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Selected reaction monitoring (SRM), also called multiple
reaction monitoring, has become an invaluable tool for tar-
geted quantitative proteomic analyses, but its application
can be compromised by nonoptimal selection of transi-
tions. In particular, complex backgrounds may cause am-
biguities in SRM measurement results because peptides
with interfering transitions similar to those of the target
peptide may be present in the sample. Here, we developed
a computer program, the SRMCollider, that calculates
nonredundant theoretical SRM assays, also known as
unique ion signatures (UIS), for a given proteomic back-
ground. We show theoretically that UIS of three transitions
suffice to conclusively identify 90% of all yeast peptides and
85% of all human peptides. Using predicted retention times,
the SRMCollider also simulates time-scheduled SRM acqui-
sition, which reduces the number of interferences to con-
sider and leads to fewer transitions necessary to construct
an assay. By integrating experimental fragment ion intensi-
ties from large scale proteome synthesis efforts (SRMAtlas)
with the information content-based UIS, we combine two
orthogonal approaches to create high quality SRM assays
ready to be deployed. We provide a user friendly, open
source implementation of an algorithm to calculate UIS of
any order that can be accessed online at http://www.
srmcollider.org to find interfering transitions. Finally, our
tool can also simulate the specificity of novel data-indepen-
dent MS acquisition methods in Q1–Q3 space. This allows
us to predict parameters for these methods that deliver a
specificity comparable with that of SRM. Using SRM inter-
ference information in addition to other sources of informa-
tion can increase the confidence in an SRM measurement.
We expect that the consideration of information content will
become a standard step in SRM assay design and analysis,
facilitated by the SRMCollider. Molecular & Cellular Pro-
teomics 11: 10.1074/mcp.M111.013045, 540–549, 2012.

A major goal of MS-based proteomics is to accurately and
reliably identify and quantify peptides derived from a biolog-

ical sample. This is most frequently accomplished by LC-MS/
MS. Chromatography is used to fractionate tryptic peptides
derived from a protein sample before ionization and injection
into the mass spectrometer, and collision-induced dissocia-
tion fragments selected peptide ions in the collision cell of the
mass spectrometer. In shotgun proteomics, a specific precur-
sor ion is chosen according to a data-dependent acquisition
algorithm. At each time point a full fragment ion spectrum is
acquired and then used to infer the nature of the original
peptide ion (1, 2). In contrast, targeted proteomics methods
such as those using selected reaction monitoring (SRM; also
referred to as multiple reaction monitoring)1 measure combi-
nations of precursor and fragment ions continuously over time
to produce extracted ion chromatograms (3). Shotgun pro-
teomics has proven highly valuable for discovery-driven ex-
periments because new peptides can be identified and a
sample can be deeply analyzed by extensive fractionation (4).
However, the method can also suffer from limited sensitivity,
low reproducibility across samples, sampling bias, and ambi-
guity in spectra assignments to peptides (5).

Targeted proteomics methods, such as SRM, provide an
increase in sensitivity, signal to noise ratio, dynamic range,
and reproducibility compared with shotgun proteomics.
These properties have been beneficial in a range of quantita-
tive proteomic studies (3, 6–15). However, current SRM in-
struments are limited to monitoring hundreds, if retention time
scheduling is used, up to thousands of transitions in one run
(3, 16). Therefore the selection of peptides to monitor and the
corresponding transitions needs to be done a priori, and
choosing the right transitions is crucial to the outcome of the
experiment. Several tools and resources are available that
help the researcher to select optimal transitions and target
peptides for SRM, including spectral libraries and peptide
observation counts from previous experiments (3, 17–26).
Additionally, large scale peptide synthesis efforts have been
conducted to provide reference spectra for several peptides
per protein in yeast, ultimately for the whole proteome (19).2
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SRM assays; however, they do not consider the selectivity of
the assay in a particular sample matrix.

Sherman et al. (28, 29) recently brought forward the argu-
ment that information content could also be used as a crite-
rion to select suitable SRM transitions. This argument is
based on the fact that only a small subset of all possible
transitions of a peptide is measured, and thus the problem of
ambiguity and redundancy may arise: because SRM instru-
ments work with limited resolution (� 0.1 – 1.0 Th), other
peptides with transitions that are close in Q1 and Q3 to the
values used to identify the targeted peptide can interfere with
the detection of the target peptide and lead to ambiguity in the
measurement. Sherman et al. introduce the concept of unique
ion signatures (UIS; see Fig. 1) to denote combinations of ions
that map exclusively to one peptide in the proteome to be
analyzed. They show that it is not only possible but highly
likely that more than one peptide map to a given SRM assay
if few transitions are used. In these cases, the selection of
assays with minimal redundancy and minimal interferences
with other peptides could help to avert this problem.

