
Enhanced Peptide Identification by Electron
Transfer Dissociation Using an Improved
Mascot Percolator*□S

James C. Wright‡, Mark O. Collins‡, Lu Yu‡, Lukas Käll§, Markus Brosch‡,
and Jyoti S. Choudhary‡¶

Peptide identification using tandem mass spectrometry is
a core technology in proteomics. Latest generations of
mass spectrometry instruments enable the use of elec-
tron transfer dissociation (ETD) to complement collision
induced dissociation (CID) for peptide fragmentation.
However, a critical limitation to the use of ETD has been
optimal database search software. Percolator is a post-
search algorithm, which uses semi-supervised machine
learning to improve the rate of peptide spectrum identifi-
cations (PSMs) together with providing reliable signifi-
cance measures. We have previously interfaced the Mas-
cot search engine with Percolator and demonstrated
sensitivity and specificity benefits with CID data. Here, we
report recent developments in the Mascot Percolator V2.0
software including an improved feature calculator and
support for a wider range of ion series. The updated
software is applied to the analysis of several CID and ETD
fragmented peptide data sets. This version of Mascot
Percolator increases the number of CID PSMs by up to
80% and ETD PSMs by up to 60% at a 0.01 q-value
(1% false discovery rate) threshold over a stan-
dard Mascot search, notably recovering PSMs from high
charge state precursor ions. The greatly increased num-
ber of PSMs and peptide coverage afforded by Mascot
Percolator has enabled a fuller assessment of CID/ETD
complementarity to be performed. Using a data set of CID
and ETcaD spectral pairs, we find that at a 1% false
discovery rate, the overlap in peptide identifications by
CID and ETD is 83%, which is significantly higher than that
obtained using either stand-alone Mascot (69%) or
OMSSA (39%). We conclude that Mascot Percolator is a
highly sensitive and accurate post-search algorithm for
peptide identification and allows direct comparison of
peptide identifications using multiple alternative fragmen-
tation techniques. Molecular & Cellular Proteomics 11:
10.1074/mcp.O111.014522, 478–491, 2012.

Collision induced dissociation (CID)1 is the most common
fragmentation technique used in tandem mass spectrometry
(MS/MS) proteomics experiments. However, there has re-
cently been a significant rise in the number of proteomics
studies using electron transfer dissociation (ETD) fragmenta-
tion and electron capture dissociation (ECD) (1, 4–6). These
alternative fragmentation techniques can be advantageous for
the identification and localization of labile modifications such
as phosphorylation (7–12), as well as sampling peptides that
are not readily identified through CID fragmentation (5).

There are several factors to consider when interpreting ETD
fragmented data. The first is that ETD produces different ion
series to CID, electron transfer from the radical anion reagent
to the cation peptides results in predominantly c/c – 1, z/z �

1, and to a lesser extent, y and a � 1 ions (13, 14). Moreover,
the interfering effects of basic residues that influence proto-
nation and direct dissociation to specific sites along the pep-
tide backbone in CID fragmentation are not commonly ob-
served with ETD fragmentation. Consequently, ETD spectra
demonstrate less bias in fragmentation site preference dis-
playing a more distributed fragment intensity across the m/z
range that encompasses an extended range of fragment ions
(15). ETD spectra are also free from many of the dominating
neutral loss peaks (from labile PTMs) that commonly feature in
CID. Optimal ETD fragmentation has been observed for low
m/z precursors that correspond to higher charge peptides.
Consequently, ETD can produce fragment ions of a higher
charge state than would normally be considered in traditional
trypsin based shotgun proteomics experiments. This charac-
teristic is a major limitation for many mainstream search en-
gines, which are capped to using a maximum of only the
doubly charged fragment ions. Moreover, other ETD specific
features, such as charge-reduced precursor peaks and ETD/
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ECD neutral losses, are not generally taken into consideration
in search engines, and are usually removed as part of spectral
processing.

Commonly used database search engines for tandem MS
have been developed and adapted for CID based sequencing.
Several studies have evaluated popular search algorithms
such as Mascot (16), The Open Mass Spectrometry Search
Algorithm (OMSSA) (17), Spectrum Mill (Agilent), and X!Tan-
dem (18), using ETD data and demonstrated Mascot perform-
ance is near the top of the group (19–21). These studies also
reveal the variability between different search algorithms is
much greater for ETD fragmented data than for CID frag-
mented data, suggesting that comprehensive analysis of
these data sets would require multiple search algorithms. In
particular, a charge state bias has been highlighted, resulting
in large differences in numbers of significant doubly charged
peptide identifications. These observations have led to the
development of ETD specific search algorithms and scoring
functions that leverage features specific to ETD fragmentation
(22–25).

Protein Prospector (26) has been optimized for ETD data
analysis, it uses an ion type weighting based on the precursor
charge state and peptide sequence composition. These alter-
ations to the scoring regime were shown to give considerable
increase in the numbers of PSMs at a 1% FDR compared with
standard search algorithms (22). OMSSA is another com-
monly used search tool for ETD data, it offers a large set of
configurable search parameters some of which can be advan-
tageous when examining ETD data (17). These parameters
include the ability to increase the maximum fragment charge
considered above 2�, a constraint of many other search
algorithms including Mascot. This has lead to OMSSA being
the search tool of choice in several ETD studies (20, 27).
Notably, its been reported that OMSSA also suffers from a
few restrictions itself including a limit of up to 3 missed
cleavages and difficulties matching spectra from 2� precur-
sors when searching ETD data (19).

