LIT �7
 2 1.05 0.96 0.9* 0.89 0.87*
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DISCUSSION

There is a clear and pressing need for better tools to predict
the potential for toxicity of new drugs—specifically with higher
accuracy and at an earlier stage of drug development (1).
Furthermore, there remains substantial interest in pursuing
the use of omics technologies as a route to more sensitive
preclinical toxicology evaluation (2), and this is evidenced by
the large number of consortia focused on this topic (5). The
InnoMed PredTox consortium represented one such effort
comprising pharmaceutical companies, academic groups,
and technology providers in Europe (6). In addition to the
desire for more effective early toxicology evaluation, the field

of pharmaceutical toxicology also represents a very useful
test case scenario for the development of biomarkers in gen-
eral. The reason for this is that toxicology evaluation could
make use of both tissue-based, and peripheral fluid-based
biomarkers. Notably, in current preclinical toxicology evalua-
tion the tissues of drug treated animals are routinely analyzed
by histopathology, which means de facto that tissue samples
are available for omics analysis at the level of DNA, RNA,
protein, or metabolites. The likelihood of discovering bio-
marker sets with predictive value from the tissue in which the
toxicological phenotype is observed seems initially more
probable than approaches which focus solely on blood

FIG. 5. Protein fold change ratio versus time matched vehicle control as measured by SRM. The mean protein fold change ratio versus
the time matched vehicle control as determined SRM measurement is plotted with respect to the drug treatment group (dose and time point).
The plots are separated by the source of the measured protein. (A) Housekeeping control protein profiles, (B) profiles for protein selected from
label-free LC-MS studies, (C) profiles for proteins selected as literature biomarker candidates, (D) profiles for proteins selected based on
transcriptomics data.
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FIG. 6. Correlation of SRM-based protein fold change with the corresponding transcript or label-free LC-MS-based protein fold
change. The protein modulation (given as log twofold change versus time-matched vehicle control) as measured by SRM is compared with
the transcript or protein fold change as measured by microarray analysis (panels A–D) or by label-free LC-MS (panel E). The comparison of SRM
to transcriptomics data is given for 4 treatment groups (panel A, low dose treatment, day 4; panel B, low dose treatment day 15; panel C, high
dose treatment, day 15; panel D, high dose treatment, day 15), whereas the comparison of SRM to label-free LC-MS is only given for a single
treatment group (panel E, high dose treatment, day 15) as this was the only treatment group analyzed by label-free LC-MS (in addition to the
time-matched vehicle control).
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plasma or urine. With this said, there is also substantial inter-
est in deriving toxicity biomarkers measurable in peripheral
fluids for the purpose of more routine monitoring in animal
toxicology studies and or for translation into humans as drug
safety biomarkers. This “stepping-stone” approach of first
establishing biomarker sets in the tissue of interest, and later
attempting translation into peripheral fluid measurements rep-
resents an attractive strategy but one in which there is likely to
be “attrition” of many candidates. The opportunity to measure
in a targeted and multianalyte approach (i.e. via SRM) candi-
date protein biomarkers represents a significant advantage to
support this “stepping-stone” approach.

In this study we provide a roadmap for biomarker discovery
and verification in preclinical toxicology evaluation by dem-
onstrating the integration of data reporting potential bio-
marker candidates from multiple disparate sources into a
targeted MS-based assay utilizing selected reaction monitor-
ing on a triple quadrupole platform which can easily be de-
ployed in large sample cohorts. Clearly, the approach is cus-
tomizable to other candidate protein biomarker panels and
the overall SRM development strategy as undertaken here
potentially represents a valuable workflow tool for the gener-
ation of such assays. Here, the biomarker candidate list was
assembled from three sources. First, a discovery label-free
LC-MS study (utilizing MS1 intensities for quantification) was
performed in liver samples from a subset of rats treated with
a known hepatotoxicant EMD 335823. Second, differentially
expressed genes from an earlier transcriptomic study of the
same rat livers (EMD 335823 treated) were integrated as
potential biomarker candidates. Third, we incorporated a set
of literature biomarker candidates, primarily from a recent
review of biomarkers related to drug-induced liver injury (11).
To facilitate SRM assay development we built a substantial
library of MS/MS spectra assigned with high confidence to
tryptic peptides arising from a large pool of rat liver samples.
The MS/MS spectral library data set has been deposited in
PeptideAtlas and has additionally already been exploited by
additional studies aimed at elucidating unanticipated post
translational modifications relating to drug toxicology (50).
Specific SRM assays for 48 biomarker candidates were de-
veloped via iterative rounds of optimization and quality con-
trol. The combined optimized SRM assays were then applied
to the full set of 30 liver samples from the PredTox EMD
335823 drug treatment study.