Here we further investigated the problem of SRM assay
redundancy and specificity and present a tool that predicts
and simulates proteome-wide UIS, given user-defined prote-
olysis criteria. In contrast to previous work, we also used
predicted retention times and empirical fragment ion intensi-
ties for the simulations and applied our algorithm to whole
proteomes. Furthermore, we provide free access to our
source code and a website where simulations can be carried
out, thus helping scientists to easily apply our approach to
their projects. In silico simulations of SRM experiments al-
lowed us to reproduce and extend the results of Sherman et
al. (29) by calculating unique ion signatures up to order 5 for
all peptides in the proteome of human and yeast. We then
show the added benefit of incorporating retention time con-
straints into our simulations. It reduces the number of false
positive reports and relates closely to time-scheduled SRM
experiments performed by experimentalists. Our platform can
also be used to simulate the specificity aspect of data-inde-
pendent acquisition methods, and we compare their specific-
ity to traditional SRM methods. The results of our tool can be
directly incorporated with the information derived from the
SRMAtlas (19),2 which allows the researcher to combine two
orthogonal methods of SRM assay development: information
content-based and fragment intensity-based selection. Fi-
nally, we extend the concept of UIS using “coelution groups”
(a set of transitions that coelute and are not necessarily pro-
duced by the same peptide).

We also validate our conclusions experimentally on 30 pro-
teins of the yeast TCA cycle using 173 peptides in a mix of 14N
and 15N Saccharomyces cerevisiae samples. We observed
agreement of our UIS predictions with the experimental data
in the majority of the MS-observable peptides.

EXPERIMENTAL PROCEDURES

Computational Methods—Unique ion signatures were calculated
as described in Sherman et al. (29) with some minor differences:
S. cerevisiae and Homo sapiens protein sequences were downloaded
from http://www.ensembl.org, release 57_1j and 56_37a. We then
generated theoretical precursor ions using trypsin for proteolysis
(number of missed cleavages set to 0), carbamidomethyl on cysteine
as fixed modification, and charge states 2� and 3� for parent ions
and considered up to three heavy isotopes (�0, …, �3 atomic mass
units). For each peptide we used SSRCalc version 3.0 to predict
retention times (30, 31). For each precursor ion we generated the set
of fragment ions (all b and y ions of charge 1� and 2�). Of those, we
generated assays for all monoisotopic doubly charged precursors
using singly charged fragment ions between 400 and 1,400 Th. Note
that all of these parameters are adjustable, e.g., it is possible to use
a different algorithm for RT predictions, the number of missed cleav-
ages and heavy isotopes can be chosen freely, and oxidation of
methionines and deamidation of asparagine can be added as variable
modifications. Furthermore, it is also possible to use other fragment
ion series in the background, namely b - H2O, b - NH3, y - H2O, y -
NH3, b � H2O, a, a - NH3, c, x, z, M - H2O, and M - NH3.

We use MySQL to store the data and the scripting language Python
to analyze the data. Our algorithm is described in detail in supple-
mental Section S1, but briefly, it does the following: it finds for each
query peptide all other background peptides within the specified
retention time and Q1 windows and computes their transitions. The
interfering peptides can either be obtained via MySQL or via a range
tree that is implemented using CGAL, a C�� library for graphical
algorithms (32). All transitions of the query peptide are then compared
against those of the background peptides, and if the two transitions
are within a predefined Q3 window, this is recorded on a per peptide
basis. UIS are calculated by finding all n-tuples of transitions that do
not occur in any other peptide (or transition group) all at once, where
n is the order of the UIS. Unless otherwise indicated, simulations used
no retention time window, a Q1 window of 1.2 Th, and a Q3 window
of 2.0 Th. The complexity to compare one peptide against a back-
ground of size n is O(log2n � k) with k as the number of precursors
that fall into the same Q1 window, and because k grows linearly with
n, the algorithm has complexity O(n).

For the integration with spectral libraries, the collisions are com-
puted on a per peptide basis against all potentially interfering precur-
sors in the background (the background was calculated as described
above). Then the n most intense transitions from the query peptide are
evaluated whether they form a UISn, and the minimal n for which this
is true is recorded.

For the extended UIS (eUIS), first all UIS combinations of the given
order are calculated for each peptide and then checked whether they
also form an eUIS. For each transition, the retention times of all the
peptides that interfere with this transition are recorded, thus produc-
ing c arrays with retention times for a peptide with c target transitions.
For an eUIS of order n, the algorithm then checks whether there exists
an n-tuple, with each value drawn from a different array, such that all
the values are within a certain bound �x. If such a combination is
found, it is deleted from the list of UIS. All of the eUIS simulations
were done with �x � 0.25 arbitrary SSRCalc units, considering only
peptides within a window of 10 SSRCalc units around the target and
using Q1 and Q3 windows of 1.2 Th and 2.0 Th as above. The source
code for the SRMCollider and the web interface can be accessed at
http://www.srmcollider.org/srmcollider/download.html and is avail-
able under LGPL v2.1.