Sound scoring methods underpin sequence database
search algorithms and are imperative for sensitive and accu-
rate peptide and protein identification from proteomics data.
Percolator (2) is a post-search statistical rescoring tool that
uses semi-supervised machine learning to iteratively train us-
ing features from target and decoy database searches, and
rescore peptide spectrum matches (PSMs) using q-values
and posterior error probabilities (PEPs).

Standard FDR calculations generally correlate negatively
with but are not necessarily a monotonically decreasing func-
tion of the identification score. As a consequence, two differ-
ent scores could have the same FDR. In some situations this
would mean that a more relaxed scoring threshold returns a
lower FDR, but this problem can be avoided by using q-values
(28). A q-value is defined as the minimal FDR threshold at
which a particular spectral identification can be made. Perco-
lator also calculates posterior error probabilities (PEPs) for

each PSM, sometimes referred to as “local FDR,” which rep-
resent the probability that a particular PSM is incorrect. It is
worth noting that in this study we also examine the numbers
of unique peptide and protein identifications made by Mascot
Percolator, and that as we move from PSMs to peptides and
then to proteins the size of the data set changes and so does
the FDR (29). Although we do not recalculate the FDR at the
peptide level we do so at the protein level after clustering
proteins by the peptides they match and assigning both target
and decoy protein clusters scores.

Mascot Percolator (3) made the Percolator algorithm com-
patible with the popular search engine Mascot. We imple-
mented it as a standalone interface that extracts and com-
putes relevant features from Mascot search results, trains
Percolator, applies the resulting statistical score to each PSM
and writes a results file. Our evaluation of its performance with
several LC-MS/MS data sets demonstrated vast, consistent
improvements in the identification of high confidence PSMs
over the standard Mascot scoring of CID spectra in both low
and high resolution data (3). Subsequently, Percolator has
been incorporated into the core Mascot v2.3 software,
although our standalone version of Mascot Percolator used in
this study is also available on the Wellcome Trust Sanger
Institutes website (http://www.sanger.ac.uk/resources/
software/mascotpercolator/). Table I shows a summary of the
current features used, several of which have changed or been
updated since the original Mascot Percolator publication (3).
Most significantly, as of version 1.10 of Mascot Percolator, we
have enabled the inclusion of variable peptide modifications
and removed restriction to b and y ion features instead any ion
series used in Mascot is now compatible with Mascot Perco-
lator. The adjusted feature calculation thereby extends Mas-
cot Percolator compatibility to other fragmentation data such
as ETD.

Here we benchmark the new version of Mascot Percolator
and validate its FDR estimations using CID and ETcaD data
obtained from universal protein standards (UPS). Then using a
large collection of publicly available yeast data, we evaluate
the sensitivity and selectivity performance of Mascot Perco-
lator with ETD and ETcaD data, against both Mascot and
OMSSA. A detailed assessment of Mascot Percolator’s per-
formance using in-house E.Coli data sets was conducted
examining the two different fragmentation methods using par-
allel and sequential experimental workflows, described Fig. 1.
The parallel experiments allow us to evaluate CID and ETD/
ETcaD fragmentation as standalone techniques, whereas the
sequential experiments enable direct comparison of fragmen-
tation methods at the peptide level. In addition to low resolu-
tion ion trap fragmentation data, we also evaluate FT-ETcaD
experiments in which high resolution MS/MS spectra are ac-
quired. Overall, using a range of CID and ETD data sets we
demonstrate substantial increase in the number of peptide
spectrum matches (PSMs) using Mascot Percolator.
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EXPERIMENTAL PROCEDURES

Data Sets—1: Solution digests of human universal proteomics
standard (UPS) (Cat# UPS1, Sigma). The UPS sample was denatured
with 8 M Urea, reduced with TCEP, alkylated using Iodoacetamide
and then adjusted to a final concentration of 1.5 M Urea/100 mM

ammonium bicarbonate and digested for 6 h using 1:20 ratio of
trypsin sequencing grade (Roche, Indianapolis, IN) at 37 °C.

2: Yeast raw data was downloaded from PeptideAtlas (30)
(PAe001453). This data was originally published by Swaney et al. at
the University of Wisconsin (27). Data were collected from 12 SCX
fractions analyzed over a 40 min gradient on a modified hybrid linear
ion trap-Orbitrap (Thermo Scientific). We used two of the available
Yeast data sets from PeptideAtlas, ETD (Trial 2, BioRep 2) and ETcaD
(Single Trial).

3: E. coli solution tryptic digest (sPREP E. coli Digestion Standard
(pre-digested) cat# 186003196; Waters, Milford, MA).

4: E. coli partial tryptic digest. E. coli whole cell lysate (cat#
ab2431, from Abcam, Cambridge, MA) was denatured with 8 M Urea,
reduced with dithiothreitol, adjusted to a final concentration of 1.5 M

Urea/100 mM ammonium bicarbonate and digested for 90 min using
1:20 ratio of trypsin Gold (Promega, Madison, WI) at 37 °C.