The initial source of biomarker candidates included in the
optimized SRM assay panel was a label-free LC-MS study of
livers from rats treated for 15 days with a high dose of EMD
335823 or vehicle control. The results from the label-free
LC-MS analysis demonstrated that relative quantification
could be achieved with high technical reproducibility (mean
CV � 13.6% for identified peptides), and that of the 809
proteins quantified, 111 were significantly modulated in their
abundance in the high dose, day 15 treatment group. The
enrichment of differentially modulated proteins in pathways

such as xenobiotic metabolism, cytochrome P450s, PPAR�,
PPAR�/RXR activation, fatty acid metabolism, oxidative
stress, and oxidative stress response mediated by Nrf2 indi-
cate that the detected proteins are indeed related directly to
drug response. These results are relevant in the context of
toxicological response to drug treatment, and in the context
of the suspected PPAR� activity of the compound in question
(9). There was also significant overlap with pathways over-
represented in the transcriptomics studies of the same sam-
ples. This pathway correlation is in contrast to direct compar-
ison of individual protein and corresponding transcript
changes which showed only weak correlation, similar to find-
ings that been previously reported for studies in which corre-
sponding protein and transcript changes have been com-
pared (51, 52). In fact, the added value of performing the
proteomic analysis is demonstrated by the measurement of a
significant group of 21 toxicologically relevant modulated pro-
teins (i.e. mainly phase I 	 II enzymes - see supplemental
Table S3) that showed no change in abundance in the tran-
scriptomic studies.

Although MS1 intensity-based label-free LC-MS provides a
very useful strategy for discrete discovery proteomics studies,
the overhead associated with instrument time and complex
data analysis makes this approach currently difficult to imple-
ment in the type of large-scale and/or multisite studies that
are required for the verification of biomarker sets. By com-
parison, targeted MS using SRM provides a platform for re-
producible and sensitive measurement of panels of proteins
at medium-high throughput (12). Additionally, SRM is inher-
ently flexible, with the ability to easily adapt the panel of
proteins to be measured based on emerging information from
ongoing studies. The time for development of reliable SRM
assays is rapidly being reduced due to novel software tools
and data resources (26). In particular, the availability of high
quality peptide MS/MS spectra for the proteins of interest
enables rapid selection of appropriate peptides and transi-
tions, as well as providing confidence in the final SRM assay
by correlation of fragment ion intensities between the library
MS/MS spectrum and SRM measurements (27, 47). In many
instances such libraries are readily available in the public
domain however we found this not to be the case for rat liver
proteins and so for this reason, we assembled a high quality
library of peptide MS/MS spectra derived from a pool of rat
liver samples (hepatotoxicant treated and vehicle controls)
before undertaking SRM assay development. This spectral
library containing more than 7500 peptide assigned QqTOF
mass spectra has been provided as a public resource for
future SRM development related to pre-clinical toxicology
studies. It is, however, worth noting that during the SRM
development process some proteins were not included in the
final SRM assay due to a lack of peptide MS/MS spectra. This
was particularly the case for biomarker candidates arising
from the transcriptomics study, where of the 168 proteins
initially shortlisted for assay development, only 51 had asso-
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ciated peptide MS/MS spectra and could be progressed to-
ward SRM assays (see supplemental Fig. S10). Acquisition of
more comprehensive MS/MS spectral libraries will certainly
facilitate SRM development, and recently MS/MS analysis of
synthetic peptide libraries created specifically for this purpose
has been undertaken in yeast (27), with similar efforts in human
ongoing. The acquisition of such spectral libraries in key pre-
clinical toxicology model systems such as rat would greatly
accelerate efforts to develop SRM-based biomarker panels.