Experimental Methods—S. cerevisiae strain YSBN6 was grown on
YNB without AA and ammonium sulfate, 2% glucose, 10 mM KH-
phthalate buffer, pH 5, and 5 g/liter ammonium sulfate containing
either 14N or 15N. Proteins were sampled at optical density values of
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0.97, 5.0, 5.6, and 7.1 and lysed in buffer using physical disruption.
The samples were then mixed such that the protein contribution from
each sample point was equal, aliquoted, precipitated with acetone,
and frozen at �80 °C. The pellets were resolubilized in 150 �l of
denaturing buffer containing 8 M urea and 0.1 M ammonium bicarbon-
ate. The 14N and 15N samples were pooled, giving 300 �l of sample
containing 1 mg of total protein.

Triplicate samples were treated and analyzed as described in Sele-
vsek et al. (33). Briefly, the samples were reduced in denaturing buffer
with 5 mM tris(2-carboxyethyl)phosphine at 30 °C for 30 min and
alkylated with 40 mM iodoacetamide at room temperature in the dark
for 30 min. The samples were diluted with 0.05 M ammonium bicar-
bonate to a final concentration of 1.5 M urea, and the proteins were
digested overnight with sequencing grade porcine trypsin (Promega,
Madison, WI) using a enzyme:substrate ratio of 1:100. Digestion was
stopped by adding trifluoroacetic acid to a final concentration of 1%.
Peptide mixtures were desalted using reversed phase cartridges Sep-
Pak tC18 (Waters, Milford, MA) according to the following procedure:
wet cartridge with 1 � 1,500 �l of 100% methanol, wash with 1 �
1,500 �l of 80% ACN, equilibrate with 5 � 1,500 �l of 0.1% trifluo-
roacetic acid, 2% ACN, load acidified digest, add flow through again,
wash with 5 � 1,500 �l of 0.1% trifluoroacetic acid, 2% ACN, and
elute with 3 � 400 �l of 40% ACN in 0.1% trifluoroacetic acid. The
peptides were dried using a vacuum centrifuge, resolubilized in 500 �l
of 0.1% formic acid, and frozen at �80 °C to give a final concentra-
tion of 2 �g/�l. Concentrations were confirmed with a Nanodrop
(ND-1000) to be within a range of 1.2 and 1.5 mg/ml.

Tryptic peptides were analyzed on a TSQ Quantum UltraTM

(Thermo Fisher, San Jose, CA). The instrument was equipped with a
nanoelectrospray ion source. A spray voltage of 1.3 keV was used
with a heated ion transfer tube set at a temperature of 280 °C.
Chromatographic separations of peptides were performed on a
NanoLC-2Dplus HPLC system (Eksigent, Dublin, CA) coupled with a
10-cm fused silica emitter, 75-�m diameter, packed with a Magic C18
AQ 5 �m resin (Michrom BioResources, Auburn, CA).

The peptides were loaded on the column from a cooled (4 °C)
Eksigent autosampler and separated with a linear gradient of ACN/
water, containing 0.1% formic acid, at a flow rate of 300 nl/min. A
gradient from 5 to 35% ACN in 40 min was used. One microliter of
each sample was injected. The mass spectrometer was operated in
SRM mode. For SRM acquisitions, the first quadrupole (Q1) and the
third quadrupole (Q3) were operated at 0.7 unit mass resolution. For
all precursors (heavy and light, both charge states when possible), the
six most intense transitions according to the yeast spectral library by
Picotti et al.2 were acquired. A dwell time of 100 ms was chosen, and
acquisitions occurred over the whole gradient of 40 min. Argon was
used as the collision gas at a nominal pressure of 1.5 mTorr. Collision
energies for each transition were calculated according to the fol-
lowing equations: CE � 0.034 � (m/z) � 3.314 and CE � 0.044 �
(m/z) � 3.314 (where CE indicates collision energy, and m/z indi-
cates the mass to charge ratio) for doubly and triply charged
precursor ions, respectively.

Skyline (34) was used to analyze the data. A peak was considered
a true signal if the heavy and light peptide traces coeluted and the
intensity ratio of the two were between 0.5 and 2. The analysis was
then repeated, using only the set of light transitions predicted to be
unique by the SRMCollider.

RESULTS

We developed a Python-based software, the SRMCollider,
that supports the simulation of a typical SRM experiment
performed on a triple quadrupole instrument. It extends pre-
vious work (29) by incorporating empirical fragment ion inten-

sities and predicted retention time information. The tool can
be accessed by command line or over a website at http://
www.srmcollider.org and allows the user to search a number
of peptide transitions against different background data-
bases. The parameters of the search can be selected dynam-
ically (e.g., which mass windows to use, background pro-
teome, number of missed cleavages and modifications in the
background proteome, ion series for the background, and
how many isotopes of the precursor to consider). The search
will produce interfering peptides for each transition of the
query peptide and unique ion signatures (UIS) of the query
peptide up to order 5 (see supplemental Fig. S1 for an exam-
ple). UIS are sets of transitions from the query peptide that are
not found in any other peptide in the background; see Fig. 1
and Sherman et al. (29) for a more detailed explanation. The
source code of our tool is published under the GNU Lesser
General Public License v2.1 (LGPL v2.1).