Mass Spectrometry—The UPS and E. coli data sets were analyzed
by LC-MS/MS using a dual pressure linear ion trap orbitrap instru-
ment capable of both CID and ETcaD fragmentation. Two types of
experimental workflow were used in the acquisition of data (Fig. 1).
Parallel experiments used a single fragmentation method with stan-
dard data dependant acquisition, fragmenting and collecting spectra
for the top 10 most abundant precursor ions in MS1 scans. The
sequential experiments used the same selection criteria for fragmen-
tation; however, the instrument switched between CID and ETcaD
fragmentation to collect both types of spectra for each precursor
selected. Supplementary activation (ETcaD) was used for all in-house
ETD experiments (31) and LC gradients of 60 and 120 mins were
used. Peptide samples were analyzed online using an Ultimate 3000
Nano/Capillary LC System (Dionex, Sunnyvale, CA) coupled to an
LTQ Orbitrap Velos hybrid mass spectrometer (Thermo Scientific,
West Palm Beach, FL) equipped with a nanospray ion source. Pep-
tides were desalted on-line at a flow rate of 25 �l/min using a micro-
Precolumn cartridge (C18 Pepmap 100, LC Packings) and then sep-
arated using a RP gradient (4–32% acetonitrile/0.1% formic acid) on
a BEH C18 analytical column (1.7 �m, 75 �m id x 10 cm, Waters) at
a flow rate of 0.3 �l/min. The mass spectrometer was operated in

standard data dependent acquisition mode controlled by Xcalibur 2.1.
The instrument was operated with a cycle of one MS (in the Orbitrap)
acquired at a resolution of 60,000 at m/z 400, with the top 10 most
abundant multiply charged (2� and higher) ions in a given chromato-
graphic window were subjected to either CID or ETcaD fragmentation
in the linear ion trap. An FTMS target value of 1e6 and an ion trap MSn
target value of 1e4 were used. Dynamic exclusion was enabled with
a repeat duration of 45s with an exclusion list of 500 and exclusion
duration of 30s. For FT-ETcaD experiments, MS/MS spectra were
collected at a resolution of 15,000 in the Orbitrap with a target value
of 1e5.

All raw MS data files were processed and converted into MGF file
format using Proteome Discoverer 1.1 (Thermo Scientific). A precur-
sor filter of 600–10,000 Da was applied to in-house data and a
nonfragment filter was applied to in-house ETcaD spectra to remove
unreacted precursor peaks, charged reduced precursor peaks, neu-
tral losses from charge reduced precursors and FT Overtones using
default settings. All ion trap spectra with less than 15 fragmentation
peaks and FT spectra with less than 10 fragmentation peaks were
removed and a signal to noise filter of three was applied to all spectra.
MS data and Mascot search result files were converted to PRIDE XML
files using PRIDE Converter v2.5.0 (32) and uploaded to the PRIDE
database (http://www.ebi.ac.uk/pride/) with accession numbers
18989–18991 and 19000–19004.

Database Searching Mascot, Mascot Percolator, OMSSA, and Pro-
tein Prospector—All data sets were searched using Mascot v2.2
(Matrix Science, Boston, MA). For the sequential experiments, CID
and ETD/ETcaD spectra were processed and searched separately.
ETD/ETcaD spectra were searched using c, z, and y ion series and
CID data was searched using b and y ion series. All searches used
Mascot’s automated decoy database searching. Table II details the
specific search parameters applied to each data set. The Mascot
search logs were further processed using our new Mascot Percolator
implementation v2.0 (http://www.sanger.ac.uk/resources/software/
mascotpercolator/) together with Percolator v1.14 (https://github.
com/percolator/percolator) using the full set of features as described
in Table I. Only top ranked hits were reported.

All data sets were also searched using a local install of OMSSA
(http://pubchem.ncbi.nlm.nih.gov/omssa/). The majority of OMSSA
settings were kept the same as used for Mascot. However, precursor
search tolerance was set to 1.5 Da and the results were filtered post
search to within a 10ppm tolerance. Target and decoy searches were

FIG. 1. Experimental setups—Experimental setups for combinations of CID and ETD fragmentation. Parallel experiments use only one
fragmentation method, sequential experiments collect both CID and ETD fragmented spectra for each precursor. A third type known as
decision tree experiments can use a logic tree to select CID or ETD fragmentation for each precursor ion.
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conducted against separate decoy databases generated using the
Mascot decoy database Perl script. Only the top ranked hit for each
spectrum was considered in the final results. All data was parsed and
assigned q-values based on the decoy search results to allow com-
parisons between the different scoring algorithms, using homology
scoring in Mascot and p values in OMSSA. Finally the two Yeast data
sets were searched using the Protein Prospector v5.9.0 Batch-
Tag Web tool (http://prospector2.ucsf.edu/prospector/mshome.htm)
against the SwissProt (Release 11.01.2011) using the same search
parameters as shown in Table II. The results of these searches were
exported in a tab delimited format and q-value calculated in the same
manner as for the other search algorithms. We report all the results at
a PSM q-value threshold of 0.01. Protein clustering was conducted
using an in-house tool that initially filters the target and decoy PSMs
at a 0.01 q-value threshold to generate a list of significant peptides.
The target and decoy proteins to which these peptides match are
then iteratively clustered so that every cluster has at least one unique
peptide sequence. Each protein cluster is assigned a score by
multiplying together the p values (or PEP scores for Mascot Perco-
lator) of constituent peptides. The target and decoy protein clusters
are then used to estimate a 1% FDR threshold for the protein
cluster scores.