Optimization and quality control of the SRM assays of the
final panel of 48 proteins was achieved in a relatively short
but intensive period. This included 41 injections on the QqQ
mass spectrometer totalling �37 h of instrument time. All
assay development, optimization, and quality control were
done in an iterative fashion (see supplemental Fig. S11, a
summary of the optimization workflow) via the Skyline Tar-
geted Proteomics Environment. The use of Skyline greatly
accelerated the assay development cycle by automating/
accelerating previously manual or semi-automated tasks
relating to: peptide and transition selection with respect
library MS/MS spectra and background proteome data-
bases; filtering of peptides and transitions; collision energy
optimization; retention time scheduling; comparison of SRM
data to library MS/MS spectra; peak integration; and data
review. In particular, the dot product calculation in Skyline
(45), which scores the similarity between SRM intensities for
measured transitions against the library MS/MS spectrum,
provides a very useful filter to determine authentic peptide
signals from interferences (see supplemental Fig. S12 for a
summary of dot product values for the optimized SRM
assays in this study). Despite the substantial time-saving in
informatics tasks facilitated by Skyline, there is still a con-
siderable manual inspection and quality control effort re-
quired to verify that the chosen SRM assay coordinates are
in fact representative of the targeted peptide, and not inter-
fering species. Currently, methods to determine and control
the false discovery rate for SRM experiments in an auto-
mated and objective manner via decoy transition sets are
under development (53) and this should help to reduce the
burden of manual inspection in SRM studies. The SRM
development cycle undertaken here also included a meas-
urement of the technical variance of the SRM assays as
determined by the coefficient of variation across 10 techni-
cal replicate injections of a representative pooled sample
(see Fig. 4). A significant benefit of the SRM strategy is the
excellent technical precision, demonstrated in this study by
a mean CV of 5.7%, which is a substantial improvement
over what is generally available with other proteomics meth-
odologies. It is this technical precision, combined with the
ability to consistently measure every analyte of interest (i.e.
no missing values), that makes the SRM strategy very at-
tractive for the type of large scale analyses that will be
required for biomarker verification in the pre-clinical, and
potentially, clinical toxicology evaluation arena.

The results of the SRM analysis of liver from drug-treated
and vehicle control rats demonstrate that by selecting bio-
marker candidates from multiple relevant sources we have
enriched for a subset of proteins which are significantly mod-
ulated on treatment with the hepatotoxic agent EMD 335823.
In particular, the proteins derived from the label-free LC-MS
and transcriptomics studies also demonstrated modulation in
the high dose treated animals at both day 4 and day 15 (see
Table I and Fig. 5). Interestingly, proteins selected from liter-
ature sources (11) showed less marked modulation on treat-
ment, although some proteins were significantly regulated.
Proteins included as housekeeping controls showed no sig-
nificant modulation between drug-treated and time-matched
vehicle control rats and comparisons between the vehicle
treated rats at day 4 and day 15 also showed no significant
changes. This indicates that the statistical cut-offs applied in
the discovery experiments were appropriate and that changes
observed in the drug-treated animals are highly like to repre-
sent true positive observations.

Additionally, a reasonable correlation was noted between
protein fold change as determined by SRM-based compared
with label-free LC-MS-based measurements, and between
protein and transcript fold change as determined by SRM-
based compared with microarray-based measurements (see
Fig. 6). This result validates the premise of using lower-
throughput discovery proteomic and transcriptomic ap-
proaches to gather biomarker candidates for subsequent me-
dium-high throughput SRM based protein measurements in
large-scale verification studies.

The statistical evaluation in this study used a staged ap-
proach. A relatively nonstrict set of fold change and t test
cut-offs were employed in the label-free LC-MS discovery
data analysis with the rationale to include as many viable
biomarker candidates as possible and to potentially remove
false positives later using the more precise and higher
throughput SRM measurements. This strategy will continue to
become more feasible as the number of peptides/proteins
measureable by SRM, currently limited by duty cycle consid-
erations, increases with new instrumentation and acquisition
paradigms. Data from the SRM analyses were also ultimately
evaluated by fold change and t test statistics, which while
apparently effective for ranking candidate markers, are essen-
tially ad hoc filters. Further effort is required from the proteo-
mics community to evaluate the use more sophisticated
methods largely developed for microarray analysis, for exam-
ple, modified t-tests (54) and t test relative to a threshold
(TREAT) (55), in protein biomarker studies. Additionally, em-
pirical Bayes methods have already been implemented in
proteomics studies and could provide a more rigorous path to
significance analysis for biomarker research (56).