Assay Redundancy Simulations—The simulation was per-
formed to investigate the amount of redundancy in a typical
SRM assay. We computed the fraction of unique assays
(compared with all possible assays) for each peptide in the
yeast and human proteomes, simulating the probability of
selecting a unique ion signature when choosing transitions
at random. Assays resulting from all monoisotopic doubly
charged precursors using singly charged fragment ions be-
tween 400 and 1,400 Th were evaluated against the corre-
sponding yeast or human background. The background was
generated by in silico tryptic digestion of the respective pro-
teome as described in the methods section. For both pro-
teomes, we found a high rate of redundancy for single tran-
sitions, clearly illustrating the problem of transition specificity.
In yeast, each transition was shared among 31.86 peptides on
average; in some extreme cases over 350 peptides shared
one transition. However, when using combinations of two or
more transitions, the probability of selecting a redundant set

FIG. 1. The UIS concept explained using three peptides that
have some transitions in common. UISn is defined as a set of n
transitions that maps exclusively to one peptide in the proteome to be
analyzed. Assuming a proteome consisting of three peptides that
resolve on the chromatography, there is no UIS1, one UIS2 (A and C),
and one UIS3 (A–C) for peptide 1. Peptide 2, on the other hand, has
one UIS1 (D), two UIS2 (D and C and D and B), and one UIS3 (B–D).
Note that the transition pair (B and C) is not a unique ion signature
because this signal can be explained by either peptide 1 or peptide 2.
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of transitions decreased, confirming the results of Sherman et
al. (29) (Fig. 2a). We argue that the confidence in an SRM
assay can be increased by using only transitions that form a
UIS.

Influence of Retention Time—The extracted ion chromato-
gram covers only a fraction of the retention time space in a
typical scheduled SRM experiment, and thus some of the
peptides with interfering transitions are never even recorded
in this mode. To avoid false positives and make our simula-
tions more realistic, we simulated time-scheduled acquisition
experiments by using SSRCalc to predict retention times for
all peptides in the respective background (30, 31). Using
SSRCalc allowed us to exclude �80% of the peptides eluting
outside the acquisition window of a time-scheduled SRM
experiment while retaining 80% of the peptides inside the

window (see the supplemental Section S6). The number of
unique combinations of transitions per peptide increased sig-
nificantly when a smaller retention time window was used (Fig.
2b). Assuming that we only allow for a window of four
SSRCalc units, corresponding (on a 30-min gradient) roughly
to a 2-min retention time window in which the peptide of
interest will elute, we find that using retention time information
is similar in effect to adding one more transition in an assay.
Implementing relatively narrow elution time windows is pos-
sible if standardized peptides with known retention times are
measured in each run to recalibrate the retention times of the
sample peptides.

Simulations for Data-independent Acquisition Methods—
Data-independent acquisition methods can bridge the gap
between discovery-driven proteomics and targeted proteo-
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FIG. 2. Effects that influence the
SRM assay redundancy. Displayed is
the probability of picking a redundant set
of SRM transitions when selecting a ran-
dom set of transitions from a random
peptide. a, simulating the effect of pro-
teome size (sample complexity) using
yeast and human proteomes. b, simulat-
ing the effect of using retention time sep-
aration on the probability of picking a
redundant SRM assay. For each pep-
tide, only precursor ions within a reten-
tion time window (no window, 16, 12, 8,
or 4 arbitrary units) around the query
peptide were considered for interfer-
ence. SSRCalc (31) is used for RT pre-
dictions, and arbitrary units are dis-
played (on a 30-min gradient, one
SSRCalc unit would correspond roughly
to 30 s). All of the data were calculated
for sets of transitions of size 1–5 for the
complete respective proteomes (22,600
genes for human and 6,698 genes for
yeast). A range of 400–1,400 Th was
used for precursor and fragment ions;
retention time information was not used
unless indicated. Q1 and Q3 windows
were 1.2 and 2.0 Th, respectively.
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mics (35–38). These methods fragment all or a part of the
precursors and record a complete MS2 scan of the fragments
over time, thus acquiring a complete scan of all species and
their fragments in a sample. Some techniques, such as
PAcIFIC (precursor acquisition independent from ion count),
use window sizes similar to SRM (2.5 Th), whereas others
such as MSE use ultra performance liquid chromatography
and fragment the whole mass range of MS-accessible ions
(36, 37). Here, we use our tool to compare different data-
independent methods with respect to the number of interfer-
ing signals. Specifically, we wanted to design a Q1 acquisition
window and a Q3 (full MS/MS) extraction window for data-
independent SWATH (sequential windowed acquisition of all
theoretical fragment ion mass spectra) acquisition that would
perform similarly to SRM in terms of interfering signals (38).
We thus ran simulations for different points in the Q1–Q3
space and recorded the number of UIS of different orders for
each point for a given background scenario of all theoretical
tryptic yeast peptides with no variable modifications or
missed cleavages. We could thus theoretically provide opti-
mal parameters that would exploit the speed gain of the
SWATH method without sacrificing specificity in terms of in-
creased number of interferences. Fig. 3 shows that parameters
of 25 Th for the acquisition window and 50 m Th for the extrac-
tion window in the MS2 scan offer similar or even better spec-
ificity than traditional SRM with 1 Th on Q1 and 1 Th on Q3.