RESULTS AND DISCUSSION

Improvements to Mascot Percolator—Since its original
publication Mascot Percolator (3) has undergone several up-
dates to improve and extend functionality, as well as to re-
main compatible with new releases of Percolator (33) up to
version 1.14. Table I details each of the features used by the
current version of Mascot Percolator in the rescoring of
PSMs. It is difficult to assess the contribution of individual

features to the training. Features are selected based on their
discrimination between target and decoy PSMs without intro-
ducing bias toward any particular type of peptide. The bino-
mial score and sequence coverage features are no longer
used and have been removed. These have been replaced with
a single feature representing the longest matched consecu-
tive series of ions as a fraction of the peptide length, which is
more appropriate when considering multiple ion series. To
take account of heavily modified PSMs, a feature representing
the number of variable modifications in each spectral assign-
ment has been added. The median and interquartile range
(IQR), are used for the fragment mass error features instead of
the mean error (the absolute mean fragment error feature has
also been removed). These alternative statistics are more
robust than using a mean and are less biased by a single
accurate fragment match or a single high error fragment
match. An internal filter, which can be deactivated for high
resolution fragment data, also removes spectra with very low
numbers of peaks, less than 15, as these low quality spectra
can affect Percolator’s training. Finally, as mentioned previ-
ously, the fraction of ions matched and relative intensity
matched per series has been opened up to included all ion
series available for searching in Mascot.

To ensure the improved feature set is not biased toward
either target or decoy PSMs, a universal human protein stan-
dard mix of 48 proteins was analyzed using both CID and
ETcaD in separate experiments, allowing the validation of

TABLE I
Mascot Percolator Features—A list of the extended features used in Mascot Percolator v2 to train Percolator support vector machines. A set

of features is calculated for each PSM in both the target and decoy searches. New and updated features are highlighted

*These features occur for each ion series considered in the original Mascot search.
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q-values. The numbers of spectra, peptides and proteins
identified from a search of the entire human IPI database are
shown in Table IIIA. Mascot Percolator identified 80% more
CID spectra and 47% more ETcaD spectra than Mascot
alone using a q-value threshold of 0.01. This corresponds to
an increase of spectra identified from 17% to 31% for the
CID experiments and from 24% to 36% for the ETcaD experi-
ments. The significant peptides were then clustered into unique
protein clusters for both the target and decoy search results and
then filtered to a protein level FDR of 1%. Mascot Percolator
generated 73 CID protein clusters and 66 ETcaD protein
clusters, a 16% increase for both CID and ETcaD over
Mascot. Manual examination of these protein clusters
shows that at this 1% FDR threshold 46 of the 48 proteins
in the standard have been identified for both the CID and
ETcaD experiments, the other clusters either corresponded
to different isoforms of the 48 proteins or a set of contam-
inant proteins that were observed in multiple experiments. A
full list of these proteins is available in supplementary
materials.

To complete the validation, spectra from these UPS exper-
iments were then searched against a bipartite database (34)
containing only the IPI sequences for the 48 proteins in the
standard, plus common contaminates. These selected se-
quences are concatenated with 10 times that number of shuf-
fled entrapment protein sequences. The resulting PSMs from
this database were filtered and hits to the entrapment proteins
used to estimate false positives over a range of Mascot Per-
colator q-values. Fig. 2 depicts the plotted q-value and FDR

estimates from Mascot Percolator for both the CID and ETcaD
UPS data on a log scale. Employing a two-sample Kolmogo-
rov-Smirnov (K-S) test to the bipartite database FDR esti-
mates and the Mascot Percolator q-values, we achieve a
maximum difference of 0.02 for the CID data and 0.13 for the
ETcaD data. The slightly higher value for the ETcaD data is
likely because of the much smaller data set size, also if we
examine the plot in Fig. 2 we can see that the majority of the
difference between the estimated FDR and Mascot Percola-
tor’s q-values is for PSMs below the typical 1% false discov-
ery rate threshold. If we perform the K-S test on the same CID
data processed using Mascot Percolator v1.09 the maximum
difference is 0.03, reflective of a consistent performance be-
tween the different versions. This comparison cannot be done
for the ETD data as that version of the software could only
generate features for b and y ion series.

The second part of Fig. 2 is a quantile–quantile (QQ) plot of
the p value scores, obtained using Mascot Percolator, which
is a reliable method for calibrating scoring functions (35). In
this QQ plot we have plotted the observed Mascot Percolator
p values of the entrapment PSMs from the bipartite database
against a uniform theoretical set of p values. Using the K-S
test these distributions produce a maximum difference of 0.4
for CID and 0.5 for ETcaD, this compares to a maximum
difference of 0.7 for the CID data when using Mascot Perco-
lator v1.09. Although it can be noted form the QQ plot that this
is always toward a more conservative p value.