Although label-free SRM quantification can be performed in
relatively smaller studies such as this one assuming the sam-
ple processing is well controlled and the samples are closely
related in background and overall protein composition, the
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eventual goal is to extend this type of study to larger-scale
consortium type efforts. In this case there are a range of
considerations affecting quantitative performance that must
be accounted for. This study employed a set of housekeeping
proteins selected as controls to detect any systematic biases
that might have adversely effected the detection of true drug-
treatment related changes in relative protein concentrations.
This strategy, however, will not detect matrix effects for indi-
vidual analytes, and is not likely to prove successful on a
larger scale. Substantial efforts have been made toward eval-
uating and controlling biases that might arise in large scale
SRM studies, in particular by the National Cancer Institute’s
Clinical Proteomic Technologies for Cancer (CPTC) initiative
(21). In particular, the use of stable isotope dilution standards
provides a method to control for errors due, for example, to
matrix effects or intersite operator biases. As such, due care
should be taken with respect to previous knowledge on po-
tential sources of error in the planning future large-scale stud-
ies in the preclinical toxicology arena.

The classical toxicology evaluation in this study (see sup-
plemental Table S1 for histopathology results) showed the
most marked findings at day 15 in the high dose treated rats
and this included necrosis, fibrosis and bile duct necrosis/
hyperplasia. By comparison, at day 4 in the high dose group
only hepatocyte hypertrophy was reported in 3 of 5 animals
and this is considered essentially an adaptive response and
not a toxic insult (46). In the SRM-based proteomics analysis,
however, the majority of proteins modulated at day 14 in the
high dose group also showed a significant change in the day
4 group at high dose. This significant finding suggests that
using multiplex SRM-based protein measurements has im-
portant potential for increased sensitivity in predicting toxicity
over the classical toxicology evaluation methods. Increased
sensitivity for prediction of toxicity is, in essence, one of the
primary goals of systems toxicology approaches (2). It should
be noted, however, that the protein changes observed at the
early time point may not necessarily reflect more sensitive
markers of overt toxicity but could rather indicate adaptive
changes on drug treatment. As such, for a more complete
characterization of potential toxicity biomarkers, studies using
finer time and dosing intervals will certainly be required. Es-
sentially no changes were observed by transcriptomics, clas-
sical toxicology evaluation, or SRM-based protein measure-
ments for animals in the low dose group at either time point
indicating that the dosage point was too low, also suggesting
that future studies using finer dosing intervals would be ex-
tremely useful to determine dose dependent effects using
SRM-based multiplex protein measurements.

This study represents a key proof-of-principle demonstra-
tion in which hepatotoxicity biomarker candidates from di-
verse sources including discovery proteomics, transcripto-
mics, and literature mining, are integrated into a panel
enriched for putative biomarkers which following SRM assay
development can be robustly measured in a medium-high

throughput fashion via SRM. In this case only a single hepa-
totoxic compound was studied, however, given the substan-
tial diversity of toxic insults which occur in liver (and indeed
other toxicologically relevant tissues) large numbers of stud-
ies will need to be performed with a wide variety of model
toxicant compounds with well defined toxicological charac-
teristics to establish signatures of toxicity. Multiple consortia
have begun to address this problem (4, 5) and substantial
datasets arising from these consortia will continue to be pub-
lished going forward. The flexibility and scalability of SRM, as
illustrated in this proof of principle study, makes it an ideal
candidate for integrating putative biomarkers from these di-
verse data types into panels for testing in large-scale verifi-
cation studies, and as a tool for toxicology evaluation in drug
development.

Data Availability—Raw data associated with the label-free
LC-MS and SRM studies in the project are available in the
mzML format from Tranche (www.proteomecommons.org)
(57) using the hash CE7M45cJHCYhqvlL7CLvR/VpB0bZI
dfH9Rck0fgX1ahymwr3NFdELucR50iZpregHUZ3MfMUHHev
vWgbuNI8M3UAELsAAAAAAAApIA�� and raw data associ-
ated with the rat liver MS/MS spectral library are available
from PeptideAtlas (www.peptideatlas.org) (28) using the ac-
cession “PAe001466.” All information regarding the SRM as-
says and the related spectral library is available in the Skyline
share archive file in the supplemental material and can be
inspected using the freely available software Skyline (25).
Additionally, a spreadsheet containing key information re-
garding the configured SRM assays (transitions, etc.) is in-
cluded in the supplementary material.
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