In Fig. 3 we provide a map for the Q1–Q3 space showing
the fraction of free UIS2 (compared with all possible assays of
size 2) for different values of Q1 and Q3. It is clearly apparent
that, as expected, increasing either Q1 or Q3 leads to fewer
unique assays. It is also apparent that it is possible even for
very wide Q1 windows to retain a reasonable number of

collision-free assays if the Q3 window size is adjusted accord-
ingly. We found that introducing variable modifications or
missed cleavages increases the absolute number of interfer-
ences but does not alter the relative values of interferences,
and thus our overall conclusions also hold when more com-
plex backgrounds are considered (data not shown).

Integrating Information from Spectral Libraries—The
SRMCollider considers assay redundancy and the relative
intensities of the transitions to generate meaningful assays
because they are experimentally extremely important and can
be reproducibly obtained. The recent availability of high quan-
tities of high quality reference spectra allowed us to integrate
our tool with spectral libraries published in the SRMAtlas
(19).2 Often there are many unique sets of transitions for a
target peptide—for assays using four transitions in yeast, for
example, the median number of possibilities is 2,163 per
peptide—too many to make an informed decision on which
set of transitions to use (Fig. 4a). This means that sensitivity is
lost unnecessarily if a unique set of transitions is used but
does not contain the most intense transitions. We thus for-
mulated an algorithm that takes the fragment ion intensities
into account when generating query SRM assays by selecting
those assays that contain the most intense transitions and are
thus experimentally relevant.

We calculated the minimal number of transitions n neces-
sary to form a UIS where the transitions were selected with
decreasing intensity from a reference spectrum. For example,
in yeast the four most intense transitions (y5, y6, y3, and y4)
of the precursor AIAGHLVEFFR/3 (A) form a UIS, whereas the
three most intense transitions (y5, y6, and y3) do not (Table I).
These are shared with the peptide LLQLNNDDTSK/3 (B),
where the y5 of A interferes with the b6 of B, the y6 of A
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FIG. 3. Simulations displaying the
fraction of UIS2 for different points in
Q1–Q3 space. The log-log plot of the
Q1–Q3 space shows the fraction of UIS2

(unique transition pairs) per peptide
compared with all possible sets of two
transitions as a proxy for the number of
unique assays. The simulation was per-
formed in a tryptic yeast proteome using
no separation in RT. Whenever one value
is held constant, a clear trend toward
more redundancy (red color) is observed
when increasing the size of the other
value. We can derive roughly the equiv-
alence of certain configurations from this
data, e.g., that 25 Th acquisition with an
extraction window of 50 mTh is similar in
specificity to 1 Th acquisition on the Q1
with a 0.5 Th acquisition on the Q3.
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interferes with the b7 of B, and the y3 of A interferes with the
b4 of B. In this case, some UIS of lower order also exist, and
it would be possible to measure the UIS (y6 and y4) (second
most abundant ion with the fourth most abundant ion). How-
ever, the most abundant and the third most abundant tran-
sitions could still be used for quantification and should also
be measured. In this example, by measuring the four most
abundant ions, one thus gets a theoretical guarantee of
uniqueness for the measured signal (under the given as-
sumptions) without sacrificing any sensitivity. We calculated
the minimal number of transitions necessary for each pre-
cursor ion in the yeast SRMAtlas, and we find that for most
precursors, it is sufficient to measure the three or four most
intense transitions. In Fig. 4b, we compare the number of

necessary transitions when using the most intense transi-
tions to a random selection of transition and the “all y ions
above the precursor” rule.

Extended UIS—There are certain cases in which a unique
ion signature is not sufficient to produce a single, unique peak
in SRM because of a violation of some assumptions used to
construct the UIS. One reason for this can be a case of two
coeluting peptides, where both peptides contribute one or
more transitions and thus produce a second peak of coeluting
transitions (in addition to the target peptide). This would not
be captured by using UIS because they are only unique in
respect to other individual peptides but not necessarily in
respect to multiple coeluting peptides. We wanted to investi-
gate whether we could incorporate this phenomenon into our

FIG. 4. Combining information con-
tent-based and relative intensity-
based approaches for SRM assay se-
lection. a, distribution of the number of
UIS4 for peptides with more than 7
amino acids in a yeast background.
Many peptides have thousands of pos-
sible UIS4, thus demanding an informed
choice on which set of transitions to use.
b, by integrating relative intensity infor-
mation from spectral libraries, the set of
transitions to use is determined by the
most intense transitions as inferred from
the library. We show the minimal number
of transitions needed to create a unique
assay for all precursors in the SRMAtlas
and compare them with a selection ac-
cording to the “y ions above precursor”
rule and to random transitions (average
of 100 runs; error bars represent two
times the standard deviation). We used
no SSRCalc window, 1.2 Th on the Q1
and 2.0 Th on the Q3.
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simulations and find combinations of transitions that did not
have that problem.