Overall, this analysis demonstrates that the performance
Mascot Percolator v2.0 with the improved feature set is sim-

TABLE II
Summary of Search Parameters—The search parameters used for each data set for Mascot, OMSSA and Mascot Percolator

*The Yeast ORF was not available for use with Protein Prospector hence the SwissProt database was used with S. Cerevisiae taxonomy for
that analysis.

**For the bipartite database only selected human IPI sequences were used, combined with 500 shuffled entrapment proteins.
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ilar if not an improvement on previous versions when analyz-
ing CID data. At a 0.01 q-value threshold the difference be-
tween the original and new versions of Mascot Percolator for
CID spectra is less than 1 and 3% at a 0.01 PEP threshold.
Importantly, the sensitivity and specificity performance bene-
fits originally described for CID data is similar to that observed
using ETD/ETcaD data in the new implementation described
here. Mascot Percolator is directly applicable to all fragmen-
tation methods supported by Mascot, and offers a robust
statistical scoring method for all data sets.

Evaluating Mascot Percolator for ETD Data—Two LysC di-
gested Yeast experimental ETD and ETcaD data sets gener-
ated by the Coon Research Group to optimize the decision
tree protocol (27) were chosen because of their previous
detailed analysis using OMSSA and large size, having more
than 50,000 spectra in each set. The principle difference
between the two data sets is that in the ETcaD set, supple-
mental activation was employed to improve ETD fragmenta-
tion efficiency for doubly charged precursor ions (31). This is
the only ETD data set we present in this study that does not
use supplemental activation. The corresponding raw MS files
were processed using Proteome Discoverer rather than COM-
PASS (36), as reported in the original publication. A fractional
difference of 502 and 18 spectra is observed for the ETD and
ETcaD data sets because of the different processing meth-
ods. A summary of the results obtained at a PSM q-value

threshold of 0.01 for each search method is shown in Table
3B. At this high confidence threshold Mascot identifies 20 and
25% of the total spectra for the ETD and ETcaD data sets; the
data set coverage is slightly lower for OMSSA, identifying 17
and 18% of spectra respectively. Further processing of the
Mascot search results using Mascot Percolator increases the
percentage of spectra identified to 32 and 35% respectively,
resulting in an average gain in the number of PSMs of 50%
across the two experiments. The q-value PSM plots displayed
in Fig. 3 highlight the observed performances from OMSSA,
Mascot, and Mascot Percolator. Detailed inspection of indi-
vidual precursor charge state q-value PSM plots shown in Fig.
3 indicate that Mascot outperforms OMSSA at lower charge
states, but at higher charge states OMSSA performs better.
Notably, Mascot Percolator shows gains over the stand alone
search methods at all charge states, resulting in a rise in ETD
(ETcaD) PSMs, for 2�, 3�, and �3� precursors, of 2311
(1760), 2096 (1828), and 2632 (2519) over Mascot and 3436
(4570), 3750 (3402), and 2092 (2044) over OMSSA at a
q-value threshold of 0.01. For both the ETD and ETcaD data
sets only 32 doubly charged peptides are identified with
OMSSA, a low identification rate for doubly charged spectra
when conducting an ETD search has been previously docu-
mented as a limitation of the engine (19). Finally, these plots
show that the use of supplemental activation substantially
enhances identification of 2� charge PSMs significantly in-

TABLE III
Search Results for UPS1 and Yeast—These Tables show the number of PSMs at a 0.01 q-value threshold and their percentage coverage of
the data set. The PSMs at this same threshold matched to 3� or greater charged spectra. The number of unique peptide sequences identified
by PSMs at this threshold and finally the number of unique protein clusters at a 1% protein level FDR. The colored bars below OMSSA and

Mascot results show the increase achieved with Mascot Percolator

(A) The search results for an in-house tryptically digested UPS1 CID and ETcaD experiments. (B) The search results for a downloaded
PeptideAtlas Yeast LysC digested ETD and ETcaD data sets. *The number in brackets represents the number of UPS1 proteins identified at
a 1% protein FDR.
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creasing the identification rate with Mascot and Mascot Per-
colator, this trend is not noticeable for 3� or greater charged
PSMs. In the original publication of this data, 12,193 and
11,470 PSMs are reported for the ETD and ETcaD data sets at
a 1% false positive rate (27). Mascot Percolator shows an
increase of 59 and 77% in the number of PSMs over those
originally reported.

At the peptide level, large gains of 48% in the ETD and 34%
in the ETcaD data sets for Mascot Percolator over the original
Mascot search are again noted (Table 3B). The prominent gain
in the standard ETD experiment can be attributed to the lower
number of doubly charged peptides in this data. The number
of unique 2� peptides identified from the ETD data increases
from 818 for Mascot to 2479 for Mascot Percolator, similarly
for the ETcaD data it increases from 2065 to 3162. This
represents an increase of 203% for ETD and 53% for the
ETcaD; when compared with unique peptides �2� the im-
provement remains more consistent at 30% for the ETD and
28% for the ETcaD. The Venn diagrams in Figure 4 show that
Mascot Percolator boosts the significance of unique peptides
that were significant in the OMSSA search but not the Mascot
search, including many peptides at higher charge states.
Moreover, Mascot Percolator gives confidence to a large
number of unique peptides that are not reported as significant
in either of the stand alone searches at this q-value threshold.
Less than 1.4% of the total unique peptide identifications at a
0.01 q-value threshold across the three different analysis tools
are not significant in the Mascot Percolator results; it is no-

ticeable that these are only observed by one of the search
engines. The number of protein clusters identified at a cluster
level FDR of 1% increases from 1176 in the ETD data and
1183 in the ETcaD data for OMSSA to 1264 in the ETD data
and 1300 in the ETcaD data for Mascot and then up to 1574
in the ETD data and 1611 in the ETcaD data for Mascot
Percolator. This corresponds to an increase of 25 and 24% for
the ETD and ETcaD data sets, respectively. This implies that
greater proteome coverage can be achieved with fewer ex-
periments using Mascot Percolator.