For the eUIS analysis, we simulated a proteome containing
all synthetic yeast peptides. For each combination of transi-
tions from the target peptide, our algorithm searched for a
set of coeluting peptides (eluting within a retention time
window of 2�x) that together contain the transitions of the
target peptide. If no such set of peptides existed, we con-
sidered the eUIS criteria to be fulfilled. The parameter �x
needs to be chosen such that it is lower than the time
resolution of the SRM experiment to simulate coelution of
peptides. The set of transitions from the coeluting peptides
was termed a “coelution group”; note that if it only consists
of transitions from one peptide (i.e., if �x � 0), the analysis
reduces to regular UIS analysis (see supplemental Section
S3 for an example and a more detailed explanation of the
eUIS concept).

We simulated acquisition with eUIS using a very strict def-
inition of a coelution group (�x � 0.25 arbitrary SSRCalc units
window, considering only coeluting peptides within a window
of 10 SSRCalc units) corresponding to two peaks whose
apices have shifted at most 15 s on a 30-min gradient. For a
whole yeast tryptic digest, we find that the probability to
choose an eUIS set of transitions drops (compared with UIS)
from 41.72 to 13.35% for order 2 and from 83.52 to 27.78%
for order 3 and from 95.2% to 41.36% for order 4 and from
98.2% to 52.67% for order 5.

Unfortunately, the eUIS simulations are not of predictive
value on an individual peptide level because the resolution of
SSRCalc is below the used value. However, the global anal-
ysis is still valid, assuming that the SSRCalc values accurately
represent the distribution of retention times.

Experimental Validation—We validated our predictions ex-
perimentally by targeting the tricarboxylic acid cycle in
S. cerevisiae. Applying the spectral library approach de-
scribed earlier, we selected 30 target enzymes associated
with the TCA cycle using the Kyoto Encyclopedia of Genes
and Genomes (39) and retrieved reference spectra from the
spectral library (see supplemental Section S7). The six most
intense fragments were chosen for SRM monitoring, and the
corresponding transitions were measured on a yeast tryptic
digest sample over the whole retention time range using a
TSQ Quantum UltraTM instrument. An internal heavy 15N ref-
erence confirmed the identity of the peptides in question. We
then calculated the minimal number of transitions n necessary
to form a UIS where the transitions were selected with de-
creasing intensity from the reference spectrum and used only
those transitions to identify a peptide. We used our experi-
mental parameters of 0.7 and 0.7 Th for the Q1 and Q3
window as well as a background of mixed 14N and 15N pep-
tides. Using triplicates, we were able to exclude noise from
the data, e.g., cases where the noise present in one replicate
created an apparent coelution. The relative intensity informa-
tion in the data was not used here because we wanted to
study the coelution of transitions. We found that 87% of the
peptides and 100% of the studied proteins could be observed
with the minimal number of transitions predicted by the
SRMCollider.

From 30 proteins, we could detect 23 with certainty,
whereas none of the 7 other peptides could be detected. 117
peptides from 23 proteins were analyzed whose presence
was asserted using the heavy 15N reference. 102 peptides
(87.2%, belonging to 23 proteins) had predicted UIS that were
unique over the whole retention time range using a back-

TABLE I
All peptides interfering with more than two transitions of AIAGHLVEFFR

Listed are the 13 peptides that share three or more transitions with the target peptide (320 peptides sharing less than three transitions are
not shown here). Target transitions are ordered by signal intensity, and signal interference is indicated by �. For each peptide, the distance
to the target peptide in retention time (predicted by SSRCalc) and Q1 is given as well as the number of observations in PeptideAtlas (PA).
Although many possible unique ion signatures exist, the experimentally relevant ones are those that contain the most abundant transition
signals (indicated by transition rank). The results are valid for SRM settings of 1.2 Th on Q1 and 2.0 Th on Q3; the last four peptides interfere
with a higher isotope with the target peptide. Charge states of all precursors are 3�. Transitions are in their order of signal strength: y5�, y6�,
y3�, y4�, y7��, y9��, b5�, y7�, y8�, and y8��.