Next we compared the performance of Mascot Percolator
to the Protein Prospector web tool using the same Yeast ETD
data. Protein Prospector has some specific scoring features
that have been previously shown to increase significant ETD
PSMs by up to 80% (22). The Yeast data was researched
using a SwissProt database (with S. Cerevisiae taxonomy)
because of database restrictions in Protein Prospector. The
results from Protein Prospector and an equivalent search
using Mascot and Mascot Percolator against the SwissProt
database can be found in the supplemental information. The
gain in PSMs when using Mascot Percolator is more modest
when compared with Protein Prospector than that of Mascot
and OMSSA, however, it does provide 28 and 20% more
significant PSMs for the Yeast ETD and ETcaD data sets.
These results clearly demonstrate the significant gains in PSM
and peptide identification that can be made using Mascot
Percolator as compared with other database searches meth-
ods even those with ETD specific features.

FIG. 2. False discovery rate validation—Two statistical analyses to evaluated the accuracy of values reported by Mascot Percolator. A, This
log based graph plots the reported q-values from Mascot Percolator against the FDR estimated from a bipartite database search. Both the CID
and ETcaD data sets show good consistency between the estimated FDR and p values with the majority of deviation from y � x occurring
below the 0.01 p value threshold. The dotted lines represent y � 2x and y � x/2. B, This is a QQ plot of the observed Mascot Percolator null
value (entrapment PSM) p values against a theoretical uniform p value distribution.
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Comparing Mascot Percolator Performance across CID and
ETD Experiments—Mascot Percolator was also used to pro-
cess in-house LTQ Orbitrap Velos data from full and partial

tryptic digests of E. coli. This instrument can be directed to
switch between CID and ETcaD enabling a detailed assess-
ment of Mascot Percolator’s performance across the two
fragmentation methods. All ETD data collected for this anal-
ysis was with supplemental activation.

Initially, we analyzed a full tryptic digest in parallel CID and
ETcaD experiments (Table IVA). Mascot significantly identified
39 and 40% of the collected CID and ETcaD spectra and this
increased to 49% coverage for the CID spectra and 53% cov-
erage for the ETcaD spectra with Mascot Percolator. OMSSA
performs at a very similar level to Mascot for the CID experi-
ments; however, for the ETcaD experiments only 14% of the
spectra are identified, a large decrease in performance com-
pared with Mascot. Closer examination of the spectra based
on precursor charge states reveals that 84% of the spectra
in this data set are doubly charged, again highlighting this to
be a problem for OMSSA when searching ETD/ETcaD data
(19).

FIG. 3. Yeast peptide spectrum match q-p plots—These four q-value PSM plots display the estimated number of correct PSMs for the
Yeast ETD and ETcaD data sets using Mascot, OMSSA, and Mascot Percolator across a range of q-value thresholds. Plot A, shows all the
complete data set and plots B, C, and D, show the estimated correct PSMs for 2�, 3�, and �3� precursor charge states.

FIG. 4. Yeast unique peptide venn plots—The overlap in unique
peptides identified between Mascot, OMSSA, and Mascot Percolator
at a PSM q-value threshold of 0.01 for the Yeast ETD and ETcaD data
sets. These Venn plots are not drawn to scale.
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To alleviate the bias toward doubly charged precursors a
partial tryptic digest was performed, the increased number of
missed cleavages generates higher charged peptides. Inter-
rogation of this data set reflects that 47% of the spectra have
a precursor charge state greater than 2�. Fig. 5 displays
q-value PSM plots for the parallel CID and ETcaD data sets, it
shows that Mascot and OMSSA have a very similar perform-
ance for this data set, the only significant deviation being the
doubly charged OMSSA ETcaD PSMs. Mascot Percolator
performs well at all charge states for both CID and ETcaD
data, resulting in a 28% CID and 171% ETcaD increase in
PSMs compared with OMSSA and a 32% CID and 36%
ETcaD increase with respect to Mascot (Table 4B). A list of
peptides uniquely identified by Mascot Percolator for the
E. coli CID and ETcaD data sets is provided in the supple-
mentary material.