Transition rank 1 2 3 4 5 6 7 8 9 10 �SSRCalc �Q1 PA

SSSVISTPVASPK � � � 13.07 0.00 0
RPSENPFFHK � � � 12.43 0.35 0
ALHFEYPPGTK � � � 11.78 0.02 0
GEAELTFIPQR � � � 5.32 0.32 0
KPSSYVMVPRP � � � 13.69 0.33 0
GQQSITNEDLR � � � 16.73 0.31 0
SILNMLSVIDR � � � 9.08 0.34 8
SPQQQQGHPPR � � � � 29.12 0.02 0
LLQLNNDDTSK � � � � 15.95 0.32 1
APSDTTFDLYK � � � 9.59 0.31 7
YSTAHLNKPPK � � � 22.26 0.33 2
LPWYVLSSYK � � � 1.18 0.34 0
AIYTSLLHLAR � � � 0.6 0.32 4
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ground that allowed for one missed cleavage and variable
deamidation of asparagine and oxidation of methionine (only
93 peptides were unique considering a fully tryptic back-
ground without variable modifications). 3 peptides (2.5%) had
interferences that were not predicted by the SRMCollider and
required one or two additional transitions to be uniquely iden-
tified. Finally, 8 peptides (7%) could only be identified using
the coelution information of the 15N reference, and the last 4
(3.4%) peptides could not even be identified using the heavy
reference. The proteins that could not be detected were Sdh4,
YJL045W, Sdh3, YMR118C, Idp3, Irc15, and Cit3. Most of
these 7 proteins had zero observed peptides in PeptideAtlas
or very few observations under special fractionation condi-
tions and were thus not expected to be observable using
standard extraction and MS protocols.

DISCUSSION

Although it is generally accepted in the proteomics com-
munity that one transition per peptide is not sufficient to
create a conclusive SRM assay, the underlying reason for this
fact might be underappreciated, namely that assay redun-
dancy can become a hurdle when designing and measuring
SRM assays for a given peptide in a highly complex back-
ground. Here we present a computational tool that shows that
traditional methods to select SRM assays can lead to ambig-
uous assays because of interferences with peptides sharing
transitions with the target peptide. However, when interfer-
ences are considered in the design phase of a study, unique
assays may be obtained, often requiring fewer transitions per
peptide than would be chosen by traditional criteria. We pro-
vide an open source program to assist in the design of unique
assays that successfully integrates spectral library-based
SRM assay design and information content-based SRM assay
design. We thus extend previous work and furthermore show
how our tool can be applied to make meaningful comparisons
between different data-independent acquisition methods.
Given certain assumptions, our tool is able to provide pre-
dicted SRM interferences and unique assays for target pep-
tides conveniently over a web interface. Large scale analysis,
where manual inspection of each SRM trace is infeasible, may
especially benefit from using SRM interference analysis in
tandem with other large scale SRM analysis platforms, such
as mProphet (40).

Unique ion signatures occur frequently in human and yeast
proteomes. 90% of all peptides in yeast (85% in human)
possess at least one UIS of order 3 (Fig. 2a), as earlier studies
on this topic have shown (29). Using our standalone tool,
which is freely available for download online, UIS up to order
5 can be computed for all human peptides in less than 24 h on
a regular laptop computer. For casual users who quickly want
to determine the unique sets of transitions for a peptide
before measurement, a webtool is available that allows fast
and easy evaluation of single peptides and sets of peptides
against several, freely selectable background scenarios. UIS-

based analysis may also be advisable after measuring the
data because sometimes transitions have to be removed from
the data set, or they are missing in the best peak group.
UIS-based analysis can help to decide whether the remaining
transitions are sufficient to assign a peak group to a peptide,
i.e., whether the remaining transitions still form a UIS. If am-
biguity exists, it can be resolved by measuring additional
transitions of the query peptide and of the supposed interfer-
ing peptide to establish presence or absence of either one.

By integrating the widely used SSRCalc (30, 31) retention
time predictions into our analysis, we were able to simulate
time-scheduled SRM experiment acquisition (Fig. 2b). The
retention time constraint significantly decreases the number
of interferences and mirrors experimental conditions of
scheduled SRM measurements more closely. SSRCalc is
used by several other SRM assay design and simulation pro-
grams (17, 41), and we validate our use of SSRCalc in the
supplementary discussion with a large data set and also
discuss other predictors based on support vector machines
(27). We showed that the effect of using retention time sched-
uling with a window size of 4 SSRCalc units (corresponding to
roughly 2 min on a 30-min gradient) can be comparable with
adding one more transition to an assay. Acquisition windows
of 2 min are within the range of achievable window sizes
reported in other studies (15), but also larger windows offer
considerable reduction in interferences (Fig. 2b). This under-
scores the importance of accurate retention time scheduling
for SRM: not only can a higher number of assays be measured
in one run, but the assays are also more specific.

Recent advancements in building spectral libraries make
large resources of high quality reference spectra available to
the scientific community. We used this data to circumvent the
combinatorial explosion of possible UISn for any reasonable n
by integrating spectral library-based and information content-
based SRM assay design, thus creating assays that are bio-
logically meaningful and still optimal in terms of information
content. A simple algorithm creates a set of transitions that
both is unique for the query peptide and also contains the
most intense transitions. We are thus able to report the min-
imal number of transitions needed when using the SRMAtlas
(19).2 Here we investigated whether any bias exists in terms of
unique ion signatures when using the transitions reported in
the SRMAtlas, and we found that there is a slight benefit when
using the transitions from the SRMAtlas compared with ran-
dom transitions in terms of specificity (Fig. 4b). Furthermore,
SRMAtlas derived transitions are preferable in terms of signal
intensity. Further improvements could include a reduction of
the peptides in the background; for example, one could use
only peptides that were observed in the PeptideAtlas repos-
itory (see Table I on how this could influence the results).

The SRMCollider can also be used in simulations of new
acquisition methods such as data-independent schemata. A
map of a selected metric (fraction of available UIS2 as a proxy
for collision occurrence) of interferences is provided in the
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Q1–Q3 space (Fig. 3). This allows theoretical evaluation of
traditional SRM settings (in the space up to a few Th) and
data-independent acquisition methods (in the space of very
wide Q1 windows and very narrow Q3 windows), as well as
comparisons among these. The simulations can only give a
first idea on the feasibility of such a method in terms of assay
redundancy whereas other problems also have to be consid-
ered (speed, limit of detection, dynamic range, etc.).

We also showed experimentally that the predictions of
SRMCollider translate well to real world SRM applications. We
were able to measure 100% of the MS-observable proteins of
the TCA cycle in S. cerevisiae (23 of 30) using only the minimal
number of transitions predicted by the SRMCollider. Over
87% of the peptides used could be observed using only the
minimal number of transitions predicted by the SRMCollider
(without any use of retention time or relative fragment intensity
information). Using the minimal number of transitions may
also translate to reduced cost in terms of measurement time,
depending on which strategy would have been used other-
wise. Still, the fact that more than 10% of the predictions were
incorrect shows that there are some phenomena that are not
accounted for in our simulation.

Finally, we propose an extension to UIS termed eUIS by
introducing the concept of a “coelution group” (all transition
that coelute without necessarily belonging to the same pep-
tide). In supplemental Section S3, we show that there are
experimental conditions under which UIS are not sufficient
to predict uniqueness because of the coelution of two pep-
tides (which is caused by a violation of the assumptions
underlying UIS). We also globally simulated the occurrence
of eUIS in the yeast proteome and showed that for 73.25%
of all peptides in yeast, at least one eUIS of order 3 exists.
Unfortunately, we can only make global statements about
the occurrence of eUIS in a proteome. To predict eUIS for
single peptides, the exact retention times of all peptides in
the background would have to be known, and current re-
tention time predictions are not accurate enough to substi-
tute for experimental measurements.

It is important to understand that all of the results presented
here are only valid in the context of the assumptions made in
our simulations. This means that there will be false positive
hits, i.e., interferences that are never seen because the pro-
tein, peptide, or transition is not present, and false negative
hits, i.e., interferences that occur but were not predicted
because of phenomena that are not captured by our simula-
tions. These reflect our limited understanding of the physical
processes behind sample preparation and LC-MS/MS acqui-
sition. They may result from contaminations, unknown post-
translational modifications, unknown fragment ions, or mis-
cleavages. Thus the accuracy of the prediction will depend
strongly on the correlation between the simulated background
matrix and the actual, experimental background. The number
of false negative hits can be decreased by including a higher
number of species in the background, e.g., allowing for mod-

ifications, missed cleavages, or ion series other than the b and
y ion series in the background. There is a tradeoff, however,
because many of these species will not be present and thus
create false positive interferences predictions. We have de-
signed our tool such that the user can add or remove certain
constraints flexibly and easily add more species to the back-
ground proteome, thus adjusting the false positive rate. Fur-
thermore, automated assay design can be hindered when no
spectral library is available for the particular instrument be-
cause most SRM design pipelines (including this one) require
a priori knowledge of the expected transition intensities. With-
out abundance models for the peptides and accurate predic-
tions of fragment intensity, those problems will not be re-
solved very soon. Also, the retention time prediction suffers
from certain limitations, and a more accurate predictor would
be most beneficial to our approach; still, a true positive rate of
80% is similar to what other studies have reported (26) and
allowed us to exclude a considerable amount of the poten-
tially interfering peptides.

For SRM to become a high throughput targeted proteomics
technology, the assay design and the data analysis need to be
completely automated and free of manual steps. We present
a tool that can be used in the assay design phase to create
unique SRM assays or in the analysis phase to validate the
uniqueness of the measurement. In combination with other
design and analysis tools, we expect that the SRMCollider
can contribute to a more streamlined and automated SRM
design and analysis process. We also expect that the SRM-
Collider will help in incorporating information content in stand-
ard SRM analysis and thus increase confidence in the assign-
ment of peak groups to peptides.

□S This article contains supplemental material.
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