We also conducted sequential fragmentation experiments
using the partially digested E. coli sample, in which each

precursor is analyzed sequentially by CID and ETcaD, thereby
generating spectral pairs for direct comparison of fragmenta-
tion patterns (Table 4B). 20,016 CID/ETD spectra pairs were
collected in this data set. Fig. 6 compares the number of
PSMs identified from the CID and ETcaD spectra using the
search methods across the full range of m/z and charge state.
Direct comparison between search methods has been made
by calculating the percentage increase in PSMs identified by
Mascot Percolator compared with Mascot and OMSSA at
each m/z and charge state bin using a PSM q-value threshold
of 0.01. The heat map highlights that Mascot Percolator
boosts spectral identifications across the whole mass and
charge ranges of both fragmentation types. Mascot Percola-
tor is especially effective in improving the identification of
spectra from larger and more highly charged peptides, signif-
icantly identifying eight CID PSMs with a 6� charge state
compared with the two and three PSMs identified by Mascot
and OMSSA, and at the same time increasing the number of

TABLE IV
Search Results for E. Coli Experiments—These Tables show the number of PSMs at a 0.01 q-value threshold and their percentage coverage
of the data set. The PSMs at this same threshold matched to 3� or greater charged spectra. The number of unique peptide sequences identified
by PSMs at this threshold and finally the number of unique protein clusters at a 1% protein level FDR. The colored bars below OMMSA and

Mascot results shows the increase achieved with Mascot Percolator

(A) The search results for in-house tryptically digested E. Coli CID and ETcaD experiments. (B) The search results for in-house partially tryptic
digested E. Coli CID, ETcaD, Sequential CID/ETcaD, Decision Tree and FT-ETcaD experiments.
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PSMs at the highest m/z for each charge state. This increase
in range is also seen in the ETcaD data set where Mascot
Percolator finds three significant PSMs with an 8� charge
state when none are significant in the Mascot and OMSSA
results, also 83 PSMs with an m/z of 1000 or greater are
significant compared with only 37 for Mascot and 58 for
OMSSA. Examining the three right hand heat maps from Fig.
6, in which the ETcaD PSMs have been subtracted from the
CID PSMs, ETcaD performs better than CID for high-charge
low-mass peptides with both Mascot and OMSSA, as re-
ported in previous studies (5, 27, 37). Moreover, this differ-
ence is apparent for OMSSA where the 3� charge m/z bin at
which the number of CID PSMs becomes greater than ETcaD
PSMs is 500 m/z compared with the 800 m/z bin for Mascot.
number of ETcaD PSMs at 4� charge states below 700 m/z
increases. Interestingly, Mascot Percolator extends CID

spectral identifications to provide better coverage of higher
charge states. This effect is also seen with the ETcaD data,
improving the number of PSMs above the strict q-value
threshold at very high charge states (greater than 4�).

Fig. 7 contains an expanded analysis of the sequential
E. coli experiment for each precursor, the CID and ETcaD
fragmentation spectral pairs are directly compared. Fig. 7A
depicts the performance of each search method; these have
been further divided up by precursor charge state. As has
been seen throughout this study, Mascot Percolator en-
hances the number of PSMs for both CID and ETcaD signif-
icantly identifying 8723 spectral pairs compared with 7178 for
Mascot and 6689 for OMSSA. The total overlap in spectral
pairs identified by both CID and ETcaD at a 0.01 q-value thresh-
old covers 83% of the total significant spectral matched pairs
for Mascot Percolator compared with 69 and 39% for Mascot

FIG. 5. E. coli peptide spectrum match q-p plots—These four q-value PSM plots display the estimated number of correct PSMs for the
partial E. coli digest data sets using Mascot, OMSSA, and Mascot Percolator across a range of q-value thresholds. Plot A, shows all the
complete data sets and plots B, C, and D, show the estimated correct PSMs for 2�, 3�, and �3� precursor charge states.
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FIG. 6. E. coli sequential experiments—Heat maps highlighting the numbers of unique peptide identifications for Mascot, OMSSA, and
Mascot Percolator across the range of m/z and precursor charge state, where a PSM q-value threshold of 0.01 has been applied. The top left
six maps show the distribution of unique peptide identifications for CID or ETcaD PSMs for each identification method. The three right hand
heat maps show the difference in numbers of CID and ETcaD peptide identifications; a negative number reflects a greater number of ETcaD
peptides and a positive number reflects a greater number of CID peptides. The lower four heat maps show the differences in unique peptide
identifications between Mascot versus Mascot Percolator, and OMSSA versus Mascot Percolator; a positive percentage represents a gain in
the number of significant peptides identified with Mascot Percolator.
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and OMSSA. The fragmentation and charge bias seen in Mas-
cot and OMSSA is less prominent with Mascot Percolator. In
particular an extended overlap in identified CID/ETcaD spectral
pairs for Mascot Percolator, where triply charged PSMs show
88% coincidence and 66% for PSMs with �3� charge states,
compared with 77 and 42% for Mascot, and 70 and 50% for
OMSSA. Mascot and OMSSA significantly identify 50 and 57%
of the 3� charged CID spectra in the identified spectral pairs
respectively, using Mascot Percolator this increases to 70%.
Reciprocally, Mascot Percolator finds 90% of the 2� identified
spectral pairs to have significant ETcaD spectra compared with
81% for Mascot and only 6% for OMSSA.

A restriction of Mascot is that it only examines singly and
doubly charged fragment ion series and looks for these in the
highest intensity fragment peaks, unassigned higher charged
ions can therefore mask the ratio of matched to unmatched
ions. The features generated by Mascot Percolator examine
all the fragment peaks and possible ion matches irrespective
of their intensity, enabling spectra containing high charge
fragment ions to be rescored based on the accuracy of frag-
ment ion matches as well as fragment ion intensities.

Fig. 7B graphs the CID/ETcaD spectral pairs this time
showing the best score. The red and blue bars are equivalent
to the red and blue plus the purple bars in Fig. 7A and show

the numbers of spectra that are significant in total, the out-
lined purple bars show the numbers of spectral pairs where
both spectra in the pair are significant. In each instance, the
spectra are now further resolved by the PSM with the best
PEP score. Consistently for all three scoring methods we
observe that CID identifies more doubly charged spectral
pairs with better scores than ETcaD, whereas for greater than
triply charged spectral pairs ETcaD identifies more pairs at
better scores. For triply charged spectral pairs ETcaD domi-
nates in the Mascot search, with 2182 pairs with a best
scoring ETcaD spectra and only 474 pairs with a best scoring
CID spectra. This is less pronounced for OMSSA with CID
identifying 1126 spectra with best score compared with 1438
ETcaD spectra. The numbers of triply charged PSMs signifi-
cantly identified by Mascot Percolator is consistent to the
numbers of doubly charged PSMs for both fragmentation
methods; noticeably here CID fragmentation generates more
PSMs with better PEPs compared with other methods. Over-
all, this highlights the extent to which spectral assignments
are influenced by data analysis methods and demonstrates
that spectrum identification by individual methods depends
on the fragmentation method as well as in a mass and charge
dependent manner. These analyses show that data analysis
approaches, especially around the 3� precursor cutoff,

FIG. 7. E. coli sequential experiment spectral pair analysis—This figure provides an in-depth breakdown of the spectral pairs in the E. coli
partial tryptic digest sequential data set. A, This table shows the ratio of spectral pairs identified significantly by CID and ETcaD, CID only, and
ETcaD only at a 0.01 q-value threshold across the range of precursor charge states. B, This chart shows the number of spectral pairs where
the CID spectra or the ETcaD has the best score. For Mascot Percolator the PEP is used, for Mascot the ion score is used and for OMSSA
the e-value is used. This data is displayed for all the spectral pairs with a match above the q-value threshold and also for only the spectral pairs
where both CID and ETcaD PSMs are above the q-value threshold.
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should be considered along with fragmentation method when
setting up a decision tree experiment.

It has been previously demonstrated that a combined ap-
proach using a decision tree to select each precursor ion for
either CID or ETD/ETcaD fragmentation can be applied (27).
This decision tree approach allows improved data set cover-
age by taking advantage of the qualities of both fragmentation
methods. A decision tree experiment using the partial E.Coli
digest is reported in Table 4B. This decision tree experiment
tries to take advantage of the switching between CID and
ETcaD fragmentation to optimize the coverage of the sample.
This experiment does generally show better significant cov-
erage of the spectra. The rate of acquisition was still slower
than a straight forward parallel CID experiment, and with a
sample as complex as this one this meant fewer identifica-
tions. However, this experiment could be improved further by
adjusting the charge and mass thresholds at which ETcaD is
used rather than CID. A full optimization of the decision tree
was not conducted in this study.

Another method that can be used to experimentally im-
prove the rate of identification is to analyze the fragment
MS/MS ions at high resolution. We have conducted ETcaD
experiments recording the MS/MS ions in the Orbitrap ana-
lyzer to produce a FT-ETcaD data set. This higher resolution
data, although much slower to collect, has a better rate of
spectral identification (Table 4B). Spectral identification by
Mascot increases to 37% for the FT-ETcaD data, 10% better
than for the standard ETcaD experiment. This gain is equiva-
lent to that achieved for the ETcaD experiment using Mascot
Percolator instead of Mascot. With the higher resolution data,
Mascot Percolator continues to provide an increase over
Mascot, increasing spectral identification by 5% to 42%. An
important benefit of collecting high resolution MS/MS spectra
is that for highly charged spectra it would be possible to
deconvolute the spectra, however, the considerable trade off
against the rate of acquisition currently limits its utility for
proteomics application and thus was not investigated further.

CONCLUSION

Modifications to the Mascot Percolator algorithm described
here have improved the features selected for the semi-super-
vised machine learning, making the tool compatible with any
fragmentation method available in Mascot. The fact that Mas-
cot Percolator does not require separate decoy databases,
using the integrated decoy capabilities built into Mascot, al-
lows all of Mascot’s search parameters including the full
range of peptide cleavage rules and protein modifications to
be used. Percolator continues to provide increased PSMs
while maintaining accurate FDR and PEP values over stand-
alone database searches. The posterior error probabilities
(PEPs) provided by Mascot Percolator are a powerful scoring
mechanism and, although more conservative than using q-
value thresholds, they provide a measure of the probability of
error for each individual PSM and allow identifications to be

considered independently of the whole data set. Fragmenta-
tion and charge bias is also less prominent with Mascot
Percolator. This in turn promotes Mascot Percolator as an
ideal framework for making cross data set comparisons. This
study demonstrates the sensitivity and specificity of Mascot
Percolator, establishing it as a very powerful tool for spectral
identification and also for whole proteome analysis.
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